RG

• e.g. Correlation function

$$C(x_i - x_j) = \langle S_i^z S_j^z \rangle \sim \langle \sigma(x_i) \sigma(x_j) \rangle$$

$$C(x, h_{\perp}, h_{\parallel}) = b^{-2/8} C(x/b, b h_{\perp}, b^{15/8} h_{\parallel})$$

• Can choose b=x

$$C(x, h_{\perp}, h_{\parallel}) = x^{-1/4}C(1, h_{\perp} x, h_{\parallel} x^{15/8})$$

• Or $b=1/h_{\perp}=\xi$

$$C(x, h_{\perp}, h_{\parallel}) = \xi^{-1/4} C(x/\xi, 1, h_{\parallel} \xi^{15/8})$$

Correlation function

In zero longitudinal field (h₁=0)

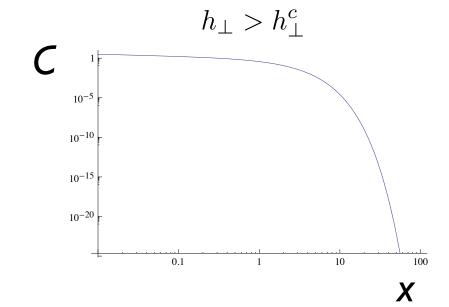
$$C(x, h_{\perp}) = x^{-1/4} \mathsf{C}(x/\xi)$$

$$\mathsf{C}(0) = \mathsf{C}_0$$

$$\mathsf{C}(X) \sim X^{-\alpha} e^{-X}$$
 $\sim X^{1/4}$

$$h_{\perp} > h_{\perp}^c \quad X \gg 1$$

$$h_{\perp} < h_{\perp}^c \quad X \gg 1$$



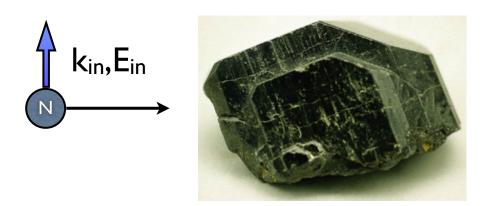
$$\beta = 1/8$$

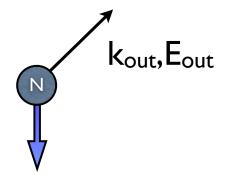
Summary

- Id TFIM has a QCP (like all continuous phase transitions) described by a scale invariant continuum field theory
 - The critical point is characterized by scaling operators (ε,σ) with scaling dimensions d_σ etc., and by a dynamical critical exponent z
- Perturbations to the QCP can be analyzed by RG, or scaling theory
 - Usually the relevant ones (which grow under rescaling) are most important
 - Scaling analysis can be applied to correlation functions, free energy, excitation energies,...you name it!

Back to Coldea

 Coldea studies CoNb₂O₆ via inelastic neutron scattering





 $E = E_{in}-E_{out}$ $k=k_{in}-k_{out}$ $\Delta S=I$

measure

$$A(k, E) \sim \sum_{n} |\psi_n|^2 \delta(E - \epsilon_n(k))$$

Coldea

• Spectra Paramagnet Transverse Magnetically Ordered (h_{\perp}) Field C 5.45 T E D 3.25 T 6 T 1.8 1.6 Energy (meV) 0.6

0.2

L (rlu)

-0.2

L (rlu)

0.4

continuum broken into many small dispersion curves

-0.2

0.2

L (rlu)

0.4

-0.2

cle.

lto

sharply peaked dispersion

-0.2

0.2

 $\times 1/3$

0.2

L (rlu)