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Quantum phase 
transitions in metals
• Some quantum phase transitions are very 

similar to classical ones

• recall TFIM

Actually the same field theory describes classical 
and quantum transitions in the Ising model



But some are not 

• Especially: quantum phase transitions in 
metals

“heavy fermion”

REVIEW ARTICLE FOCUS

The explicit identification of the QCPs in these and related
HF metals has in turn helped to establish a number of properties
that are broadly important for the physics of strongly correlated
electron systems. One of the modern themes, central to a variety
of strongly correlated electron systems, is how the standard
theory of metals, Landau’s Fermi-liquid (FL) theory, can break
down (see below, first section). Quantum criticality, through its
emergent excitations, serves as a mechanism for NFL behaviour,
as demonstrated by a T-linear electrical resistivity (Fig. 1b,c).
Moreover, the NFL behaviour covers a surprisingly large part of the
phase diagram. For instance, in Ge-doped YbRh2Si2, the T-linear
electrical resistivity extends over three decades of temperature
(Fig. 1c), a range that contains a large entropy (see below). Finally,
quantum criticality can lead to novel quantum phases such as
unconventional superconductivity (Fig. 1d).

These experiments have mostly taken place over the past
decade, and they have been accompanied by extensive theoretical
studies. The latter have led to two classes of quantum criticality
for HF metals. One type extends the standard theory of second-
order phase transitions to the quantum case9–11, whereas the other
type invokes new critical excitations that are inherently quantum
mechanical12–14. The purpose of this article is to provide a status
report on this rapidly developing subject.

MAGNETIC HF METALS AND FL BEHAVIOUR

HF phenomena were first observed in the low-temperature
thermodynamic and transport properties of CeAl3 in 1975 (ref. 15).
The 1979 discovery of superconductivity in CeCu2Si2 (ref. 16)
made HF physics a subject of extensive studies. This discovery was
initially received by the community with strong scepticism, which,
however, was gradually overcome with the aid of two observations,
of (1) bulk superconductivity in high-quality CeCu2Si2 single
crystals17 and (2) HF superconductivity in several U-based
intermetallics: UBe13 (ref. 18), UPt3 (ref. 19) and URu2Si2 (ref. 20;
W. Schlabitz, et al., unpublished). Around the same time, it was
recognized that CeCu2Si2, CeAl3 and other Ce-based compounds
behaved as ‘Kondo-lattice’ systems21.

KONDO EFFECT

Consider a localized magnetic moment of spin h̄/2 immersed
in a band of conduction electrons. The Kondo interaction—an
exchange coupling between the local moment and the spins of
the conduction electrons—is AF. It is energetically favourable for
the two types of spin to form an up–down arrangement: when
the local moment is in its up state, |⇤⌃, a linear superposition
of the conduction-electron orbitals will be in its down state,
|⌅⌃c, and vice versa. The correct ground state is not either of
the product states, but an entangled state—the Kondo singlet,
(1/2)(|⇤⌃|⌅⌃c � |⌅⌃|⇤⌃c). One of the remarkable features is
that there is a Kondo resonance in the low-lying many-body
excitation spectrum. The singlet formation in the ground state
turns a composite object, formed out of the local moment
and a conduction electron, into an elementary excitation with
internal quantum numbers that are identical to those of a bare
electron—spin h̄/2 and charge e. Loosely speaking, because of the
entanglement of the local moment with the spin degree of freedom
of a conduction electron, the local moment has acquired all the
quantum numbers of the latter and is transformed into a composite
fermion. We will use the term Kondo e�ect to describe the
phenomenon of Kondo-resonance formation at low temperatures.

At high temperatures, on the other hand, the system wants
to maximize the entropy by sampling all of the possible
configurations. It gains free energy by making the local moment
essentially free, which in turn weakly scatters the conduction
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Figure 1 Quantum critical points in HF metals. a, AF ordering temperature TN versus
Au concentration x for CeCu6�xAux (ref. 7), showing a doping-induced QCP.
b, Suppression of the magnetic ordering in YbRh2Si2 by a magnetic field. Also shown
is the evolution of the exponent � in ⇤⇥ ⇥ [⇥ (T )�⇥0] ⇧ T � , within the
temperature–field phase diagram of YbRh2Si2 (ref. 55). Blue and orange regions
mark � = 2 and 1, respectively. c, Linear temperature dependence of the electrical
resistivity for Ge-doped YbRh2Si2 over three decades of temperature (ref. 55),
demonstrating the robustness of the non-Fermi-liquid (NFL) behaviour in the
quantum-critical regime. d, Temperature-versus-pressure phase diagram for
CePd2Si2, illustrating the emergence of a superconducting phase centred around the
QCP. The Néel (TN) and superconducting (Tc) ordering temperatures are indicated by
filled and open symbols, respectively79.

electrons; this is the regime of asymptotic freedom, a notion
that also plays a vital role in quantum chromodynamics. It is
in this regime that Kondo discovered logarithmically divergent
correction terms in the scattering amplitude beyond the Born
approximation22. Kondo’s work opened a floodgate to a large body
of theoretical work23, which, among other things, led to a complete
understanding of the crossover between the high-temperature
weak-scattering regime and the low-temperature Kondo-singlet
state. This crossover occurs over a broad temperature range, and is
specified by a Kondo temperature; the latter depends on the Kondo
interaction and the density of states of the conduction electrons
at the Fermi energy. We will use Kondo screening to refer to the
process of developing the Kondo singlet correlations as temperature
is lowered.

KONDO LATTICE AND HEAVY FERMI LIQUID

HF metals contain a lattice of strongly correlated f electrons and
some bands of conduction electrons. The f electrons are associated
with the rare-earth or actinide ions and are, by themselves, in a
Mott-insulating state: the on-site Coulomb repulsion is so much
stronger than the kinetic energy that these f electrons behave as
localized magnetic moments, typically at room temperature and
below. They are coupled to the conduction electrons via an (AF)
Kondo interaction. In theoretical model studies, only one band of
conduction electrons is typically considered. Such a coupled system
is called a Kondo lattice.

It is useful to compare the HF metals with other strongly
correlated electron systems. The Mott-insulating nature of the f
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• Often superconducting state “covers” QCP
• Critical exponents non-classical
• Anomalous metallic behavior



A ubiquitous phase diagram
A ubiquitous phase diagramLinear resistivity



Why does metal make 
a difference?

• These phase transitions are nominally similar to those 
in insulators

• Might expect a Landau theory in Φ to apply

• But...usual assumption is that the only contributions 
to the critical behavior come from the ordering 
fluctuations, as only these persist to long distances (up to 
ξ)

• In a metal, there are other long-distance fluctuations 
and correlations which are due to low energy 
quasiparticles

h~S(r)i = ~�eiQ·r + c.c.



Connection of quantum 
and classical stat. mech.
• In classical stat. mech., the partition 

function is a sum/integral over degrees of 
freedom in d dimensions
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Connection of quantum 
and classical stat. mech.
• In quantum stat. mech., the partition 

function is a trace

• There is nothing local about the matrix 
elements of exp[-βH]
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Connection of quantum 
and classical stat. mech.
• Trotter formula
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Connection of quantum 
and classical stat. mech.
• Trotter formula

• So one expects there to be a relation between the 
d dimensional quantum problem and a classical-like 
problem in d space and one “time-like” direction
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Degrees of freedom

• But...in a metal we do not just have spins

• really the trace must include the states of 
the electrons

• Trace includes Sr and ck
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Degrees of freedom

• But...in a metal we do not just have spins

• really the trace must include the states of 
the electrons

• Trace includes Sr and ck - so does the action
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Path integral

• Formally

• We can try to reduce this to a d+1-
dimensional “classical” problem by 
integrating out c, c†

• How feasible is this?

Z =

Z
[d�][dc dc†]e�S[�,c,c†]


