
Integrating out c,c†

• Formally 

• Fermionic integral may be singular

• It involves an infinite number of d.o.f.

• Fermions are gapless: low energy electron/
hole excitations mean fermion correlation 
functions behave like power-laws at large 
x,τ

Z =

�
[dΦ][dc dc†]e−S[Φ,c,c†] =

�
[dΦ]e−Seff [Φ]



Hertz Theory

• Formally

• Result:

Z =

�
[dΦ]e−Seff [Φ]

e−Seff [Φ] = e−Sspin[Φ]

�
[dc dc†]e−Sel[c,c

†]e−JK
�
ddrdτ(�Φr,τe

iQ·r+c.c.)·�sr,τ

}
expand this out

Seff [Φ] = Sspin[Φ]−
�

ddkdωn

(2π)d+1

χ0(Q+ k, ωn)

2
�Φk,ωn · �Φ−k,−ωn +O(Φ4)

J. A. Hertz, PRB 14, 1165 (1976)



Hertz Theory
• The free electron susceptibility behaves like 

• Importantly, note the non-analytic |ωn| dependence 
- this reflects spin damping.  The spins can 
exchange energy (and spin) with the electron gas

• Unfortunately deriving this is a bit complicated, 
but you would learn it, e.g., in Physics 217b.

χ0(Q+ k, ωn) ≈ c0 + c1k
2 + c2|ωn|

≈ c0 + c1k
2 + c2

|ωn|
vF k

Q �= 0

Q = 0



Electron-hole pairs

• The non-analytic |ωn| term arises because 
the spin fluctuation can decay into or mix 
with an electron hole pair at low energy
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Figure 8.3: Absorption of a photon creates an electron-hole pair excitation in the free
electron gas. The possible range of q and ω is given by the dashed area in the right plot.
The strength of the interaction depends on the imaginary part of the polarization function,
see Eq. (8.82)

because �c†
k
c
k
� = nF (ξ

k
). In the frequency space, we find

χ
R

0 (q,ω) = −i

� ∞

t�
dt e

iωt
1
V

�

kσ

�
nF (ξk)− nF (ξk+q)

�
e
i(ξk−ξk+q)(t−t

�)
e
−η(t−t

�)
,

=
1
V

�

kσ

nF (ξk)− nF (ξk+q)
ξk − ξk+q + ω + iη

. (8.81)

This function is known as the Lindhard function, and later on, when discussing the
elementary excitations of the electron gas, we will study it in much more detail.

Within the non-interacting approximation and according to Eq. (8.74) we then have
that the dissipation of the electron gas is proportional to

− Imχ
R(q,ω) =

π

V

�

kσ

�
nF (ξk)− nF (ξk+q)

�
δ(ξk − ξk+q + ω). (8.82)

We can now analyze for what q and ω excitations are possible, i.e. for which (q,ω)
Eq. (8.82) is non-zero. Let us take T = 0 where nF is either zero or one, which means
that nF (ξk) − nF (ξk+q) is only non-zero if (k > kF and |k + q| < kF ) or (k < kF and
|k + q| > kF ). The first case corresponds to ω < 0, while the latter corresponds to ω > 0.

However, because of the symmetry χ
R

0 (q,ω) = −χ
R

0 (−q,−ω), which is easily seen from
Eq. (8.81), we need only study one case, for example ω > 0. The delta function together
with the second condition thus imply

0 < ω = q
2 1
2m

+ k · q
1
m

⇒

�
ωmax = 1

2m
q
2 + vF q

ωmin = 1
2m

q
2 − vF q , q > 2kF .

(8.83)

Q/kFQ=kp-kh



Landau expansion

• Add the fermion term to the Landau 
theory

+u

�
d3dkid3ωn,i

(2π)3d+3
Φk1,ωn1Φk2,ωn2Φk3,ωn3Φ−k1−k2−k3,−ωn1−ωn2−ωn3

a=0,1 (Q≠0, Q=0)

=

�
ddkdωn

(2π)d+1

�
(k2 +

|ωn|
ka

+ r)|Φk,ωn |2
�

S =

�
ddkdωn

(2π)d+1

�
(k2 +

|ωn|
ka

+ r)|Φk,ωn |2
�
+ u

�
ddxdτ |Φr,τ |4


