
Classical scaling for d>4

• Order parameter

• m vanishes for r>0 and again is singular for 
r<0 (m ~ u-1/2)

m ⇠ b�(d�2)/2M(±1, u|r|(d�4)/2)

m ⇠ b�(d�2)/2[u|r|(d�4)/2]�1/2 ⇠ |r|1/2

β=1/2



Back to Hertz

• Additional ingredient for QCP: Temperature 
scaling:  

• relative to renormalized low energy 
scale, temperature increases under RG

• Also seen from action

+u

Z
d3dkid3!n,i
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critical point is “trivial” ?



“Fan” diagram

• Two relevant perturbations of QCP

• r: deviation from critical point at T=0

• T: temperature

pend on space and time only through the scaled vari-
ables k! and "!#, since ! is the only length scale and !# is
the only time scale in that regime. !Note that multiple
time scales may be present in a multicomponent system;
see Sec. III.H.1." The Fourier components of a physical
quantity X affected by the transition are thus expected
to exhibit the following scaling behavior:

X!k," ;r,T" = !dxFx!k!,"!#,!#/L#" !74"

=T−dx/zF̃x!kz/T,"/T,T/r$z" , !75"

where dx is the scaling dimension of the observable X.
Exactly at the quantum critical point this reduces to

X!k," ;r = 0,T = 0" = k−dxFx
*!kz/"" . !76"

We again note that all scaling relations are expected to
be valid only if the critical point satisfies hyperscaling
properties, which is true below the upper critical dimen-
sion dc

+. Scaling above dc
+ in the presence of a danger-

ously irrelevant variable will be discussed in Sec. III.D.

C. Itinerant fermion systems

Quantum phase transitions in itinerant electron sys-
tems were first studied by Hertz !1976". Hertz pointed
out that near a phase transition at T=0 static and dy-
namic properties are inextricably mixed and applied a
RG treatment to model systems of this type. This work
was later reconsidered and extended by Millis !1993".

1. Definition of the Hertz model

In the context of strongly correlated electron systems,
one is mainly interested in magnetic phase transitions in
metals. As prototypes we consider ferromagnetic !FM"
and antiferromagnetic !AFM" phase transitions. We as-
sume the collective behavior near the transition to be
characterized by a real N-component order-parameter
field %, representing the magnetization !for the FM" or
the staggered magnetization !for the AFM". A number
of simplifications occur in the limit N→&, although the
actual number of components is N'3. The effective ac-
tion may be derived from the Hamiltonian either by in-
troducing the collective field in functional integral rep-
resentation and integrating out the electron degrees of
freedom !Hertz, 1976" or by more conventional tech-
niques !Moriya, 1985". Assuming that the resulting ac-
tion S#%$ can be expanded in powers of % with spatially
local coefficients, one arrives at the Hertz model

S = S2 + S4 + ¯ . !77"

Here the second-order term is given by

S2 =
1

(V %
k,"n

)0&*0 + !0
2k2 +

'"n'
+!k"(%k,"n

· %−k,−"n
, !78"

where the prefactor of %2 is nothing but the inverse of
the dynamical spin susceptibility ,−1!k ,"n". In this case
the microscopic correlation length !0 is )kF

−1, where kF
is a Fermi wave vector and )0 is the microscopic energy

scale, given by the Fermi energy )F. The momentum
summation extends up to a !bare" cutoff -0.

The dynamic contribution '"n' /+!k" accounts for
damping of the spin fluctuations !k,"n

by particle-hole
pairs excited across the Fermi level !Landau damping".
Their phase space increases linear with ". For a ferro-
magnetic transition !or other transitions with a Q=0 or-
der parameter", +!k"=vFk as k→0, i.e., the damping rate
diverges due to the abundance of particle-hole pairs
with small momentum. This results in a theory with
!bare" dynamical exponent z=3. For an antiferromag-
netic transition +!k")+0, independent of k, yielding z
=2. These forms of +!k" hold if the wave vector of the
spin mode in either case is well inside the particle-hole
continuum, i.e., if the ordering wave vector Q connects
points on a !d−2"-dimensional manifold of points on the
Fermi surface. For an antiferromagnetic system with a
small Fermi volume and a large ordering vector Q
.2kF, the particle-hole pairs decouple from the spin
fluctuations and " enters quadratically as in Eq. !63".
The crossover from linear to quadratic " dependence
has been discussed by Sachdev, Chubukov, and Sokol
!1995", and by Sachdev !1999". The special situation
where an antiferromagnetic mode is tied to wave vector
2kF at the edge of the particle-hole continuum !“nest-
ing”" will be considered in Sec. III.H.5.

The fourth-order term S4 of the action accounts for
the self-interaction of spin excitations,

S4 = u0* d#* ddr+%!r,#"2,2, !79"

with u0 denoting the strength of the interaction.
We point out here that the damping term in the Hertz

theory has been derived under the assumption of Fermi-
liquid behavior of the electronic quasiparticles. This
needs to be justified a posteriori and is discussed in Sec.
III.H. We also note that in the ordered phase, i.e., r/0,
T/Tc in Fig. 3, the action !78" does not apply: the form

FIG. 3. Phase diagram of the Hertz model. I, Fermi-liquid
regime; II, III, quantum critical regime; IV, non-Gaussian clas-
sical critical regime; V, magnetically ordered phase. Regimes II
and III are distinguished by the behavior of the correlation
length !; see Eq. !97". The quantum critical regime also ex-
tends into the ordered phase, with singular behavior for T
.T*, similar to regime II. Note that transport properties may
show more complicated crossovers !see Sec. III.F".
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Quantum critical scaling

• Example: energy density

• Let’s sit at the QCP (r=0) and raise 
temperature

• Specific heat

" ⇠ b�(d+z)E(r b2, kBT bz, u b4�d�z)

" ⇠ b�(d+z)E(0, kBT bz, u b4�d�z)

⇠ (kBT )
d+z
z Ẽ(u (kBT )

d+z�4
z ) ⇠ (kBT )

d+z
z

cv ⇠ @"/@T ⇠ T d/z ⇠ T 3/2 for 3d AF



Quantum critical scaling
• Thermal expansion coefficient

• We can deduce entropy scaling from specific heat

• Hence

• For a pressure tuned transition then r ~ p

↵ =
1

V

@V

@T

����
p

= � 1

V

@S

@p

����
T

S ⇠
Z T

0
dT 0 C(T 0)

T 0 ⇠ T 3/2

S ⇠ T 3/2S(rT�2/z)

↵ ⇠ @S

@r
⇠ T 1/2 (it is usually linear in a metal)



Ce1-xLaxRu2Si2
• This seems to be one of the rare examples 

where Hertz theory works

Fit is to a (slightly) more sophisticated theory which includes r ≠0

cv ⇠ �T � cT 3/2

S. Kambe et al, JPSJ 
65, 3294 (1996)



CeNi2Ge2

• Believed to be “close” to an AF QCP at 
ambient pressure

concentration of x ! 0:05 were grown from In flux as
described earlier [5,9]. From a careful EPMA, the effec-
tive Ge concentration is found to be xeff " 0:02# 0:01.
The large difference between nominal and effective Ge
content is due to the fact that Ge dissolves better than Si
in the In flux. A similar effective Ge content of 0:02#
0:004 [9] is deduced from hydrostatic pressure experi-
ments [19]. The residual resistivity of the Ge-doped crys-
tal is 5 !! cm. The thermal expansion and the specific
heat have been determined in dilution refrigerators by
utilizing an ultrahigh resolution capacitive dilatometer
and the quasiadiabatic heat pulse technique, respectively.

Figure 1 displays the T dependence of "a and "c, the
linear thermal expansion coefficients of CeNi2Ge2 mea-
sured along the tetragonal a and c axes. As shown by the
solid lines, the data can be described in the entire T range
investigated by the T dependence predicted [10] by the
three-dimensional (3D) SDW scenario, i.e., the sum of
(singular) square-root and (normal) linear contributions.
The corresponding fit parameters are listed in Table I. We
observe a moderate anisotropy "c ’ 1:8"a. As shown in
the inset, the volume expansion coefficient # ! 2"a $
"c, plotted as #%T&=T, is not a constant upon cooling, as
would be for a Fermi liquid, but shows a 1=

!!!!

T
p

divergence
over more than two decades in temperature from 6 K
down to at least 50 mK. This is one of the cleanest

observations of NFL behavior in a thermodynamic prop-
erty made in any system thus far.

We next consider the low-temperature specific heat
of CeNi2Ge2. As shown by several investigations,
C%T&=T strongly increases upon cooling from 6 to 0.4 K
[4,16,20–22]. This increase has either been described by
C%T&=T / ' log%T& [4,16] or C%T&=T ! $0 ' c

!!!!

T
p

[21].
Below 0.4 K, different behaviors have been reported.
While Knopp et al. found a peak at 0.3 K followed by a
6% decrease in C%T&=T from the maximum value [20],
Koerner et al. observed a leveling off in C%T&=T below
0.3 K [16]. In contrast, C%T&=T of a high-quality sample
with very low residual resistivity does not saturate but
shows an upturn at the lowest temperatures [22]. Very
recently, a systematic study of the low-temperature spe-
cific heat on different high-quality polycrystals, prepared
with a slight variation of the stoichiometry [15], has been
performed. The result was that nearly all of the different
investigated samples showed such an upturn in C%T&=T
below 0.3 K whose size, however, is strongly sample
dependent even for samples with similar %%T& and a
residual resistivity of only 0:2 !! cm [23]. In the follow-
ing, we analyze the specific heat (Fig. 2) measured on the
same sample that has been used for the thermal expansion
study. Below 3 K, the data can be described by C%T&=T !
$0 ' c

!!!!

T
p

$ d=T3 using the parameters listed in Table I
(solid lines in Fig. 2). Here we assume that the low-
temperature upturn, present in this single crystal as
well, could be ascribed to the high-temperature tail of a
Schottky anomaly [25]. Its influence on the Grüneisen
ratio is smaller than 5% at 0.1 K and therefore not visible
in the "%T& plot shown in the inset of Fig. 2. This is the
first observation of a divergent "%T& for T ! 0 in any
material and provides striking evidence that CeNi2Ge2 is
located very close to a QCP. The observed T dependence
is in full agreement with the 3D SDW prediction [10]. If
the investigated high-quality single crystal would enter a
Fermi liquid regime below 0.3 K as observed for the
sample studied in [16], "%T& should saturate below that
temperature.

The application of magnetic fields to CeNi2Ge2 is found
to gradually reduce the low-T specific heat coefficient.
For B ( 2 T, a nearly temperature-independent $%B& !
C%T; B&=T is observed at low temperatures with $%B& !
$0 ' const

!!!!

B
p

[21]. The low-temperature thermal expan-
sion shows a similar field-induced crossover to Fermi
liquid behavior (Fig. 3) and the field dependence
of "%T; B&=T in the field-induced FL regime diverges
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FIG. 1. Linear thermal expansions of CeNi2Ge2 vs tempera-
ture at B ! 0. The inset shows volume expansion as #=T vs T.
Solid lines are fits as specified in Table I.

TABLE I. Fit forms and parameters for CeNi2Ge2.

"%T& ! a
!!!!

T
p

$ bT " k c a ! 1:5) 10'6 K'1:5, b ! 0:87) 10'6 K'2

" k a a ! 0:99) 10'6 K'1:5, b ! 0:42) 10'6 K'2

#%T& ! a
!!!!

T
p

$ bT # a ! 3:5) 10'6 K'1:5, b ! 1:7) 10'6 K'2

C%T&=T ! $0 ' c
!!!!

T
p

$ d=T3 $0 ! 0:46 JK'2 mol'1, c ! 0:11 Jmol'1 K'5=2

d ! 102 !JKmol'1
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similar to 1=
!!!!

B
p

(not shown). Both features are consistent
with the predictions [10] from the itinerant 3D SDW
fluctuations at a zero-field AF QCP, assuming a linear
dependence between the magnetic field and the distance r
from the QCP.

We now turn to YbRh2!Si0:95Ge0:05"2, in which we have
measured the thermal expansion from 50 mK to 6 K.
Compared to CeNi2Ge2, here the volume thermal expan-
sion coefficient !!T" has an opposite sign reflecting the
opposite volume dependence of the characteristic ener-
gies. At T > 1 K, !!T" can be fit by #T log!T0=T" with
T0 $ 13 K (see Fig. 4). At T < 1 K, the best fit is given by
a1 % a0T. Both are not only different from the expected
3D-SDW results discussed earlier, but also weaker than
the lnlnT form [10] expected in a 2D-SDW picture [27].
The difference from the 2D-SDW picture is even more
striking when we look at the Grüneisen ratio. In Fig. 4,
we have also shown the electronic specific heat at zero
magnetic field. Here Cel & C# CQ, where CQ / 1=T2

denotes the nuclear quadrupolar contribution determined
from recent Mössbauer results [26]. At 20 mK, a maxi-
mum in Cel!T"=T marks the onset of very weak AF order
[9]. This is suppressed by a tiny critical magnetic field of
Bc & 0:027 T applied in the easy plane. At B & Bc, a
power law divergence Cel!T"=T / T#1=3 is observed
(which is already incompatible with the 2D-SDW picture)
[9]. At higher temperatures, the zero-field specific heat
coefficient also varies as log!T0

0=T" with T0
0 & 30 K

(Fig. 4) [5]. Because of the difference between T0
0 and

T0, the Grüneisen ratio is strongly temperature dependent.
Below 1 K, it diverges as !!T" & !0 % cT#2=3, i.e.,
weaker than the 1

T
lnln!T"
ln!T" form expected in a 2D-SDW
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FIG. 2. Specific heat at B & 0 as C=T vs T for CeNi2Ge2.
From the raw data (dashed line at low T), a contribution Cn &
"=T2 with " & 102 #JK=mol has been subtracted giving
the low-T open circles. The inset shows the T dependence of
the Grüneisen ratio ! & Vm=$T ' !=C, where Vm and $T
are the molar volume and isothermal compressibility, respec-
tively. Here, we use $T & 1:15( 10#11 Pa#1 as determined
from high-pressure lattice parameter measurements at room
temperature [24]. The solid line is a fit as specified in Table I.
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FIG. 4. Electronic specific heat as Cel=T (left axis) and
volume thermal expansion as #!=T (right axis) vs T (on a
logarithmic scale) for YbRh2!Si0:95Ge0:05"2 at B & 0. The solid
lines indicate log!T0=T" dependences with T0 & 30 K and 13 K
for Cel=T and #!=T, respectively. The dotted line represents
#!=T & a0 % a1=T with a0 & 3:4( 10#6 K#2 and a1 &
1:34( 10#6 K#1. The inset displays the log-log plot of
!cr!T" with !cr & Vm=$T ' !cr=Ccr using $T & 5:3(
10#12 Pa#1 [26], !cr & !!T" % a0T, and Ccr & Cel!T". The
solid and dotted lines represent !cr / 1=Tx with x & 0:7 and
x & 1, respectively.
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↵ ⇠ aT 1/2 + bT c/T ⇠ � � c T 1/2


