
Phase boundary

• What determines the shape of the phase 
boundary?

• Physics: thermal fluctuations suppress 
order 

pend on space and time only through the scaled vari-
ables k! and "!#, since ! is the only length scale and !# is
the only time scale in that regime. !Note that multiple
time scales may be present in a multicomponent system;
see Sec. III.H.1." The Fourier components of a physical
quantity X affected by the transition are thus expected
to exhibit the following scaling behavior:

X!k," ;r,T" = !dxFx!k!,"!#,!#/L#" !74"

=T−dx/zF̃x!kz/T,"/T,T/r$z" , !75"

where dx is the scaling dimension of the observable X.
Exactly at the quantum critical point this reduces to

X!k," ;r = 0,T = 0" = k−dxFx
*!kz/"" . !76"

We again note that all scaling relations are expected to
be valid only if the critical point satisfies hyperscaling
properties, which is true below the upper critical dimen-
sion dc

+. Scaling above dc
+ in the presence of a danger-

ously irrelevant variable will be discussed in Sec. III.D.

C. Itinerant fermion systems

Quantum phase transitions in itinerant electron sys-
tems were first studied by Hertz !1976". Hertz pointed
out that near a phase transition at T=0 static and dy-
namic properties are inextricably mixed and applied a
RG treatment to model systems of this type. This work
was later reconsidered and extended by Millis !1993".

1. Definition of the Hertz model

In the context of strongly correlated electron systems,
one is mainly interested in magnetic phase transitions in
metals. As prototypes we consider ferromagnetic !FM"
and antiferromagnetic !AFM" phase transitions. We as-
sume the collective behavior near the transition to be
characterized by a real N-component order-parameter
field %, representing the magnetization !for the FM" or
the staggered magnetization !for the AFM". A number
of simplifications occur in the limit N→&, although the
actual number of components is N'3. The effective ac-
tion may be derived from the Hamiltonian either by in-
troducing the collective field in functional integral rep-
resentation and integrating out the electron degrees of
freedom !Hertz, 1976" or by more conventional tech-
niques !Moriya, 1985". Assuming that the resulting ac-
tion S#%$ can be expanded in powers of % with spatially
local coefficients, one arrives at the Hertz model

S = S2 + S4 + ¯ . !77"

Here the second-order term is given by

S2 =
1

(V %
k,"n

)0&*0 + !0
2k2 +

'"n'
+!k"(%k,"n

· %−k,−"n
, !78"

where the prefactor of %2 is nothing but the inverse of
the dynamical spin susceptibility ,−1!k ,"n". In this case
the microscopic correlation length !0 is )kF

−1, where kF
is a Fermi wave vector and )0 is the microscopic energy

scale, given by the Fermi energy )F. The momentum
summation extends up to a !bare" cutoff -0.

The dynamic contribution '"n' /+!k" accounts for
damping of the spin fluctuations !k,"n

by particle-hole
pairs excited across the Fermi level !Landau damping".
Their phase space increases linear with ". For a ferro-
magnetic transition !or other transitions with a Q=0 or-
der parameter", +!k"=vFk as k→0, i.e., the damping rate
diverges due to the abundance of particle-hole pairs
with small momentum. This results in a theory with
!bare" dynamical exponent z=3. For an antiferromag-
netic transition +!k")+0, independent of k, yielding z
=2. These forms of +!k" hold if the wave vector of the
spin mode in either case is well inside the particle-hole
continuum, i.e., if the ordering wave vector Q connects
points on a !d−2"-dimensional manifold of points on the
Fermi surface. For an antiferromagnetic system with a
small Fermi volume and a large ordering vector Q
.2kF, the particle-hole pairs decouple from the spin
fluctuations and " enters quadratically as in Eq. !63".
The crossover from linear to quadratic " dependence
has been discussed by Sachdev, Chubukov, and Sokol
!1995", and by Sachdev !1999". The special situation
where an antiferromagnetic mode is tied to wave vector
2kF at the edge of the particle-hole continuum !“nest-
ing”" will be considered in Sec. III.H.5.

The fourth-order term S4 of the action accounts for
the self-interaction of spin excitations,

S4 = u0* d#* ddr+%!r,#"2,2, !79"

with u0 denoting the strength of the interaction.
We point out here that the damping term in the Hertz

theory has been derived under the assumption of Fermi-
liquid behavior of the electronic quasiparticles. This
needs to be justified a posteriori and is discussed in Sec.
III.H. We also note that in the ordered phase, i.e., r/0,
T/Tc in Fig. 3, the action !78" does not apply: the form

FIG. 3. Phase diagram of the Hertz model. I, Fermi-liquid
regime; II, III, quantum critical regime; IV, non-Gaussian clas-
sical critical regime; V, magnetically ordered phase. Regimes II
and III are distinguished by the behavior of the correlation
length !; see Eq. !97". The quantum critical regime also ex-
tends into the ordered phase, with singular behavior for T
.T*, similar to regime II. Note that transport properties may
show more complicated crossovers !see Sec. III.F".
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Phase boundary

• Fluctuation correction to location of critical 
point

• “Mean-field”-like approximation (technically 
self-energy correction)

S =
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The shift

• Fourier (introduce “cutoff” ε)

• We want to extract the small temperature 
behavior of this.  Poisson formula:
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The shift

• We obtain

• Separate m=0 (T=0) term:
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Analyzing the integral

• Rotate contour ωm = i y

Im = 2Re
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Analyzing the integral

• Rescale: y = T u, k = T1/2 q
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So finally...

• We obtain

• Which implies

• So the critical point occurs when
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Phase boundary

• This gives the shape:

pend on space and time only through the scaled vari-
ables k! and "!#, since ! is the only length scale and !# is
the only time scale in that regime. !Note that multiple
time scales may be present in a multicomponent system;
see Sec. III.H.1." The Fourier components of a physical
quantity X affected by the transition are thus expected
to exhibit the following scaling behavior:

X!k," ;r,T" = !dxFx!k!,"!#,!#/L#" !74"

=T−dx/zF̃x!kz/T,"/T,T/r$z" , !75"

where dx is the scaling dimension of the observable X.
Exactly at the quantum critical point this reduces to

X!k," ;r = 0,T = 0" = k−dxFx
*!kz/"" . !76"

We again note that all scaling relations are expected to
be valid only if the critical point satisfies hyperscaling
properties, which is true below the upper critical dimen-
sion dc

+. Scaling above dc
+ in the presence of a danger-

ously irrelevant variable will be discussed in Sec. III.D.

C. Itinerant fermion systems

Quantum phase transitions in itinerant electron sys-
tems were first studied by Hertz !1976". Hertz pointed
out that near a phase transition at T=0 static and dy-
namic properties are inextricably mixed and applied a
RG treatment to model systems of this type. This work
was later reconsidered and extended by Millis !1993".

1. Definition of the Hertz model

In the context of strongly correlated electron systems,
one is mainly interested in magnetic phase transitions in
metals. As prototypes we consider ferromagnetic !FM"
and antiferromagnetic !AFM" phase transitions. We as-
sume the collective behavior near the transition to be
characterized by a real N-component order-parameter
field %, representing the magnetization !for the FM" or
the staggered magnetization !for the AFM". A number
of simplifications occur in the limit N→&, although the
actual number of components is N'3. The effective ac-
tion may be derived from the Hamiltonian either by in-
troducing the collective field in functional integral rep-
resentation and integrating out the electron degrees of
freedom !Hertz, 1976" or by more conventional tech-
niques !Moriya, 1985". Assuming that the resulting ac-
tion S#%$ can be expanded in powers of % with spatially
local coefficients, one arrives at the Hertz model

S = S2 + S4 + ¯ . !77"

Here the second-order term is given by

S2 =
1

(V %
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2k2 +
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where the prefactor of %2 is nothing but the inverse of
the dynamical spin susceptibility ,−1!k ,"n". In this case
the microscopic correlation length !0 is )kF

−1, where kF
is a Fermi wave vector and )0 is the microscopic energy

scale, given by the Fermi energy )F. The momentum
summation extends up to a !bare" cutoff -0.

The dynamic contribution '"n' /+!k" accounts for
damping of the spin fluctuations !k,"n

by particle-hole
pairs excited across the Fermi level !Landau damping".
Their phase space increases linear with ". For a ferro-
magnetic transition !or other transitions with a Q=0 or-
der parameter", +!k"=vFk as k→0, i.e., the damping rate
diverges due to the abundance of particle-hole pairs
with small momentum. This results in a theory with
!bare" dynamical exponent z=3. For an antiferromag-
netic transition +!k")+0, independent of k, yielding z
=2. These forms of +!k" hold if the wave vector of the
spin mode in either case is well inside the particle-hole
continuum, i.e., if the ordering wave vector Q connects
points on a !d−2"-dimensional manifold of points on the
Fermi surface. For an antiferromagnetic system with a
small Fermi volume and a large ordering vector Q
.2kF, the particle-hole pairs decouple from the spin
fluctuations and " enters quadratically as in Eq. !63".
The crossover from linear to quadratic " dependence
has been discussed by Sachdev, Chubukov, and Sokol
!1995", and by Sachdev !1999". The special situation
where an antiferromagnetic mode is tied to wave vector
2kF at the edge of the particle-hole continuum !“nest-
ing”" will be considered in Sec. III.H.5.

The fourth-order term S4 of the action accounts for
the self-interaction of spin excitations,

S4 = u0* d#* ddr+%!r,#"2,2, !79"

with u0 denoting the strength of the interaction.
We point out here that the damping term in the Hertz

theory has been derived under the assumption of Fermi-
liquid behavior of the electronic quasiparticles. This
needs to be justified a posteriori and is discussed in Sec.
III.H. We also note that in the ordered phase, i.e., r/0,
T/Tc in Fig. 3, the action !78" does not apply: the form

FIG. 3. Phase diagram of the Hertz model. I, Fermi-liquid
regime; II, III, quantum critical regime; IV, non-Gaussian clas-
sical critical regime; V, magnetically ordered phase. Regimes II
and III are distinguished by the behavior of the correlation
length !; see Eq. !97". The quantum critical regime also ex-
tends into the ordered phase, with singular behavior for T
.T*, similar to regime II. Note that transport properties may
show more complicated crossovers !see Sec. III.F".
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Resistivity
• This is very complicated, even in Hertz theory 

above the upper critical dimension!

• but...in general power-law behavior is expected, 
and usually different from that in an normal 
metal, i.e. away from the QCP

• In the simplest approximation, for d=3, z=2, one 
obtains ρ ~ ρ0 + A T3/2

• c.f. in a usual Fermi liquid, at low temperature ρ 
~ ρ0 + A T2

See von Löhneysen et al, RMP 79, 1015, sec. IIIF 



Resistivity

• Behavior in CeNi2Ge2 seems consistent 
with the “simple” theory, which is expected 
to apply when the material is not too clean

VOLUME 82, NUMBER 6 PHY S I CA L REV I EW LE T T ER S 8 FEBRUARY 1999

Ce increment to the specific heat, DC, was determined
by subtracting from the measured specific heat that of
LaNi2Ge2.
Figures 1 and 2(a) illustrate the existence of NFL ef-

fects in CeNi2Ge2 at zero field and down to tempera-
tures T ¯ 0.2 K, i.e., more than 2 orders of magnitude
below the characteristic (Kondo) temperature of ¯30 K
[11,17]. For T # 2 K, the thermodynamic quantities,
plotted as DCsT dyT and asT dyT , are found to be roughly
proportional to 2 lnT . In the same temperature window,
the resistivity follows a power-law dependence, rsT d ≠
r0 1 bT

´, ´ # 1.5. As shown in Fig. 3, application of
a magnetic field to one of the high-purity samples sr0 ≠
0.43 mV cmd forces the low-temperature resistivity to turn
into a T

2 behavior. The slope of the low-field magnetore-
sistance, drydB, is negative for T $ 1.2 K and B # 2 T
but changes sign when increasing the field to B . 2 T.
For “standard-quality” samples (r0: 1.5 3 mV cm) a simi-
lar behavior was observed even at the lowest temperatures
[18]. The crossover temperature below which the resistiv-
ity shows a T

2 behavior increases proportionally to B

0.65

[Fig. 4(a)]. Note that a similar observation was recently
made by Grosche et al. [19]. At the same temperatures, at
which the resistivity behavior changes, both DCsT dyT and
asT dyT show strong deviations from the 2 lnT depen-
dence; cf. arrows in Figs. 1(a) and 1(b). These crossover
temperatures are pushed upwards with increasing field,
similar to what was first reported for CeCu62x

Au
x

[4].
The DrsT d ≠ r 2 r0 ≠ bT

1.5 dependence observed
in several CeNi2Ge2 samples with residual resistivi-
ties r0 ranging between 1.5 and 3 mV cm [see, e.g.,
Fig. 2(a)] is in accord with the prediction by the NAFFL
theory [1–3] for the asymptotic behavior (at B ≠ 0) in
a three-dimensional system. It characterizes a diverging
quasiparticle-quasiparticle scattering cross section being
proportional to asT d ≠ DrsT dyT

2 ~ T

20.5. In Fig. 4(b),
we show for all samples studied the slope a of the low-T
straight lines in the Dr vs T

2 plots (cf. Fig. 3) as a func-

FIG. 1. Ce increment to the specific heat (a) and thermal
expansion (b) of CeNi2Ge2 as CyT vs T and ayT vs T ,
on logarithmic temperature scales, for B ≠ 0 and differing
magnetic fields. Arrows indicate positions on the solid line
shown in Fig. 4(a).

tion of the magnetic field. Our data indicate a divergence
of a, i.e., the quasiparticle-quasiparticle cross section, and
hint at the existence of a quantum critical point (QCP)
near B ≠ 0.
A closer inspection of our data, however, raises ques-

tions as to whether the NAFFL concept can be applied to
CeNi2Ge2 at all: (i) Within this concept, the “crossover
regime” at moderate temperatures is characterized by
gsT d ≠ DCsT dyT ~ 2 lnT and Dr ≠ bT . However,
in the temperature range where gsT d and asT dyT show
a 2 lnT dependence, our resistivity data are well fitted
by power laws, Dr ≠ bT

´, with differing exponents
s1.37 # ´ # 1.5d, depending on sample quality. (ii) Fur-
ther on, in contrast to the asymptotic g0 2 gsT d ~ T

0.5

dependence expected [1–3] along with Dr ~ T

1.5 well
below this crossover regime, the specific-heat coefficient
gsT d was previously found [17] to exhibit a broad
maximum between T ≠ 0.2 K and T ≠ 0.3 K. This is
corroborated in Fig. 1(b) by the maximum in the B ≠ 0
data for asT dyT at T ≠ 0.2 K. These anomalies and
their shift to higher temperatures, induced by the B field,
can be interpreted by a freezing out of the long-lived
and long-range part of the spin-fluctuation spectrum and,
thus, by establishing a FL state at low T , as illustrated in
Fig. 4(a). (iii) In our B ≠ 0 results for the resistivity,
a corresponding change into a T

2 dependence cannot be
observed, though this is theoretically expected beyond a
QCP. The resistivity results rather locate this compound
very close to a QCP. In this case, a low-temperature tran-
sition into a T

2 dependence was theoretically predicted,
too [20]. Further on, if potential scattering in the sample
is reduced and the anisotropy of the quasiparticle lifetime
reinforced, an increase of the validity regime for the T

2

law is predicted in Ref. [20]: In a power-law represen-
tation of the data within a restricted temperature window
this should manifest itself in an increase of the resistivity
exponent with increasing perfection of the samples. Our
results displayed in Fig. 2(a) are at strong variance with

FIG. 2. Electrical resistivity as a function of tempera-
ture for three CeNi2Ge2 samples with r0 ≠ 2.7 mV cm
shd, 0.43 mV cm smd, and 0.34 mV cm s,d as r vs T

´

with differing exponents ´ (a) and dr ≠ r 2 sr0 1 bT

´d
vs T (b).
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When does it work?
• Not obvious: the assumption that integrating our 

electrons does nothing to higher order terms is 
questionable

• People have looked at these and it seems that it is OK 
when Q ≠0 in d=3

• For Q=0 in d=2,3 and for Q ≠ 0 in d=2 there are many 
singularities not captured by Hertz action

• In all these cases, one should try to study the QCP 
without integrating out fermions

• This is much more complicated and still a matter of 
current research


