Beyond LGW

- Driven partly by experiment and partly by theory, recent research in quantum criticality mostly focuses on situations *beyond* the Landau-Ginzburg-Wilson paradigm
- That is, situations in which an approach based on an order parameter alone is inadequate

When do we go beyond?

- I. When a neighboring phase has lots of gapless excitations (like in metals!)
- 2. When a neighboring phase is not described by an order parameter
- 3. Sometimes even if both the neighboring phases and their excitations are ordinary, unconventional behavior can emerge at the QCP

When do we go beyond?

- I. When a neighboring phase has lots of gapless excitations (like in metals!)
 - I. Failure of Hertz theory for most such QCPs motivates other approaches
 - 2. Conservation approach: strongly-coupled fermion-boson criticality
 - 3. Radical approach: "Kondo breakdown"

Kondo effect

- Kondo effect:
 - a spin can be *screened* by coupling to conduction electrons
 - this happens with a "binding energy" which is exponentially small

 $k_B T_K \sim \epsilon_F e^{-\epsilon_F/J_K}$

• When there are many spins, the Kondo effect competes with the tendency of spins to order - RKKY interaction

Doniach diagram

?? Is the QCP a Kondo breakdown transition ??

When do we go beyond?

- I. When a neighboring phase has lots of gapless excitations (like in metals!)
- 2. When a neighboring phase is not described by an order parameter
- 3. Sometimes even if both the neighboring phases and their excitations are ordinary, unconventional behavior can emerge at the QCP

Phases without order parameters

- Phases are more fundamental and more important - than phase transitions
- Usually, they are distinguished by symmetry
- But phases may differ even with the same symmetry
 - Excitations or other properties may be qualitatively different in two phases

Phases without order parameters

- Example: metal versus insulator
 - both are possible with the same symmetry, but excitations differ qualitatively, as does conductivity
 - but at T>0, they are the same phase
 - one can still have a T>0 first order "Mott transition", e.g.VO₂,V₂O₃,...
- There are other types of "quantum order" that can distinguish a phase

Mott transitions

FIG. 70. Phase diagram for doped V_2O_3 systems, $(V_{1-x}Cr_x)_2O_3$ and $(V_{1-x}Ti_x)_2O_3$. From McWhan *et al.*, 1971, 1973.

Quantum orders

- Simplest cases are quantum phases in which there is a gap to all (bulk) excitations
- In this situation, there are "topological orders"
 - e.g. "Topological Insulators" : just non-interacting band insulators which are distinct from usual ones by "twisting" of wavefunctions of occupied bands
 - more interesting are "topological phases" : ground states of interacting electrons that host exotic excitations with fractional (or nonabelian) statistics (Q)

Examples?

- quantum Hall state (TI)
- toric code
- quantum spin liquid (RVB)
- entanglement entropy
- deconfined quantum critical points