Physics 220: Advanced
Statistical Mechanics

Spring 2012
Instructor: Leon Balents



Plan

® General subject: statistical methods and phenomena
in many-body systems

® Phases and phase transitions

® C(Critical phenomena - classical and quantum

® Elementary excitations and topological defects
® Models

® Statistical field theory

® Monte Carlo methods
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Plan

® Cover subjects through illustrative topical
examples from recent research such as

® Quantum criticality in an Ising chain

® Spin ice

® Order by disorder
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Ising Chain

® Very beautiful paper from R. Coldea (Oxford),
experimentally studying the quantum transverse field
Ising chain, a canonical model of statistical mechanics

® We can learn about:
® |[sing models
® Ordered and paramagnetic phases
® Quantum and classical phase transitions

® FElementary excitations and domain walls
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Ising model

® (Classical model of “spins” i = | which

Interact |
H = —5 Z JijO'iO'j
v]

b =+
{ =1

® Usually put them on a regular lattice and
make them couple locally, e.g. by nearest-

-4

neighbors 1-Jf

=

(i5)

H = —JZO'Z'O']'
_Ji

J>0:“ferromagnetic”

J<0:“antiferromagnetic”
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Thermal fluctuations

® Boltzmann |
plo1,02, -+ ,0N] —e PH B=1/kgT

® High temperature 5J < 1

® Spins are basically random and equally likely to
take any value: paramagnetic phase

® |ow temperature (3J > 1

® Spins are highly correlated and neighbors are
almost always parallel: ?? ordered, ferromagnetic
phase??
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Phases

® A phase is a set of states of a system whose properties

vary smoothly when varying control parameters
continuously

® Usually we say that the free energy is analytic within
a phase

® Two systems are in the same phase if all their
properties are quadlitatively the same

® Distinct phases exist only in systems with (1) an infinite

number of degrees of freedom and/or (2) at zero
temperature

® Why!?? fluctuations etc.
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Symmetry Breaking

® The difference between the paramagnetic and
ferromagnetic phases is broken Ising symmetry

® HighT: paramagnetic (o;) =0
® What does this mean (guaranteed by symmetry?)
® Consider infinitesimal applied field

® Low T:ferromagnetic (0;) # 0
® |[nfinitesimal field

® |ong range order
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Susceptibility and LRO
m = (o)

® Susceptibility

- O(oy)
XT Ton

® Linear response

_52 0i0;) i)(5))

® diverges when spins become long-range
correlated
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Define magnetization

® |nfinitesimal field

m = lim (o;)n
h—0T

® | ong-range order

m2 — lim <0-z'0-j>h:0
|i—j|—o0



Correlation Length

® |n the paramagnet, there is a finite length beyond
which spins are uncorrelated

<O'7;O'j> ~ €_|i_j|/€ ‘7/ —j| >>f

® The correlation length must go from finite to infinite
to enter the FM: defines critical temperature T.

® Either it jumps to infinity:“first order transition”

® Or it diverges continuously:“second order” or
“continuous’ transition

® |n the latter case, there can be non-analytic
features on approaching T (why??)
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Mean field theory

® The simplest approximation to describe a
phase transition is MFT

® There are many types of MFT, and if one

wants to be more precise, this is “Curie-
Weiss MFT”

® |dea: replace interaction between spins by
an effective “exchange field”

® Then solve the stat. mech. of this spin, and
make the field self-consistent



MFT

® Decoupling

Jijoio; — Jij [(04)05 + 0i{0j) — (0:){0;)]

® Exchange field
1
_5 Z JZJO-ZUJ — — Z h?ffO'i -+ const.

19 1
h?ﬂ: — ZJij<O'j> h

J
® Self-consistency (for a classical Ising spin)

(0;) = tanh ﬁh;ﬁ h
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MFT: solution

® For Ising Ferromagnet, on lattice with z
nearest neighbors

m = tanh z8Jm
® For keT > zJ, only solution is m=0 (PM)
® For kgT < z|, get spontaneous m#*0 (FM)

m ~ (T, — T)20(T. — T) T-T./T. < 1

® non-analytic behavior characteristic of
continuous transition
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Other MFT predictions

® Susceptibility
A
X ™ T —T. 1T >1,
® Specific heat

cy ~A—BO(T —T,)

® These kinds of predictions often work
qualitatively and sometimes semi-quantitatively

® VWe expect MFT works best when z is large
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Ising Chain

e Coldea: H:Z ~JS7SZ 1 — hyS¥]

S; = Gz/ 2 Pauli matrices |
® Zero transverse field: effectlvely classical

Z =
H = —Jesr E :O-ia-iqtl

® What is the transition like?

® exactly solvable by “transfer matrix”
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Transfer matrix

® Partition function

Z B Jett Ez 1 9i04+41 (PBCS)
{oi}

— E H pl80iTit1

{o:} i=1

— ZH O-Z‘T|O-Z—|—1 TI‘( )
{0y} i=1
® Transfer matrix

A K —K
T:<€K 6}() K:ﬁj

€ €
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Transfer Matrix (2)

® Solution
Z =X +X
AN =2cosh K > Ao =2sinh K
® |arge system
7 =~ (2cosh K)V
F=—-3"1'InZ~—-NB "In(2cosh K)

® This is a smooth function with no singularity at
finite, non-zero K = J/kgT: no phase transition!
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Why no transition!?

® This is because of domain walls

111§ R222

AE=2]

® Correlation length = distance between
domain walls: finite for any T>0

5 N €2BJ

® Can verify this from transfer matrix



Fluctuations

® So thermal fluctuations have a drastic effect in Id -
destroy the phase transition entirely

® |n fact this is a general phenomena: d=1 is the “lower

critical dimension” for discrete symmetry breaking at
T>0

® more on this theme later

® What about quantum fluctuation effects at T=0, or
thermal fluctuations for d>1?

® Even when they do not destroy the ordered phase,
they alter critical properties and lead to other effects
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Quantum Ising chain

 Coldea H=)> [-JS;S;, —hiS]

® This can be exactly solved by Jordan-Wigner
transformation

® First we will reformulate it slightly

S; =15 Sy = 17

H=Y [-JT T +hoT7]



Jordan-Wigner

® |dea: spin-1/2 are similar to fermions
(T, 1,7} =1 (T;7)? = (T;7)* =0
® Transformation
T7 =h; —1/2=cle, —1/2
1. = U, T;r = CIUJ
U, = ™ 2j<i™ = U] = U}

® The “string operator’” U; ensures that spins
on different sites commute
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Jordan-Wigner

® Exchange term

rTrpxr
Tfi, Ti—l—l T

® Hamiltonian

(

: _
H=23 |=7(e —e)leintein) +hilee—1/2)
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Solution

® Fourier c¢;

||
Q-
[
("D|
T
Y

® Hamiltonian

H = g — % ckc € ke e 4 chke_Zk + czcke”{) - thLck}

(—2isink (C};CT . — C_kCL) + 2cosk (c};ck + C]L_kc_k)) + hL(c};ck + cT_kc_k)}

|
|
NI

® Particle-hole

C—k:dk k>0
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Solution (2)

® Hamiltonian

H = Z —smk ckdk dzck) (hL—QJCOSk)(Cka dlidk)}
k>0

® Spinor Y = (22)

1L — 5cosk 135 sin k
H = Zwk( —z—smk —(hL—icosk)> Vi

k>0 2
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Solution (3)

® Jwo“bands’:0 <k <TT

By = =£|[(hy — % cosk)” + (% sin k)2}1/2
| hy = 3J/4
Ek 4t hJ_:J/Q
hy = J/4
““““““““““““““““ ‘.0“ k

® States evolve smoothly except at h,=|/2, which is

qualitatively different: this is the quantum critical
point
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Phase Diagram

h./] 4
quantum
critical |/
point PM
FM

kT/]



Phase transition

® Ground state energy

" dk
E=-) |E :—L/ o [Pk

L 0
® Second derivative
1 9°E /” dk 2J?%sin? k
Lon% )y 2w (J2+4h% —4h, Jcosk)3/?

“transverse
susceptibility”
diverges!

this is analogous to specific
heat divergence at a classical
phase transition
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Correlation Length

® Singularity implies continuous transition

® Can focus on long-distance physics

Er = £|(hy — 2 cosk)® + (4 sink)?]

- ((hy — 2)% + Lhy gk?)?
T [AQ -+ U2k2] 1/2

1/2

¢

A=h, —J/2 v=1/hiJ/2 ~J/2

Vv2h J
2h, — J

§=v/A= ~ (h, —hS )™V v =1
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Time scale

® Correlation time scales with &
T~ Efve (hy —h1)™"

® This is consistent with energy-time scaling
in quantum mechanics

A~h/T~v/E

® n.b.in general, at a critical point, can have a
dynamical critical exponent z
T ~ &7 z>1
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Power laws

® Notice that everything appears to be
described by power laws near the QCP

® This is a general property - “scaling” - of
second order phase transitions

® How to understand it!

® Scale invariance



Majorana

, i
H = Z _Z(C]@L _Cz')(cf:;rﬂ +Cz‘+1)+hL(C:;rCz‘ - 1/2)

® Majorana = real fermions

Vi = Cj + C;r- T, = i(Cj — C;r)
® Anticommutators {77} = 20;; etc.

H = Z —nivie1 + Lhiniv;)

/da? Sy — 5n0. )
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Majorana magic

® Rotation n = \%(UR + 77L) v = \%(771% — 77L)

1d Majorana Hamiltonian

| H = /dx — UR@:UHR — nLaﬂ?nL ZQA 77L77R}

deviation from
crltlcallty

- _
® A=0:no intrinsic length scale

—1/2 “scaling dimension”

nr/r ~ L
of N:dy = 1/2

H~v/L



Effective field theory

H = /dx - 7735933773 — 77L(7a:77L) 2 77L77R]

® A critical point is described by a scale
invariant effective field theory

® Dimensionless effective action

S = /dtdm {2 nr(0r — vd)nR + 1L (0 + vO:)nL] + B nrnr |

t— bt
r— bx

Nr/r, — b

critical theory (A=0) is
—1/2 invariant under this!
NRr/L

Thursday, June 14, 12



Scale Invariance

® VWhat does it mean?

x—>bx N r=>bx b > 1
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Effective field theory

[/

Se = /dt dx {Z NRrR(Oy — v0z)nR + NL(O; U@c)%]}

® A critical point is described by a scale
invariant effective field theory

® Perturbations are described by local
operators carrying scaling dimensions

Fermion dn=1/2
Transverse spin AS* ~e~nrnr  de= |

Ising spin S% ~ g ~77  do=1/8!
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Scale Invariance

® VWhat does it mean?

x—>bx N r=>bx b > 1

.
(b=

2)

 Renormalization
X | Group '
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Renormalization Group

® Perturbations

AS:/dtd$ {Ahj_g—l—hHO'}
® Under RG

Ahy = b*"%hy =bh, relevant
Ah) — bz_d"hn _ p15/8 hy perturbations

® After rescaling, physical quantities with new
and old perturbations should be the same
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RG

® c.g. Correlation function
Clai —x;) = (5755) ~ (o(@i)o(z;))

C(z,hy, hy) =b"3C(z/b,bhy,b"*/5h)
® Can choose b=x

C(Zl?,hJ_,hH) — $_1/4C(1,hj_ {,E,hH 51315/8)
® Or b=|/hJ_= E

C(z,hy,hy) =& YA0O(@/E, 1, by £5977)
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Correlation function

® |n zero longitudinal field (h,=0)
C(x,hi) =a=4C(x/€)

hJ_>h(j_
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Summary

® |dTFIM has a QCP (like all continuous phase transitions)
described by a scale invariant continuum field theory

® The critical point is characterized by scaling operators
(g,0) with scaling dimensions dg etc.,and by a
dynamical critical exponent z

® Perturbations to the QCP can be analyzed by RG, or
scaling theory

® Usually the relevant ones (which grow under rescaling)
are most important

® Scaling analysis can be applied to correlation functions,
free energy, excitation energies,...you name it!
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Back to Coldea

® Coldea studies CoNb;O¢ via inelastic
neutron scattering

kout, Eout
kin, Ein
>

E = Ein'Eout measure
k=kin-Kout
AS=1

Ak, B) ~ Y [tn|*8(E — en(k))
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Coldea

® Spectra e
1

Magnetically Ordered Paramagnet Transverse ( hJ_ )

/‘ ® \’ Field

e Iy

continuum broken into many

small dispersion curves sharply peaked dispersion
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Excitations

® From scaling: expected excitation gap
except at QCP

® what is the nature of the excitations?



FM phase

® Domain walls

11§ A2 | s

AE=]/2 (hy =0)
® Hopping

tttttidddd — il

€qw(k) ~ J/2 — hy cosk



PM phase

® |=0: ground state is spins polarized along x

® Excitations are single spin flips

— > > = e=h,

® Hopping

— = === > =D =D ===

esf(k) ~ hy — 2 cosk
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l ocal vs Non-local

tttty  —————

® Domain wall is non-local: a semi-infinite number
of spins must be flipped to generate it from
the ground state

® The misaligned spin in the x-polarized state is
local: only one spin needs to be flipped to
generate it

® A neutron can excite a single spin flip, but
not a single domain wall
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Scattering Intensity

E = Ein-Eout measure
k=kin-kout

AS=1

® Recall
A<k7E) ~ Z |¢n‘25(E — en(k»

® |n the paramagnet: neutron creates one
spin flip: — > e >

K-k,Q) -0

wW=¢&(k)

neutron

k,
spin flip S=1

K,Q
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Scattering Intensity

E = Ein-Eout measure
k=kin-kout

AS=1

® Recall
A<k7E) ~ Z |¢n‘25(E — en(k))

® |n the ferromagnet: neutron creates two

domainvalls pAARE1A4HY

Kk O - soliton S=1/2

k', 00-w’ W=g(k’)+&(k-K')

neutron

nn o Alkw) ~ / Ak F(K)6(w — (k) — e(k — k)
spin flip S=1

2-particle continuum
K,Q
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Coldea

® Spectra "
1

Magnetically Ordered Paramagnet Transverse ( hJ_ )

/4 ® \> Field

Ty 1y

2 soliton continuum single spin flip
2? why the fine structure ??
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Fine structure

® This is due to three dimensional coupling
between the Ising chains

H = —J Z Z S7 .57,

n (ij)

Does very small J
have an effect?

Thursday, June 14, 12



Fine structure

® This is due to three dimensional coupling
between the Ising chains

H = —J Z Z S7 .57,

n (ij)

Suppose chains are
ferromagnetic
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Fine structure

® This is due to three dimensional coupling
between the Ising chains

—J’LLanSin

A/QA!/”
A’/ A/GAI A/‘Aa
‘/ A/f A/’
‘/ A/! A/:
J i/‘/i/ 4 J prefers they align

- . .
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Fine structure

® This is due to three dimensional coupling
between the Ising chains

H =-J% Y 5,5,
Yo (i)

A /Ii

O(J’) energy cost per
misaligned bond:
infinite in
J thermodynamic limit!
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Fine structure

® This is due to three dimensional coupling
between the Ising chains

—J’ LLanSjn

YA bair of domain walls
nYe separated by x on the
same chain costs an
energy ~ | [x]|:
linear confinement
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Confinement

® Mean field

® Confining potential
Vix) = Az A= hym

® [wo particle quantum mechanics
1 0¢ 1 07
2u 0x%  2u Oxy

Hegp = 2€qw | )\‘xl — &2
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Confinement

® Relative coordinate

1 07
Hegr = 2€qw u@xZ | )\|ZE|
® Standard problem in WKB theory:Airy
functions

E, = 2eq4w + zj()\Q/u)Q/g
® z;=12.33,4.08, 6.78.. zeros of Airy function

® apart from z;, get this from scaling...
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Experiment

® Airy function levels are very beautifully
seen!

Energy / 2m,

\lru)ur r.comn

calculation

o
w

Intensity (arb units)

e 0.04K
e 5K

L = 0.00(5)

15 -1 -0.5 0
L (rlu) in 1.25 A"
Energy (meV)
n
1O data @
1.6 7 A kink confinement @ my
] m
] 4
1.4 1 @ms
] @
] m,
1.2 1® m
1.0 . .
1 2 3 4 5

Bound state level



Field evolution?

® Number of bound states evolves with h;

Mi(n)/hS/]S

3
WN»I
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FM 9. PM o

n
Fonseca + Zamolodchikov, 2002

® Precisely at h;=h,€ there is an exact

solution
® Scaling €En "~ Cn(h||/’l})8/15
ez/er = (14 5)/2!!

E1-m1

In'[ensi'[y/l1

\~_—
- -

o
———
45

w

--b
O‘I
(D




Ising Model - Parting
Shots

® We discussed continuous phase transitions in this
specific context, but the lessons are much broader

® There is an important notion of universality:

® the critical properties (exponents etc.) of
continuous transitions depend on very few things -
symmetry, dimensionality being the main ones

® otherwise, transitions involving the same
symmetries, even in completely different physical
systems, show the same critical behavior -
examples??
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Universality

® One explanation: Landau theory

® Near criticality, the order parameter is
small, and one can Taylor expand the free
energy in it. This gives a form which

depends only on symmetries

® Renormalization group provides a more
refined explanation
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Antiferromagnets

® So far, we have talked about the Ising
ferromagnet, which is about the simplest model
of statistical mechanics

® Often much complex interactions and/or more
complex ordering arises and the statistical
mechanics becomes much more involved - and
more interesting!

® |n the case of magnetic systems,
antiferromagnets show this kind of richness
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Antiferromagnets

® Antiferromagnet: 2 definitions

® A magnet which orders but has no net
magnetization

® A material with exchange interactions
which prefer anti-aligned spins

® Could be both, either, or neither, but both
IS common



Bipartite AFs

® A lattice is bipartite if it can be divided into
two sets of sites, A and B, with A sites
neighboring B sites only, and vice-versa

® Then AF exchange is easily satisfied with A
and B spins antiparallel

In this case, classical
problem can be
mapped back to the
FM one by Sg —-Sg




Frustration

® Competing interactions generate
degenerate ground states

“geometric
frustration’

Ising spins
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Degeneracy

® |deally: frustration induces ground state
degeneracy, and spins fluctuate amongst those

ground states down to low temperature

® e.g.triangular lattice Ising antiferromagnet

| frustrated
bond per
triangle

Wannier (1950): O = °/Fn S~ 0.34Nkp
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Estimate degeneracy!

® Dual representation

® honeycomb lattice




Estimate degeneracy!

® Dual representation

® focus on the frustrated bonds

/\

PIve
P
o

N \/




Estimate degeneracy!

® Dual representation

® color “dimers” corresponding to
frustrated bonds

® “hard core” dimer covering

/\

AVANAV/
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Estimate degeneracy!

® Dual representation

® A 2:|1 mapping from Ising ground states
to dimer coverings

~ l N
N I NN
N NN



Dimer states

® First exercise: can we understand VWannier’s
result?

® count the dimer coverings

~ l N
N I NN
N NN
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Dimer states ! L

® Consider the “Y” dual sites ~
N /7

® each has 3 configurations I
® this choice fully determines the dimer covering

® But we have to make sure the Y-! sites are singly
covered. Make a crude approximation:

® Prob(dimer) = |- Prob(no dimer)= 1/3
® Prob(goodY-')=12/3*2/3*1/3*3=4/9

® Hence

N
O ~ 3N (%) _ Nn(4/3)
9

Wannier



Spin (and water) Ice

® This simple NN AF Ising model is rather
idealized

® You may expect that there are always
perturbations that split this degeneracy and
change the physics

e BUT...turns out that something similar
happens in spin ice, which really seems to be
an almost ideally simple material - by accident!
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Water ice

® Common “hexagonal” ice: tetrahedrally

coordinated network of O
wurtzite lattice ‘— N

atoms - a

& .

® Must be two protons in each H,O
molecule - but they are not ordered o
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Ice entropy

® Giauque 1930’s measured the “entropy
deficit” by integrating C/T from low T and
comparing to high T spectroscopic
measurements

r—-—*,

!

i

-— - e - - e S - 5
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Pauling argument

® Pauling made a simple “mean field” estimate
of the entropy due to randomness of the
protons, which turns out to be quite

accurate O — 5/kB
0 AN
LT 16 2
O eachbond - )\ straints
(;l> — 6 S = kp1In(3/2) = 0.81Cal/deg - mole

c.f. Sexp = 0.82 £ 0.05Cal/deg - mole
allowed configurations each O
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Classical realization: spin ice

® Rare earth pyrochlores Ho,Ti,O7, Dy, Ti,O7:
spins form Ising doublets, behaving like
classical vectors of fixed length, oriented

along local easy axes

—

Si = €0,

éo = (1,1,1)/V3 ér=(1,-1,-1)/vV3 ey=(-1,1,-1)/v/3 é3=(-1,-1,1)/V3
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Spin Ice (simplified)

® Exchange (due largely to dipolar
interactions) is ferromagnetic

® Prefers 2 in - 2 out” states

I
—JSZ ¥ Sj — gO‘iO'j

same as Ising
antiferromagnet

bi-e=—1/3 i+ “ice rules”
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Entropy

® The integrated specific heat | r X .
of Dy, Ti,O7 showed explicitly 3
that the entropy did not 1 \
vanish at low temperature N
® quantitative agreement with L i e

Pauling’s 1935 estimate '
® We call this situation, with
spins fluctuating for kT<<|, a R

classical spin liquid
A.P. Ramirez et al, 1999
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Spin liquid physics

® The spin liquid fluctuations are a form of
“artificial magnetostatics” (classical)

® ice rules: divergence free condition

"~.~‘ 4 S~b
| ./

/\ \va

S

=0



Spin liquid physics

® The spin liquid fluctuations are a form of
“artificial magnetostatics” (classical)

® ice rules: divergence free condition

N
¢
Sl

<
S
|
-

field lines = loops or strings tracing spin configurations
Can we see effects in long-distance correlations!?
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Structure Factor

® Static neutron structure factor
k- (r; —r.
S/W(k) — Z<S£LS§>€Z (r;i—r;)

® Typically, S(k) is usecﬁ’]to distinguish ordered and
paramagnetic states via Bragg peak

® Long range order: |i-j|»&
(Si - Sj) = (Si) - (S)) ~ [Mg|* cos[Q - (x; — ;)]
S(k) ~ [Mql*o(k — Q)
® Short range order
S(k) ~

(k= QP+
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Structure Factor

® |n spin ice, there is no incipient ordered
state: feature in correlations is more subtle

than a peak

® Coarse-graining argument: correlations are
governed by effective free energy

H.po — /d% ‘o

® Need to calculate
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Structure factor

C -
® Fourier Heg = §!bk\2
k
® Constraint  V.-b=0 b, = —(kyby + kyb,)/k-
k2 k. k
] + == M b
C 2 2
Heﬁ‘ p— §B]—L k kkz ksz Bk’ Bk. bCU
k o Lt Y

® Structure factor



Gaussian integrals

® General rule

® Proved in many many references...



Proof

® Generating function
1 .
(21 4 = Z /[1;[ day|e™ 2 2y Kag®iws+30, ais
® Shift
i =z + ) [K™ g
j
® Result

<€Z@- qixi> —_— 6% Zij (K~ ijqiq5

e Differentiating twice gives  (z;z;) = [K ],
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Gaussian integrals

® General rule: invert the quadratic form
2 _]_
k kxk
* kBT 1+ k_g Wz
<bu(k)bu(’l€)> — ( kmkyz Zk )

® With some algebra
) kpT k. k,
<b,u(k)bl/(k)> — 37 (6,“” /]:72 >

® We could have guessed this!

D ku(b (k)b (K)) = 0




Power law correlations

® Neutrons

S() = Y0 = 2318, (1

78%
® Measured near a reciprocal lattice vector

S(KOOZ T k) — Sm’(K + k) + Syy(K + k)

® Not a peak but a singularity
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pinch points in Hoz Ti2,O7

%

A
oV

experiment theory

I<Z
T. Fennell et al, 2009

S(Koo2 + k) ~ —= vanishes for k;=0



Quality of singularity

pinch point sharpens “Correlation length” for
with lower T rounding of pinch point

Roughly ‘E;. el 8K/T



Defects

® The ice rules constraint is not perfectly
enforced at T>0

® Primitive defect is a “charged” tetrahedron
with >; i = %1.
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Defects

® The ice rules constraint is not perfectly
enforced at T>0

® Primitive defect is a “charged” tetrahedron
with >; i = %1.

costs energy 2)ef
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What to call it?

® Consider Ising “spin”
< 1 <
Sior =3 0= 3.5
i t

® Single flipped tetrahedron has Szror=%1/2
® “spinon’”! (M.Hermele et al, 2004)
® But 5% is not very meaningful in spin ice

® Use magnetic analogy: magnetic monopole
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Magnetic monopoles

Castelnovo et al, 2008

® Defect tetrahedra are sources and sinks of
“magnetic” flux

divb = |

® |t is a somewhat non-local object

® Must flip a semi-infinite string of spins to create
a single monopole

® Note similarity to |d domain wall
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String

® Note that the string is
tensionless because the
energy depends only on
>: O; on each tetrahedra

® |n an ordered phase,
this would cost
energy

® Once created, the
monopole can move by
single spin flips

stolen (by somebody else on youtube)

Thursday, June 14, 12
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Monopoles are “real”

Castelnovo et al, 2008

® Monopoles actually are sources for
(internal) magnetic field

® Magnetization M « b

® hence div M ~ divH ~ q o(r)

® Actual magnetic charge is small



Monopoles for
dumbbells
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Dumbbell model

y magnetic charge *q q = i/aq
Dy, Ho p~10p8
\ 4R
POtentlaI qq Ar 1o
_ Mo p 1
4 a?l Tab
1 €2
Coulomb Ve =

dmeg T
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Dumbbell model

2 2 2.2 .2

ec a e“cea 1
. Vee V. — d _ d ( _ 2)
ratio / qq MQ €0 140 M2 €040 c
B ezczaz 626261?1(27”6)2 (MQ _ eh
10012~ 100e272 2
— aj?i (CLOZ f
2502 a? meca
~ 56000

Magnetic Coulomb interaction is very weak, but
comparable to kgT at T ~ IK
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Experiment/Theory

® Some nice evidence from magnetic
relaxation

e 082K
020K
101K
1.27TK

reasonable fit of

Y

¢ 150K |

e ‘ ;}r}x .
i /P | Euwe activated monopoles
s N o~ 6Em/kBT

0 1 2 3 4 5 6 7 8 9
T [K]

104
Frequency [Hz]

Snyder et al, 2004 Figure from L. Jaubert’s thesis

® Rapid rise below 2K due to Coulomb!
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Experiment/Theory

® Theory including Coulomb interactions
(Monte Carlo):

7 (s)

eeeeeeeeeee K

® Rise is due to binding of monopole-
antimonopole pairs
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Order by Disorder

® |n spin ice, the ground state degeneracy seems to
prevent an ordered phase forming

® Actually, this is not so obvious at low but non-
zero temperature

® |n fact, many models with ground state
degeneracy break that degeneracy at T>0 due to

fluctuations

® “Order by disorder”, due to J.Villain

® |dea: free energy of states is generally different
once fluctuations are included
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].Villain et dl, ]. Physique 41, 1263 (1980).

Domino Model

N” 1
' A H:_izjijgigj
]

N Jaa, JaB ferromagnetic

| JsB antiferromagnetic

0 < Jae < |JsB| < Jaa

® Ground states are FM A chains and AF B
chains, with 2N" degeneracy
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Order

® However, one can show that the model has
a phase transition (by exact solution)

® Evidently it is ordered at low T despite the
degeneracy - this is due to fluctuations.

® | et’s understand this in some simple limits
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Very low [

® kgl << ]aa, |Jg8|, JaB : only rare excitations
within each chain

® Ask:is there any preference for

successive A chains to be aligned vs anti-
aligned?

® Do this by “integrating out” B chain
between each pair of A chains

1

Plioieat] = - > e
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Very low [

® [wo cases:

domain wall 3
excitation lowers excitation does
JaB energy not lower |ag

energy
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Very low [

® [wo cases:

Hp = Z {|JBB|0ioit1 —2Jap 0;}

S

AEB = 2|JBB‘ — 2JABMDW

domain wall

00000000000000
000000000 00000
00000000000000

M=2=1|+I|
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Very low [

® [wo cases:

domain wall 3

enel‘gy AE:Q‘JBB|_2JAB AE’ZQ‘JBB|

note: factor of 2 difference from Villain paper
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B partition function

® We can place the domain wall in N’/2
places

N’ -
75~ Zno (1 | 5 eﬁAE> o~ ZB()GJ\; o~ BAE

® This prefers ferromagnetic ordering
P(———l—) - eNT/e—QB(|JBB|—JAB)
P(+—)

e Effectively this is like a FM exchange

25<], ; —26(|JBB|—JAB)



Order?

® Effective rectangular lattice

) EETTS-SRURIN o DY J is shrinking fast at
low T

but correlation length
of A chains is growing
very fast

® Ordersif J'¢4 ~ kT
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Order?

® Estimate

® |dlsing &a~e®flan
@ Entropy 25(]’ — %6_26(|JBB|_JAB)

® Jogether

BJ'E 4 ~ e 28(JBB|=JaB|) 28 44

> 1 JAA>‘JBB|_JAB

. Thus the A spins are ferromagnetically ordered! |
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Continuous Spins

® Actual strictly Ising systems are rather rare
in magnets, but similar phenomena can
occur for continuous spins

® Example: frustrated square lattice “XY" AF -
spins are unit vectors in the plane

J
- | » : .
J2>)1/2

» .
C. Henley, 1989
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Thermal fluctuations

® Consider expansion around an arbitrary
ground state

1
H = —5 Z Jij COS((QZ' — (9])
¥,

1
~ Fy + 1 Z Ji COS(@S))((S@ — 5‘93')2
o]
‘¢+ﬂ TT .¢+1-r .1-[ ‘c|3+1'r
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8

Thermal fluctuations

® Consider expansion around an arbitrary
ground state

T .c|>+ﬂ .Tr ‘¢+ﬂ

» -
J1
H =~ 9 ZCOS¢ [(59:133/ - 59$+1,y)2 (00 — 59$’y+1)2}
TY
JQ 2 2
—? [(69xy — 5(9;z;—|—1,y—|—1) T (59=’Ey - 5(9$+17y_1) }
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Thermal fluctuations

® Consider expansion around an arbitrary
ground state

‘cl>+ﬂ T .c|>+ﬂ .Tr ‘¢+ﬂ

1 .
00y = —= Y €50

J1
H ~ 5 zk: 2 cos ¢(cos k,, — cos kx)\59k|2

Jo
Y 4 —2cos(ky + ky) — 2cos(ky — ky)] 66|
k
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Thermal Fluctuations

® Collecting terms

Ax (@) = 4J2(1 — cos ky cos k) — 2J1 cos ¢(cos k, — cos k)

® Gaussian integral

_5E0/Hd59k SH —BEOH \/iT
Kk k




Entropy

® Free energy

kT
F=—kgT'InZzZ ~ Ey - B2 ZlnAk
k

— EO — TS()

/CB d2k
Sy = _N-—= InA
0 2 (27)? ok

i more entropy if }
i Ay is smaller §

J1cos@ cosk, — cosk,

In Ay = In[4.J5(1 — cos k., cos k In|1
Il Ak n(4Js( cos ki cos ky )| + In| 2Jy 1 —cosky;cosk,

indep. of ¢

|
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Entropy

® Up to a constant

Nkp d°k |
So(¢) = const : / o2 In |1—-X
J1 cos @
X =
2J5

Thursday, June 14, 12

cos k,, — cos k,,

1 —cosk,cosk,

® This is an increasing function of |X|, so minimized

when ®=0 or TT: collinear state

® See this, e.g. by expanding in X using
In(1-€) = -€ -€2+...



Collinear states

® Why collinear states!?

® [hink about each sublattice as an

antiferromagnet in a fluctuating field due to
the other sublattice

® An antiferromagnet likes to “flop” normal
to an applied field

HT - y -

A A

® The fluctuating field from A sublattice on
the B spins is normal to the A spins



Collinear states

® So...the normal to A spins should be normal
to B spins, i.e.A and B should be collinear!

® |t has been suggested (Henley) that this is
rather general.



Thursday, June 14, 12

Quantum Fluctuations

® At =0, we can imagine quantum zero point
motions of the spins plays the role of thermal
fluctuations

® Simple idea: quantize the normal mode
frequencies corresponding to the modes 00

howyr = \/Ak/m

® This corresponds to the semi-classical “1/S”
or spin-wave expansion




Zero point energy

® Harmonic oscillators

hwk 1
EO—pt — T ~ \/% ; V Ak

k

® The zero point energy is again minimized if
Ax is smaller -

® one can check that this is again ®=0,TT



Seeing ObD

® In models, this is a generic phenomena: small
fluctuations break “accidental” degeneracies

® But..many other perturbations also remove the
accidental degeneracies

® e.g.explicit small J interaction

® How can you ever really know - in an
experiment - if order is due to disorder or
just some interaction you missed!?

® Lucile will tell you Thursday!
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Quantum phase
transitions in metals

® Some quantum phase transitions are very
similar to classical ones

® recall TFIM
hc

PM
FM

>

Te T
Actually the same field theory describes classical

and quantum transitions in the Ising model



But some are not

® Especially: quantum phase transitions in
metals

“heavy fermion”

P (GPa)
e Often superconducting state “covers” QCP

* Critical exponents non-classical
* Anomalous metallic behavior
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Linear resistivity

8 ' ' 3 4 ‘SD T -
a - (TMTSF),PF, ' b BalFe, Co)As,
3 : r RO g ' v
- e .
..: ’ f ")(l'b .. T',x:n J
2 i“..'.c' .
= 4} v ‘ = : 4 g ; - el J
‘ - 5:] - 5: “o.l. o .
-~ o 7‘ - ) ... o ‘.
a ‘lg o .JL .. SC Ld -
) 10 20 30 %.'o - 0.1 02
Pressure, P (kbar) Co concentration, x
(TMTSF),PF, | BalFe, ,Co ) As,
100 , ’
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VWhy does metal make
a difference!

® These phase transitions are nominally similar to those
in insulators

(S(r)) = Pe'QT + c.c.
® Might expect a Landau theory in ® to apply

® But...usual assumption is that the only contributions
to the critical behavior come from the ordering
fluctuations, as only these persist to long distances (up to

€)

® |n a metal, there are other long-distance fluctuations
and correlations which are due to low energy
quasiparticles



Connection of quantum
and classical stat. mech.

® |n classical stat. mech., the partition
function is a sum/integral over degrees of
freedom in d dimensions

7 _ Z e B2 He
{or}

N /[dq)(r)]e—ﬁ fddrH[CI)(r),VCI)(r)]

.....



Connection of quantum
and classical stat. mech.

® |n quantum stat. mech,, the partition
function is a trace

/ ="Ir [G_BH}

= ) (07,08, le”of o, -+
(o3}

® There is nothing local about the matrix
elements of exp[-BH]



Connection of quantum
and classical stat. mech.

® TJrotter formula
/ ="Ir [G_BH}

— Ty [6_5TH€_5TH o 6_57H} 5T — 5/N

—

N factors

= > Hofste ™ Hof s_s: ) {of psr e T - ({of s e T {ofo})
1of 1}
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Connection of quantum
and classical stat. mech.

® Trotter formula

Z ="Tr [e_BH] — Z o~ 2ur,r Lr7

10F -}
N /[dq)(r’T)]e—fddrdTﬁ[q)(r,T),(?MCI)(r,T)]

— /[d(I)(r7 T)]e_s[q)(r’T)] “Euclidean action”

® So one expects there to be a relation between the
d dimensional quantum problem and a classical-like
problem in d space and one “time-like” direction



Degrees of freedom

® But...in a metal we do not just have spins

® really the trace must include the states of
the electrons

1 S o
H = 5 ; Jr xSy - Sy + Ek: GkCL,aCk,a

(k—KkK')r g T 5@5
+J 5 ;{/ 67’( )rSI"Ck,a—Q Cxr 4
r7 9

® Trace includes S- and cy
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Degrees of freedom

® But...in a metal we do not just have spins

® really the trace must include the states of
the electrons

1 S o
H = 5 ; Je xSy + Syt + Ek: GkCL,aCk,a
—|—JK Z gr ) gr

® T[race includes S, and ck - so does the action
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Path integral

® Formally
7 = /[dCID] [dcdcT]e_S[qD’c’CT]

® We can try to reduce this to a d+1/-

dimensional “classical” problem by
integrating out ¢, cf

® How feasible is this?
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Integrating out c,ct

® Formally
7 = /[dCID] [dcdcT]e_S[q)’C’CT] — /[dCI)]e_Seff[q’]
® Fermionic integral may be singular

® |t involves an infinite number of d.o.f.

® Fermions are gapless: low energy electron/
hole excitations mean fermion correlation

functions behave like power-laws at large
X, T
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J.A.Hertz, PRB 14, 1165 (1976)

Hertz T heory

® Formally
7 = / [dD)e St ®]
e—Seff[(I)] — Q_Sspin[(b] /[dc dCT]e_Sel[C,CT]e—JKfddI‘dT(CErﬂ-eiQ'r—Fc,c.).g’rﬂ_

—

expand this out
® Result:

d%%dw,, Yo(Q + Kk, w,) = B}
Seff [(I)] — SSPiH[(I)] R / (27T)d+1 O( 9 )(I)k,wn ) (I)—k,—wn T O((I)4)
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Hertz T heory

® The free electron susceptibility behaves like

Yo(Q + k,wy,) ~ co + c1k® + ca|wn] Q 0
%Co+61k2+62M Q=0
UF/C

® |mportantly, note the non-analytic |W,| dependence
- this reflects spin damping. The spins can
exchange energy (and spin) with the electron gas

® Unfortunately deriving this is a bit complicated,
but you would learn it, e.g., in Physics 21 7b.
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Electron-hole pairs

® The non-analytic |Wn| term arises because
the spin fluctuation can decay into or mix
with an electron hole pair at low energy

®
&
\
n
oy
o - (N w §N




Landau expansion

® Add the fermion term to the Landau

theory
ddkdwn 2 |wfn,‘ I 2 d 4
S:/(Qﬂ_)d%—l{(k " Tra T )| Pk w, | }—I—u/d xdT | Dy ;|

dkdw, [, 5 |wa| )
:/(2w)d+1{(k " ko 1)l

3d1, . 73
K oni g G By @
_I_u (27’(’)3d+3 k:l,wnl kQ,an ]{Jg,wn?, —kl_kZ_kISa_wnl_an_wnB

a=0,1 (Q+0, Q=0)
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Power counting

® Rescaling: £ — k/b Wy, — Wy, /b

Dy, — bITETARD

2 dgdk'd?’ ,
Hr)|d Wn,
) | k7wn ‘ } +U/ (27:)36{_'_; : (bkil,wnl ®k2,wn2q)k3,wn3¢—k1—k2—k3,—wn1—wn2—wn3

d Z—2+2(d—|—2—dq>):() d—|—CL
d+a—2de =0 2
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k versus x scaling

® Note: Fourier transform
Preo. = / dx dr e KX TP,

® Space-time scaling

_ _ch) /
®X77- o b X/b,T/bz

® Hence
P ., =b % [di¥dre KX wnT P! .
yWn x/b,7/b

note _ b—dq>—|—d—|—z /ddX dr 6—ibk-x—ibzwn7q);{ _
difference!

b—dcp +d+z

/
bk,b?w,,
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Power counting

® Rescaling: £ — k/b Wy, — Wy, /b

(I)k,wn — bd_l_z_dq) (I)bk,bzwn

dikdw, (.., |wn 5
J— dekidB iy
S B / (27T)d+1 {(k + ko + T)|(I)k7wn‘ } —|—U/ (27_‘_)3;_:37 Pry wn1 Phz,wno Phis,wns Py —ka— ks, —wn1 —wn2—wns

s=924q r — br
dy — d —g a 0 s p2—d—a, _ pi—d—z,

uis “‘irrelevant’” when d+a>2
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Aside: Classical Case

® Power counting T — br O, — b D,

F = /d%{(wp)? +r®? + ud*}

® Gradient term

® RG:

u is irrelevant for d>4
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Upper critical
dimension

® |t turns out that for d>4, one gets mean field

behavior. We call dy..=4 the upper critical
dimension

® This coincides with - and is a consequence

of - the fact that u is irrelevant, i.e. that the
Gaussian fixed point is stable.

® Below the u.c.d, critical exponents are
non-MF like



Classical scaling for d>4

® Correlation length: v=1/2

E=bg(rv*,ub*™") = |r|~2g(£1, ulr|'=/)

® Free energy
f=b""F(rv*ub*™?) = |r|2F(£1, u|r|HD/?)

o >0: [~ |r|¥?

® r<0:u is necessary for stability
f oo |2 4D/ 2 =0

. uis a dangerously irrelevant operator |
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Classical scaling for d>4

® Order parameter

m ~ b~ T2 A (L1, ufr| 4D/

® m vanishes for r>0 and again is singular for

m ~ b‘<d_2>/2[u|r\(d—4>/2]—1/2 N ‘T‘l/z

B=1/2



Back to Hertz

critical point is “trivial” ?

d%%kdw W P B
S B / (27T)d+?1 {(kz _I_ |k2‘ _|_ T)|@k7wn ‘2} +u/ (277)30;::3, (I)khwnlCI)k%WnQ(I)ks,wne;(I)—kl—kz—k:a,—wnl—an—wns

® Additional ingredient for QCP: Temperature
scaling:

® relative to renormalized low energy
scale, temperature increases under RG

kBT — b ]CBT

B
® Also seen from action S = / dr - ..
0
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“Fan” diagram

quantum critical

IV

i

-
0 .

{)

® T[wo relevant perturbations of QCP
® r:deviation from critical point at T=0

® T:temperature

r — b*r kTl — b kT
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Quantum critical scaling

® Example: energy density

e~ b T E( B2 kT b*, ub*~477)

® [et’s sit at the QCP (r=0) and raise
temperature

e~ b TR0, kpT b*, ub*~977)

d+ z

~ (kpT') =
® Specific heat

o ~ 00T ~TY?*  ~T3? for 3d AF

d+z—4 d+ z

E(u(kpT) =) ~ (kgT) =
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Quantum critical scaling

® Thermal expansion coefficient

1 0v] 108
-V oT . V. Op |
® Ve can deduce entropy scaling from specific heat

S~ /T ar ST sy
0 1"

8%

® Hence
S ~ TS/QS(TT_Q/Z)

® For a pressure tuned transition then r ~ p

(it is usually linear in a metal)

Thursday, June 14, 12



CexLasRusSis

® This seems to be one of the rare examples
where Hertz theory works

| S. Kambe et dl, |PS)
65, 3294 (1996)

Cy ~ Y1 — cT3/2

Fit is to a (slightly) more sophisticated theory which includes r #0
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CeNihGe;

® Believed to be “‘close” to an AF QCP at
ambient pressure

_CeNizGezj

O
N

C/T (Jmol'K?)

o
w
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Phase boundary

® VWhat determines the shape of the phase
boundary!?

® Physics: thermal fluctuations suppress
order

quantum critical

e .
< Fermu hiqud
-
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Phase boundary

® Fluctuation correction to location of critical

point
d?kdw,, Wi |

® “Mean-field”-like approximation (technically
self-energy correction)

udt 5 6u <(<I>X,T)2> (B )

shifts critical
point to r<0

| reff:r—|—6u<(<1>xﬁ)2> ,
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The shift

® Fourier (introduce “cutoff” €)
Z / dk 1
G (2m) k2 4+ |wp| + ew?

® VWe want to extract the small temperature
behavior of this. Poisson formula:

m
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The shift

® Ve obtain

<q)2 B /A ddk /dwn Z €Zm5wn
0 k? + |wy,| + ew?

m=—0oo

® Separate m=0 (T=0) term:

d%k dw,  cos(mpBwy,)
—[ 2
(Pxr) =1To+ Z/ d/27r K2 + || + w2

Thursday, June 14, 12
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Analyzing the integral

® Rotate contour Wm =iy

1, = 2Re/ d / dwn c
o 2m? J, 27 k24w, +ew?

= 2Re /A A’k /OO dy ie MY
0 (27T)d 0 2T kz -+ Zy — EyQ

ZQ/A Ak /OO dy — ye PV
o (2m)d Jy 2my? 4+ (k? —ey?)?

Thursday, June 14, 12



Analyzing the integral

® Rescale:y =T u,k=T!2q

I ZQ/A d’k /OO dy — ye ™PY
. 0 (27T)3 0 27Ty2—|—(k2—ey2)2

— 273/2 vt dq /OO du ue ™"

o (2m) 21 u? + (q% — e T?u?)?
Lo [ [ e
- o (2m)3 Jo 2mu?+ ¢t
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So finally...

® Ve obtain <<I>)2(,T> — [y + ¢T?3/?
® Which implies
reff = T + 6u <(<I>X,T)2>

= re(T = 0) + cuT3/?

® So the critical point occurs when
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Phase boundary

® This gives the shape:

f .
2/3 fim critic:
Tc ~ (pc — p) / I\ | qu.nrt.xm'.\m cal
~ : 1
o7
,'/ Fermu higuad
{) - -

P p
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Resistivity

® This is very complicated, even in Hertz theory
above the upper critical dimension!

® but...in general power-law behavior is expected,
and usually different from that in an normal
metal, i.e. away from the QCP

® |n the simplest approximation, for d=3,z=2, one
Obtains p ~ pO + A T3/2 See von Lohneysen et al, RMP 79, 1015, sec. llIF

® c.f.in a usual Fermi liquid, at low temperature P

~po+AT?
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Resistivity

® Behavior in CeNi,Ge; seems consistent
with the “simple” theory, which is expected
to apply when the material is not too clean

1 &p
- {{pficm)
a T A a
AR 0
& =f * *
“f. -0.02
? o
-0.04
b

01 0.2 0.3
TIK]

FIG. 2. Electrical resistivity as a function of tempera-
ture for three CeNi,Ge, samples with py = 2.7 u{) cm
(), 043 uQcm (A), and 034 uQcm (V) as p vs T°®
with differing exponents & (a) and 6p = p — (py + BT?)
vs T (b).
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When does it work?

® Not obvious: the assumption that integrating our
electrons does nothing to higher order terms is
questionable

® People have looked at these and it seems that it is OK
when Q #0 in d=3

® For Q=0 in d=2,3 and for Q # 0 in d=2 there are many
singularities not captured by Hertz action

® |n all these cases, one should try to study the QCP
without integrating out fermions

® This is much more complicated and still a matter of
current research
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Beyond LGW

® Driven partly by experiment and partly by
theory, recent research in quantum
criticality mostly focuses on situations

beyond the Landau-Ginzburg-Wilson
paradigm

® That is, situations in which an approach
based on an order parameter alone is
inadequate
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VWWhen do we go
beyond?

|. When a neighboring phase has lots of
gapless excitations (like in metals!)

2. When a neighboring phase is not described
by an order parameter

3. Sometimes even if both the neighboring
phases and their excitations are ordinary,

unconventional behavior can emerge at the
QCP



VWWhen do we go
beyond?

1. When a neighboring phase has lots
of gapless excitations (like in

metals!)

|. Failure of Hertz theory for most such
QCPs motivates other approaches

2. Conservation approach: strongly-coupled
fermion-boson criticality

3. Radical approach:“Kondo breakdown”
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Kondo effect

® Kondo effect:

® 2 spin can be screened by coupling to
conduction electrons

® this happens with a “binding energy” which
is exponentially small

kBTK ~ EFG_EF/JK

® VWhen there are many spins, the Kondo
effect competes with the tendency of spins
to order - RKKY interaction
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Doniach diagram
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VWWhen do we go
beyond?

|. When a neighboring phase has lots of
gapless excitations (like in metals!)

2. When a neighboring phase is not
described by an order parameter

3. Sometimes even if both the neighboring
phases and their excitations are ordinary,

unconventional behavior can emerge at the
QCP



Phases without order
parameters

® Phases are more fundamental - and more
important - than phase transitions

® Usually, they are distinguished by symmetry

® But phases may differ even with the same
symmetry

® Excitations or other properties may be
qualitatively different in two phases



Phases without order
parameters

® Example: metal versus insulator

® both are possible with the same symmetry, but
excitations differ qualitatively, as does conductivity

® but at T>0, they are the same phase

® one can still have a T>O0 first order “Mott transition”,
e.g.VO2,V,0:;,...

® still not known if T=0 transition could be continuous

® There are other types of “quantum order” that can
distinguish a phase
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Mott transitions
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FIG. 70. Phase diagram for doped V,0; systems,
(V;_,Cr,),05 and (V,_,Ti,),05. From McWhan et al., 1971,
1973.
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Quantum orders

® Simplest cases are quantum phases in which there is
a gap to all (bulk) excitations

® |n this situation, there are “topological orders”

® e.g."Topological Insulators™ : just non-interacting
band insulators which are distinct from usual

ones by “twisting” of wavefunctions of occupied
bands

® more interesting are “‘topological phases” :
ground states of interacting electrons that host
exotic excitations with fractional (or nonabelian)
statistics (Q)
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Examples!?

quantum Hall state (TI)
toric code

quantum spin liquid (RVB)
entanglement entropy

deconfined quantum critical points



