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Plan 
• General subject: statistical methods and phenomena 

in many-body systems

• Phases and phase transitions

• Critical phenomena - classical and quantum

• Elementary excitations and topological defects

• Models

• Statistical field theory

• Monte Carlo methods
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Plan

• Cover subjects through illustrative topical 
examples from recent research such as

• Quantum criticality in an Ising chain

• Spin ice

• Order by disorder
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Ising Chain
• Very beautiful paper from R. Coldea (Oxford), 

experimentally studying the quantum transverse field 
Ising chain, a canonical model of statistical mechanics

• We can learn about:

• Ising models

• Ordered and paramagnetic phases

• Quantum and classical phase transitions

• Elementary excitations and domain walls

eight “meson” bound states (the kinks playing the
role of quarks), with energies in specific ratios
given by a representation of the E8 exceptional
Lie group (2). Before discussing the results near
the QPT, we first develop a more sophisticated
model of the magnetism in CoNb2O6 including
confinement effects at zero field, where conven-
tional perturbation theories are found to hold.

The zero-field data in Fig. 3A reveal a gapped
continuum scattering at the ferromagnetic zone
center (L= 0) due to kink pairs, which are allowed
to propagate even in the absence of an external
field. This is caused by sub-leading terms in the
spin Hamiltonian. Upon cooling to the lowest
temperature of 40 mK, deep in the magnetically
ordered phase, the continuum splits into a sequence

of sharp modes (Fig. 3B). At least five modes can
be clearly observed (Fig. 3E), and they exist over a
wide range of wave vectors and have a quadratic
dispersion (open symbols in Fig. 3D). These data
demonstrate the physics of kink confinement under
a linear attractive interaction (6–9). In the ordered
phase, kink propagation upsets the bonds with
the neighboring chains (Fig. 3G) and therefore
requires an energy cost V(x) that grows linearly
with the kink separation x, V(x) = l|x|, where the
“string tension” l is proportional to the ordered
momentmagnitude 〈Sz〉 and the interchain coupling
strength [l = 2hz〈Sz〉/c̃, where hz = SdJd 〈Sz〉 is the
longitudinal mean field of the interchain couplings
and c̃ = c/2 is the lattice spacing along the chain].

The essential physics of confinement is ap-
parent in the limit of small l for two kinks near
the band minimum, where the one-kink dispersion
is quadratic: e(k) = mo + ħ2k2/(2m). In this case,
the Schrödinger’s equation for the relative motion
of two kinks in their center-of-mass frame is

–
ℏ2

m
d2ϕ
dx2

þ ljxjϕ ¼ m – 2moð Þϕ ð2Þ

(6–9, 22), which has only bound-state solutions
with energies (also called masses)

mj ¼ 2moþ zjl2=3
ℏ2

m

! "1=3

j ¼ 1, 2, 3, :::

ð3Þ

The bound states are predicted to occur above
the threshold 2mo for creating two free kinks in a
specific sequence given by the prefactors zn, the
negative zeros of the Airy function Ai(–zn) = 0, zj =
2.33, 4.08, 5.52, 6.78, 7.94, etc. (18). The very
nontrivial sequencing of the spacing between
levels at the zone center agrees well with the
measured energies of all five observed bound
states (Fig. 3H), indicating that the weak
confinement limit captures the essential physics.

A full modeling of the data throughout the
Brillouin zone can be obtained (18) by consid-
ering an extension of Eq. 2 to finite wave vectors
and adding a short-range interaction between kinks,
responsible for stabilizing the observed bound state
near the zone boundary L = –1. Interestingly, this
is a kinetic bound state; that is, it is stabilized by
virtue of the extra kinetic energy gained by two
kinks if they hop together as a result of their short-
range interaction, as opposed to the Zeeman ladder
of confinement bound states (near L = 0), stabi-
lized by the potential energy V(x). The good agree-
ment with the dispersion relations of all the bound
states observed (Fig. 3D), as well as the overall
intensity distribution (compare Fig. 3, B and F),
shows that an effective model of kinks with a con-
finement interaction can quantitatively describe the
complete spin dynamics.

Having established the behavior at zero field,
we now consider the influence of the QPTat high
field. Figure 4C shows that the excitation gap
decreases upon approaching the critical field (as
quantum tunneling lowers the energy of the kink
quasiparticles), then increases again above BC in
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Fig. 3. Zero-field spin excitations in CoNb2O6. (A) In the 1D phase above TN1, a broad continuum occurs near
the zone center (L = 0) due to scattering by pairs of unbound kinks. (B) The continuum splits into a Zeeman
ladder of two-kink bound states deep in the ordered phase. (C and D) Model calculations (18) for hz = 0 and
0.02J to compare with data in (A) and (B), respectively. In (C) the thick dashed line is the kinetic two-kink bound
state stable only outside the two-kink continuum (bounded by the dashed-dotted lines). Open symbols in (C)
and (D) are peak positions from (A) and (B), respectively. (E) Energy scan at the zone center observing five
sharp modes [red and blue circles are data from (B) and (A), respectively; solid line is a fit to Gaussians]. (F)
Dynamical correlations Sxx(k,w) (18) convolved with the instrumental resolution to compare with data in (B).
(G) In the ordered phase, kink separation costs energy as it breaks interchain bonds J', leading to an effective
linear “string tension” that confines kinks into bound states. (H) Observed and calculated bound-state energies.
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Ising model

• Classical model of “spins” σi = ±1 which 
interact

• Usually put them on a regular lattice and 
make them couple locally, e.g. by nearest-
neighbors

H = �1

2

X

ij

Jij�i�j

H = �J
X

hiji

�i�j

=+1

=-1

-J +J

-J
J>0: “ferromagnetic”

J<0: “antiferromagnetic”
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Thermal fluctuations
• Boltzmann

• High temperature

• Spins are basically random and equally likely to 
take any value: paramagnetic phase

• Low temperature

•  Spins are highly correlated and neighbors are 
almost always parallel: ?? ordered, ferromagnetic 
phase??

p[�1,�2, · · · ,�N ] =
1

Z
e��H � = 1/kBT

�J ⌧ 1

�J � 1
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Phases
• A phase is a set of states of a system whose properties 

vary smoothly when varying control parameters 
continuously

• Usually we say that the free energy is analytic within 
a phase

• Two systems are in the same phase if all their 
properties are qualitatively the same

• Distinct phases exist only in systems with (1) an infinite 
number of degrees of freedom and/or (2) at zero 
temperature

• Why??? fluctuations etc.

Thursday, June 14, 12



Symmetry Breaking
• The difference between the paramagnetic and 

ferromagnetic phases is broken Ising symmetry

• High T: paramagnetic

• What does this mean (guaranteed by symmetry?)

• Consider infinitesimal applied field

• Low T: ferromagnetic

• Infinitesimal field

• Long range order

h�ii = 0

h�ii 6= 0
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Susceptibility and LRO
• Susceptibility

• Linear response

• diverges when spins become long-range 
correlated

� =
@h�ii
@h

����
h=0

m = h�ii

h

PMFM

@h�ii
@h

= �
X

j

(h�i�ji � h�iih�ji)
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Define magnetization

• Infinitesimal field

• Long-range order

m = lim
h!0+

h�iih

m2 = lim
|i�j|!1

h�i�jih=0
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Correlation Length
• In the paramagnet, there is a finite length beyond 

which spins are uncorrelated 

• The correlation length must go from finite to infinite 
to enter the FM: defines critical temperature Tc

• Either it jumps to infinity: “first order transition”

• Or it diverges continuously: “second order” or 
“continuous” transition

• In the latter case, there can be non-analytic 
features on approaching Tc (why??)

h�i�ji ⇠ e�|i�j|/⇠ |i� j| � ⇠
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Mean field theory

• The simplest approximation to describe a 
phase transition is MFT

• There are many types of MFT, and if one 
wants to be more precise, this is “Curie-
Weiss MFT”

• Idea: replace interaction between spins by 
an effective “exchange field”

• Then solve the stat. mech. of this spin, and 
make the field self-consistent
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MFT

• Decoupling

• Exchange field

• Self-consistency (for a classical Ising spin)

Jij�i�j ! Jij [h�ii�j + �ih�ji � h�iih�ji]

�1

2

X

ij

Jij�i�j ! �
X

i

he↵
i �i + const.

he↵
i =

X

j

Jijh�ji

h�ji = tanh�he↵
j
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MFT: solution

• For Ising Ferromagnet, on lattice with z 
nearest neighbors

• For kBT > zJ, only solution is m=0 (PM)

• For kBT < zJ, get spontaneous m≠0 (FM)

• non-analytic behavior characteristic of 
continuous transition

m = tanh z�Jm

m ⇠ (Tc � T )1/2⇥(Tc � T ) |T � Tc|/Tc ⌧ 1
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Other MFT predictions

• Susceptibility

• Specific heat

• These kinds of predictions often work 
qualitatively and sometimes semi-quantitatively

• We expect MFT works best when z is large

� ⇠ A

T � Tc
T > Tc

cv ⇠ A�B⇥(T � Tc)
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Ising Chain

• Coldea:

• Zero transverse field: effectively classical

• What is the transition like?

• exactly solvable by “transfer matrix”

H =
X

i

⇥
�JSz

i

Sz

i+1 � h?S
x

i

⇤

Si = �i/2 Pauli matrices

H = �Je↵
X

i

�z
i �

z
i+1
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Transfer matrix

• Partition function

• Transfer matrix

Z =
X

{�i}

e�Jeff
PN

i=1 �i�i+1 (PBCs)

=
X

{�i}

NY

i=1

eK�i�i+1

⌘
X

{�i}

NY

i=1

h�i|T̂ |�i+1i = Tr
⇣
T̂N

⌘

T̂ =

✓
eK e�K

e�K eK

◆
K = �J
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Transfer Matrix (2)

• Solution

• Large system

• This is a smooth function with no singularity at 
finite, non-zero K = J/kBT: no phase transition!

Z = �N
1 + �N

2

�1 = 2 coshK �2 = 2 sinhK>

Z ⇡ (2 coshK)

N

F = ���1
lnZ ⇡ �N��1

ln(2 coshK)
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Why no transition?

• This is because of domain walls

• Correlation length = distance between 
domain walls: finite for any T>0

• Can verify this from transfer matrix

ΔE=2J

⇠ ⇠ e2�J
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Fluctuations
• So thermal fluctuations have a drastic effect in 1d - 

destroy the phase transition entirely

• In fact this is a general phenomena: d=1 is the “lower 
critical dimension” for discrete symmetry breaking at 
T>0

• more on this theme later

• What about quantum fluctuation effects at T=0, or 
thermal fluctuations for d>1?

• Even when they do not destroy the ordered phase, 
they alter critical properties and lead to other effects
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Quantum Ising chain

• Coldea

• This can be exactly solved by Jordan-Wigner 
transformation

• First we will reformulate it slightly

H =
X

i

⇥
�JSz

i

Sz

i+1 � h?S
x

i

⇤

Sz

i

= T x

i

Sx

i

= �T z

i

H =
X

i

⇥
�J T x

i

T x

i+1 + h?T
z

i

⇤
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Jordan-Wigner

• Idea: spin-1/2 are similar to fermions

• Transformation

• The “string operator” Ui ensures that spins 
on different sites commute

T z
i = n̂i � 1/2 = c†i ci � 1/2

{T�
i , T+

i } = 1 (T+
i )2 = (T�

i )2 = 0

T�
i = Uici T+

i = c†iU
†
i

Ui = ei⇡
P

j<i n̂j = U †
i = U�1

i
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Jordan-Wigner

• Exchange term

• Hamiltonian

quadratic!

T x

i

T x

i+1 = 1
4 (T

+
i

+ T�
i

)(T+
i+1 + T�

i+1)

= 1
4 (ci + c†i )UiUi+1(ci+1 + c†i+1)

= 1
4 (ci + c†i )e

i⇡n̂i(ci+1 + c†i+1)

= 1
4 (c

†
i � ci)(c

†
i+1 + ci+1)

H =
X

i


�J

4
(c†i � ci)(c

†
i+1 + ci+1) + h?(c

†
i ci � 1/2)

�
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Solution

• Fourier

• Hamiltonian

• Particle-hole

c
j

=
1p
L

X

k22⇡Z/L
e�ikxjc

k

c�k = d†k k > 0

H =
X

k

⇥
� J

4 (c
†
kc

†
�ke

�ik � c�kcke
�ik + c†kcke

�ik + c†kcke
ik) + h?c

†
kck

⇤

=

X

k>0

⇥
� J

4 (�2i sin k (c†kc
†
�k � c�kck) + 2 cos k (c†kck + c†�kc�k)) + h?(c

†
kck + c†�kc�k)

⇤
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Solution (2)

• Hamiltonian

• Spinor  k =

✓
ck
dk

◆

H =

X

k>0

⇥ iJ
2

sin k (c†kdk � d†kck) + (h? � 2J cos k )(c†kck � d†kdk)
⇤

H =

X

k>0

 †
k

✓
h? � J

2 cos k iJ2 sin k
�iJ2 sin k �(h? � J

2 cos k)

◆
 k
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Solution (3)
• Two “bands”: 0 < k < π

• States evolve smoothly except at h⟂=J/2, which is 
qualitatively different: this is the quantum critical 
point

Ek

k0.5 1.0 1.5 2.0 2.5 3.0

-4

-2

2

4

Ek = ±
⇥
(h? � J

2 cos k)2 + (

J
2 sin k)2

⇤1/2

h? = J/4
h? = J/2
h? = 3J/4
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Phase Diagram
h⊥/J

kT/J

1/2

FM

PM

quantum 
critical 
point
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Phase transition

• Ground state energy

• Second derivative

E = �
X

k

|Ek| = �L

Z ⇡

0

dk

2⇡
|Ek|

“transverse 
susceptibility” 

diverges!

this is analogous to specific 
heat divergence at a classical 

phase transition

� 1

L

@2E

@h2
?

=

Z ⇡

0

dk

2⇡

2J2
sin

2 k

(J2
+ 4h2

? � 4h?J cos k)3/2
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Correlation Length

• Singularity implies continuous transition

• Can focus on long-distance physics

⇠ (h? � hc
?)

�⌫ ⌫ = 1

= ±
⇥
�2 + v2k2

⇤1/2

Ek = ±
⇥
(h? � J

2 cos k)2 + (

J
2 sin k)2

⇤1/2

⇡ ±
⇥
(h? � J

2 )
2 + 1

2h?Jk
2
⇤1/2

� = h? � J/2 v =
p

h?J/2

⇠ = v/� =

p
2h?J

2h? � J

⇡ J/2
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Time scale

• Correlation time scales with ξ

• This is consistent with energy-time scaling 
in quantum mechanics

• n.b. in general, at a critical point, can have a 
dynamical critical exponent z

⌧ ⇠ ⇠/v ⇠ (h? � hc
?)

�⌫

� ⇠ ~/⌧ ⇠ v/⇠

⌧ ⇠ ⇠z z � 1
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Power laws

• Notice that everything appears to be 
described by power laws near the QCP

• This is a general property - “scaling” - of 
second order phase transitions

• How to understand it?

• Scale invariance
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• Majorana = real fermions

• Anticommutators

Majorana

�j = cj + c†j ⌘j = i(cj � c†j)

{�i, �j} = 2�ij etc.

H =
X

i


�J

4
(c†i � ci)(c

†
i+1 + ci+1) + h?(c

†
i ci � 1/2)

�

H =
X

j

⇥
� iJ

4 ⌘j�j+1 +
i
2h?⌘j�j

⇤

⇡
Z

dx

⇥
i�
2 ⌘� � iJ

4 ⌘@

x

�

⇤
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Majorana magic

• Rotation

• 1d Majorana Hamiltonian

• Δ=0: no intrinsic length scale

⌘ = 1p
2
(⌘R + ⌘L) � = 1p

2
(⌘R � ⌘L)

critical theory deviation from 
criticality

⌘R/L ⇠ L�1/2

H ⇠ v/L

“scaling dimension” 
of η: dη = 1/2

H =

Z
dx

⇥
� iv

4 (⌘R@x⌘R � ⌘
L

@
x

⌘
L

) + i�
2 ⌘

L

⌘
R

⇤
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Effective field theory

• A critical point is described by a scale 
invariant effective field theory  

• Dimensionless effective action 

S =

Z
dtdx

�
i

4 [⌘R(@t � v@

x

)⌘
R

+ ⌘

L

(@
t

+ v@

x

)⌘
L

] + i�
2 ⌘

L

⌘

R

 

t ! b t
x ! b x

⌘R/L ! b�1/2 ⌘R/L

critical theory (Δ=0) is 
invariant under this!

H =

Z
dx

⇥
� iv

4 (⌘R@x⌘R � ⌘
L

@
x

⌘
L

) + i�
2 ⌘

L

⌘
R

⇤

Thursday, June 14, 12



Scale Invariance

• What does it mean?

x ! b x ?? x = b x

0 b > 1

(b = 2)

x x’
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Effective field theory

• A critical point is described by a scale 
invariant effective field theory

• Perturbations are described by local 
operators carrying scaling dimensions

Fermion dη = 1/2

Transverse spin dε = 1�Sx ⇠ " ⇠ ⌘
L

⌘
R

Ising spin Sz ⇠ � ⇠?? dσ = 1/8!!

S
c

=

Z
dt dx

⇢
i

4
[⌘

R

(@
t

� v@

x

)⌘
R

+ ⌘

L

(@
r

+ v@

x

)⌘
L

]

�
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Scale Invariance

• What does it mean?

x ! b x ?? x = b x

0 b > 1

(b = 2)

x x’

�

b�d��

Renormalization 
Group

Thursday, June 14, 12



Renormalization Group

• Perturbations

• Under RG

• After rescaling, physical quantities with new 
and old perturbations should be the same

�S =

Z
dt dx

�
�h? "+ hk �

 

�h? ! b2�d"h? = b h?

�hk ! b2�d�hk = b15/8 hk

relevant 
perturbations
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RG

• e.g. Correlation function

• Can choose b=x

• Or b=1/h⟂= ξ

C(xi � xj) = hSz
i S

z
j i ⇠ h�(xi)�(xj)i

C(x, h?, hk) = b

�2/8
C(x/b, b h?, b

15/8
hk)

C(x, h?, hk) = x

�1/4
C(1, h? x, hk x

15/8)

C(x, h?, hk) = ⇠

�1/4
C(x/⇠, 1, hk ⇠

15/8)

Thursday, June 14, 12



Correlation function

• In zero longitudinal field (h∥=0)

C(x, h?) = x

�1/4C(x/⇠)

C(0) = C0

C(X) ⇠ X�↵e�X X � 1

0.1 1 10 100

10-20

10-15

10-10

10-5

1C

x

h? > hc
?

⇠ X1/4 h? < hc
? X � 1

h? > hc
?

� = 1/8
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Summary
• 1d TFIM has a QCP (like all continuous phase transitions) 

described by a scale invariant continuum field theory

• The critical point is characterized by scaling operators 
(ε,σ) with scaling dimensions dσ etc., and by a 
dynamical critical exponent z

• Perturbations to the QCP can be analyzed by RG, or 
scaling theory

• Usually the relevant ones (which grow under rescaling) 
are most important

• Scaling analysis can be applied to correlation functions, 
free energy, excitation energies,...you name it!

Thursday, June 14, 12



Back to Coldea 

• Coldea studies CoNb2O6 via inelastic 
neutron scattering

N

N

kin,Ein

kout,Eout

E = Ein-Eout

k=kin-kout

ΔS=1

measure 
A(k,E) ⇠

X

n

| n|2�(E � ✏n(k))
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Coldea

• Spectra

axis anisotropy due to crystal field effects from
the distorted CoO6 local environment (Fig. 1B).
Large single crystals can be grown (17), which is
an essential precondition for measurement of the
crucial spin dynamics with neutron scattering.

CoNb2O6 orders magnetically at low temper-
atures below TN1 = 2.95 K, stabilized by weak
interchain couplings. The chains order ferromag-
netically along their length with magnetic mo-
ments pointing along the local Ising direction,
contained in the crystal (ac) plane (18). To tune to
the critical point, we apply an external magnetic
field along the b axis, transverse to the local Ising
axis. Figure 1C shows that the external field sup-
presses the long-range 3D magnetic order favored
by the Ising exchange in a continuous phase tran-
sition at a critical field BC = 5.5 T.

Expected excitations for the model in Eq. 1
consist of (i) pairs of kinks, with the cartoon
representation j↑↑↓↓z:::〉, below BC, and (ii) spin-
flip quasiparticles j→→←→x:::〉 above BC. The
kinks interpolate between the two degenerate
ground states with spontaneous magnetization
along the +z or –z axis, respectively. Neutrons
scatter by creating a pair of kinks (Fig. 2A). The
results in Fig. 2, B and C, show that in the
ordered phase below BC the spectrum is a bow
tie–shaped continuum with strongly dispersive
boundaries and large bandwidth at the zone center
(L = 0), which we attribute to the expected two-
kink states. This continuum increases in bandwidth
and lowers its gap with increasing field, as the
applied transverse field provides matrix elements
for the kinks to hop, directly tuning their kinetic

energy. Above BC a very different spectrum
emerges (Fig. 2E), dominated by a single sharp
mode. This is precisely the signature of a quan-
tum paramagnetic phase. In this phase the
spontaneous ferromagnetic correlations are absent,
and there are no longer two equivalent ground
states that could support kinks. Instead, excita-
tions can be understood in terms of single spin
reversals opposite to the applied field that cost
Zeeman energy in increasing field. The funda-
mental change in the nature of quasiparticles
observed here (compare Fig. 2, C and E) does not
occur in higher-dimensional realizations of the
quantum Ising model. The kinks are a crucial
aspect of the physics in one dimension, and their
spectrum of confinement bound states near the
transition field will be directly related to the low-
energy symmetry of the critical point.

The very strong dimensionality effects in 3D
systems stabilize sharp spin-flip quasiparticles in
both the ordered and paramagnetic phases, as in-
deed observed experimentally in the 3D dipolar-
coupled ferromagnet LiHoF4 (19, 20). In con-
trast, weak additional perturbations in the 1D
Ising model, in particular a small longitudinal
field −hzSiSzi , should lead to a rich structure of
bound states (6, 7, 9). Such a longitudinal field, in
fact, arises naturally in the case of a quasi-1D
magnet: In the 3D magnetically ordered phase at
low temperature, the weak couplings between the
magnetic chains can be replaced in a first approx-
imation by a local, effective longitudinal mean
field (21), which scales with the magnitude of the
ordered moment 〈Sz〉 [hz = SdJd 〈Sz〉 where the
sum extends over all interchain bonds with ex-
change energy Jd]. If the 1D Ising chain is pre-
cisely at its critical point (h = hC), then the bound
states stabilized by the additional longitudinal field
hz morph into the “quantum resonances” that are a
characteristic fingerprint of the emergent symmetries
near the quantum critical point. Nearly two dec-
ades ago, Zamolodchikov (2) proposed precisely

Fig. 1. (A) Phase dia-
gram of the Ising chain
in transverse field (Eq.
1). Spin excitations are
pairs of domain-wall qua-
siparticles (kinks) in the
ordered phase below hC
and spin-flip quasiparti-
cles in the paramagnet-
ic phase above hC. The
dashed line shows the
spin gap. (B) CoNb2O6
contains zigzag ferro-
magnetic Ising chains.
(C) Intensity of the 3D
magnetic Bragg peak
as a function of applied
field observed by neu-
tron diffraction (27).
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Fig. 2. (A) Cartoon of a
neutron spin-flip scatter-
ing that creates a pair of
independently propagat-
ing kinks in a ferromag-
netically ordered chain.
(B to E) Spin excitations
in CoNb2O6 near the crit-
ical field as a function
of wave vector along the
chain (in rlu units of 2p/c)
and energy (18). In the
ordered phase [(B) and
(C)], excitations form a
continuumdue to scatter-
ing by pairs of kinks [as
illustrated in (A)]; in the
paramagnetic phase (E),
a single dominant sharp

Magnetically Ordered  Paramagnet Transverse 
Field 

× 1/3 

A 3.25 T B C 4 T D 5.45 T 6 T E 

k i k f

mode occurs, due to scattering by a spin-flip quasiparticle.
Near the critical field (D), the two types of spectra tend to
merge into one another. Intensities in (E) are multiplied
by 1/3 to make them comparable to the other panels.
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Excitations

• From scaling: expected excitation gap 
except at QCP

• what is the nature of the excitations?

h?

E

hc
?

� = |h? � hc
?|

?

FM PM
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FM phase

• Domain walls

• Hopping

ΔE=J/2 (h? = 0)

✏dw(k) ⇠ J/2� h? cos k

Sz
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PM phase

• J=0: ground state is spins polarized along x

• Excitations are single spin flips

• Hopping

✏ = h?

✏sf (k) ⇠ h? � J
2 cos k
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Local vs Non-local

• Domain wall is non-local: a semi-infinite number 
of spins must be flipped to generate it from 
the ground state

• The misaligned spin in the x-polarized state is 
local: only one spin needs to be flipped to 
generate it

• A neutron can excite a single spin flip, but 
not a single domain wall
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Scattering Intensity

• Recall

• In the paramagnet: neutron creates one 
spin flip:

E = Ein-Eout

k=kin-kout

ΔS=1

measure 
A(k,E) ⇠

X

n

| n|2�(E � ✏n(k))

ω=ε(k)
neutron

K,Ω 

K-k,Ω -ω

k,ω
spin flip S=1
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Scattering Intensity

• Recall

• In the ferromagnet: neutron creates two 
domain walls:

E = Ein-Eout

k=kin-kout

ΔS=1

measure 
A(k,E) ⇠

X

n

| n|2�(E � ✏n(k))

neutron

soliton S=1/2

K,Ω 

K-k,Ω -ω

k,ω
spin flip S=1

k-k’,ω-ω’

k’,ω’

ω=ε(k’)+ε(k-k’)

A(k,!) ⇠
Z

dk0 f(k0)�(! � ✏(k0)� ✏(k � k0))

2-particle continuum
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Coldea

• Spectra

axis anisotropy due to crystal field effects from
the distorted CoO6 local environment (Fig. 1B).
Large single crystals can be grown (17), which is
an essential precondition for measurement of the
crucial spin dynamics with neutron scattering.

CoNb2O6 orders magnetically at low temper-
atures below TN1 = 2.95 K, stabilized by weak
interchain couplings. The chains order ferromag-
netically along their length with magnetic mo-
ments pointing along the local Ising direction,
contained in the crystal (ac) plane (18). To tune to
the critical point, we apply an external magnetic
field along the b axis, transverse to the local Ising
axis. Figure 1C shows that the external field sup-
presses the long-range 3D magnetic order favored
by the Ising exchange in a continuous phase tran-
sition at a critical field BC = 5.5 T.

Expected excitations for the model in Eq. 1
consist of (i) pairs of kinks, with the cartoon
representation j↑↑↓↓z:::〉, below BC, and (ii) spin-
flip quasiparticles j→→←→x:::〉 above BC. The
kinks interpolate between the two degenerate
ground states with spontaneous magnetization
along the +z or –z axis, respectively. Neutrons
scatter by creating a pair of kinks (Fig. 2A). The
results in Fig. 2, B and C, show that in the
ordered phase below BC the spectrum is a bow
tie–shaped continuum with strongly dispersive
boundaries and large bandwidth at the zone center
(L = 0), which we attribute to the expected two-
kink states. This continuum increases in bandwidth
and lowers its gap with increasing field, as the
applied transverse field provides matrix elements
for the kinks to hop, directly tuning their kinetic

energy. Above BC a very different spectrum
emerges (Fig. 2E), dominated by a single sharp
mode. This is precisely the signature of a quan-
tum paramagnetic phase. In this phase the
spontaneous ferromagnetic correlations are absent,
and there are no longer two equivalent ground
states that could support kinks. Instead, excita-
tions can be understood in terms of single spin
reversals opposite to the applied field that cost
Zeeman energy in increasing field. The funda-
mental change in the nature of quasiparticles
observed here (compare Fig. 2, C and E) does not
occur in higher-dimensional realizations of the
quantum Ising model. The kinks are a crucial
aspect of the physics in one dimension, and their
spectrum of confinement bound states near the
transition field will be directly related to the low-
energy symmetry of the critical point.

The very strong dimensionality effects in 3D
systems stabilize sharp spin-flip quasiparticles in
both the ordered and paramagnetic phases, as in-
deed observed experimentally in the 3D dipolar-
coupled ferromagnet LiHoF4 (19, 20). In con-
trast, weak additional perturbations in the 1D
Ising model, in particular a small longitudinal
field −hzSiSzi , should lead to a rich structure of
bound states (6, 7, 9). Such a longitudinal field, in
fact, arises naturally in the case of a quasi-1D
magnet: In the 3D magnetically ordered phase at
low temperature, the weak couplings between the
magnetic chains can be replaced in a first approx-
imation by a local, effective longitudinal mean
field (21), which scales with the magnitude of the
ordered moment 〈Sz〉 [hz = SdJd 〈Sz〉 where the
sum extends over all interchain bonds with ex-
change energy Jd]. If the 1D Ising chain is pre-
cisely at its critical point (h = hC), then the bound
states stabilized by the additional longitudinal field
hz morph into the “quantum resonances” that are a
characteristic fingerprint of the emergent symmetries
near the quantum critical point. Nearly two dec-
ades ago, Zamolodchikov (2) proposed precisely

Fig. 1. (A) Phase dia-
gram of the Ising chain
in transverse field (Eq.
1). Spin excitations are
pairs of domain-wall qua-
siparticles (kinks) in the
ordered phase below hC
and spin-flip quasiparti-
cles in the paramagnet-
ic phase above hC. The
dashed line shows the
spin gap. (B) CoNb2O6
contains zigzag ferro-
magnetic Ising chains.
(C) Intensity of the 3D
magnetic Bragg peak
as a function of applied
field observed by neu-
tron diffraction (27).
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Fig. 2. (A) Cartoon of a
neutron spin-flip scatter-
ing that creates a pair of
independently propagat-
ing kinks in a ferromag-
netically ordered chain.
(B to E) Spin excitations
in CoNb2O6 near the crit-
ical field as a function
of wave vector along the
chain (in rlu units of 2p/c)
and energy (18). In the
ordered phase [(B) and
(C)], excitations form a
continuumdue to scatter-
ing by pairs of kinks [as
illustrated in (A)]; in the
paramagnetic phase (E),
a single dominant sharp

Magnetically Ordered  Paramagnet Transverse 
Field 

× 1/3 

A 3.25 T B C 4 T D 5.45 T 6 T E 

k i k f

mode occurs, due to scattering by a spin-flip quasiparticle.
Near the critical field (D), the two types of spectra tend to
merge into one another. Intensities in (E) are multiplied
by 1/3 to make them comparable to the other panels.
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(h?)
hc
?

2 soliton continuum single spin flip
?? why the fine structure ??
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Fine structure

• This is due to three dimensional coupling 
between the Ising chains

H 0 = �J 0
X

n

X

hiji

Sz
i,nS

z
j,n

J’

J’
Does very small J’ 

have an effect?
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Fine structure

• This is due to three dimensional coupling 
between the Ising chains

H 0 = �J 0
X

n

X

hiji

Sz
i,nS

z
j,n

J’

J’
Suppose chains are 

ferromagnetic
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Fine structure

• This is due to three dimensional coupling 
between the Ising chains

H 0 = �J 0
X

n

X

hiji

Sz
i,nS

z
j,n

J’

J’ J’ prefers they align
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Fine structure

• This is due to three dimensional coupling 
between the Ising chains

H 0 = �J 0
X

n

X

hiji

Sz
i,nS

z
j,n

J’

J’

O(J’) energy cost per 
misaligned bond: 

infinite in 
thermodynamic limit!
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Fine structure

• This is due to three dimensional coupling 
between the Ising chains

H 0 = �J 0
X

n

X

hiji

Sz
i,nS

z
j,n

J’

J’

pair of domain walls 
separated by x on the 
same chain costs an 

energy ∝ J’ |x|:
linear confinement
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Confinement

• Mean field

• Confining potential

• Two particle quantum mechanics

H 0 ! �hk
X

i,n

Sz
i,n

V (x) = �|x| � = hkm

hk / J 0hSz
i,ni = J 0m

He↵ = 2✏dw � 1

2µ

@2

@x2
1

� 1

2µ

@2

@x2
1

+ �|x1 � x2|
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Confinement

• Relative coordinate

• Standard problem in WKB theory: Airy 
functions

• zj = 2.33, 4.08, 6.78.. zeros of Airy function

• apart from zj, get this from scaling...

He↵ = 2✏dw � 1

µ

@2

@x2
+ �|x|

En = 2✏dw + zj(�
2/µ)2/3
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Experiment

• Airy function levels are very beautifully 
seen!

eight “meson” bound states (the kinks playing the
role of quarks), with energies in specific ratios
given by a representation of the E8 exceptional
Lie group (2). Before discussing the results near
the QPT, we first develop a more sophisticated
model of the magnetism in CoNb2O6 including
confinement effects at zero field, where conven-
tional perturbation theories are found to hold.

The zero-field data in Fig. 3A reveal a gapped
continuum scattering at the ferromagnetic zone
center (L= 0) due to kink pairs, which are allowed
to propagate even in the absence of an external
field. This is caused by sub-leading terms in the
spin Hamiltonian. Upon cooling to the lowest
temperature of 40 mK, deep in the magnetically
ordered phase, the continuum splits into a sequence

of sharp modes (Fig. 3B). At least five modes can
be clearly observed (Fig. 3E), and they exist over a
wide range of wave vectors and have a quadratic
dispersion (open symbols in Fig. 3D). These data
demonstrate the physics of kink confinement under
a linear attractive interaction (6–9). In the ordered
phase, kink propagation upsets the bonds with
the neighboring chains (Fig. 3G) and therefore
requires an energy cost V(x) that grows linearly
with the kink separation x, V(x) = l|x|, where the
“string tension” l is proportional to the ordered
momentmagnitude 〈Sz〉 and the interchain coupling
strength [l = 2hz〈Sz〉/c̃, where hz = SdJd 〈Sz〉 is the
longitudinal mean field of the interchain couplings
and c̃ = c/2 is the lattice spacing along the chain].

The essential physics of confinement is ap-
parent in the limit of small l for two kinks near
the band minimum, where the one-kink dispersion
is quadratic: e(k) = mo + ħ2k2/(2m). In this case,
the Schrödinger’s equation for the relative motion
of two kinks in their center-of-mass frame is

–
ℏ2

m
d2ϕ
dx2

þ ljxjϕ ¼ m – 2moð Þϕ ð2Þ

(6–9, 22), which has only bound-state solutions
with energies (also called masses)

mj ¼ 2moþ zjl2=3
ℏ2

m

! "1=3

j ¼ 1, 2, 3, :::

ð3Þ

The bound states are predicted to occur above
the threshold 2mo for creating two free kinks in a
specific sequence given by the prefactors zn, the
negative zeros of the Airy function Ai(–zn) = 0, zj =
2.33, 4.08, 5.52, 6.78, 7.94, etc. (18). The very
nontrivial sequencing of the spacing between
levels at the zone center agrees well with the
measured energies of all five observed bound
states (Fig. 3H), indicating that the weak
confinement limit captures the essential physics.

A full modeling of the data throughout the
Brillouin zone can be obtained (18) by consid-
ering an extension of Eq. 2 to finite wave vectors
and adding a short-range interaction between kinks,
responsible for stabilizing the observed bound state
near the zone boundary L = –1. Interestingly, this
is a kinetic bound state; that is, it is stabilized by
virtue of the extra kinetic energy gained by two
kinks if they hop together as a result of their short-
range interaction, as opposed to the Zeeman ladder
of confinement bound states (near L = 0), stabi-
lized by the potential energy V(x). The good agree-
ment with the dispersion relations of all the bound
states observed (Fig. 3D), as well as the overall
intensity distribution (compare Fig. 3, B and F),
shows that an effective model of kinks with a con-
finement interaction can quantitatively describe the
complete spin dynamics.

Having established the behavior at zero field,
we now consider the influence of the QPTat high
field. Figure 4C shows that the excitation gap
decreases upon approaching the critical field (as
quantum tunneling lowers the energy of the kink
quasiparticles), then increases again above BC in
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Fig. 3. Zero-field spin excitations in CoNb2O6. (A) In the 1D phase above TN1, a broad continuum occurs near
the zone center (L = 0) due to scattering by pairs of unbound kinks. (B) The continuum splits into a Zeeman
ladder of two-kink bound states deep in the ordered phase. (C and D) Model calculations (18) for hz = 0 and
0.02J to compare with data in (A) and (B), respectively. In (C) the thick dashed line is the kinetic two-kink bound
state stable only outside the two-kink continuum (bounded by the dashed-dotted lines). Open symbols in (C)
and (D) are peak positions from (A) and (B), respectively. (E) Energy scan at the zone center observing five
sharp modes [red and blue circles are data from (B) and (A), respectively; solid line is a fit to Gaussians]. (F)
Dynamical correlations Sxx(k,w) (18) convolved with the instrumental resolution to compare with data in (B).
(G) In the ordered phase, kink separation costs energy as it breaks interchain bonds J', leading to an effective
linear “string tension” that confines kinks into bound states. (H) Observed and calculated bound-state energies.
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eight “meson” bound states (the kinks playing the
role of quarks), with energies in specific ratios
given by a representation of the E8 exceptional
Lie group (2). Before discussing the results near
the QPT, we first develop a more sophisticated
model of the magnetism in CoNb2O6 including
confinement effects at zero field, where conven-
tional perturbation theories are found to hold.

The zero-field data in Fig. 3A reveal a gapped
continuum scattering at the ferromagnetic zone
center (L= 0) due to kink pairs, which are allowed
to propagate even in the absence of an external
field. This is caused by sub-leading terms in the
spin Hamiltonian. Upon cooling to the lowest
temperature of 40 mK, deep in the magnetically
ordered phase, the continuum splits into a sequence

of sharp modes (Fig. 3B). At least five modes can
be clearly observed (Fig. 3E), and they exist over a
wide range of wave vectors and have a quadratic
dispersion (open symbols in Fig. 3D). These data
demonstrate the physics of kink confinement under
a linear attractive interaction (6–9). In the ordered
phase, kink propagation upsets the bonds with
the neighboring chains (Fig. 3G) and therefore
requires an energy cost V(x) that grows linearly
with the kink separation x, V(x) = l|x|, where the
“string tension” l is proportional to the ordered
momentmagnitude 〈Sz〉 and the interchain coupling
strength [l = 2hz〈Sz〉/c̃, where hz = SdJd 〈Sz〉 is the
longitudinal mean field of the interchain couplings
and c̃ = c/2 is the lattice spacing along the chain].

The essential physics of confinement is ap-
parent in the limit of small l for two kinks near
the band minimum, where the one-kink dispersion
is quadratic: e(k) = mo + ħ2k2/(2m). In this case,
the Schrödinger’s equation for the relative motion
of two kinks in their center-of-mass frame is

–
ℏ2

m
d2ϕ
dx2

þ ljxjϕ ¼ m – 2moð Þϕ ð2Þ

(6–9, 22), which has only bound-state solutions
with energies (also called masses)

mj ¼ 2moþ zjl2=3
ℏ2

m

! "1=3

j ¼ 1, 2, 3, :::

ð3Þ

The bound states are predicted to occur above
the threshold 2mo for creating two free kinks in a
specific sequence given by the prefactors zn, the
negative zeros of the Airy function Ai(–zn) = 0, zj =
2.33, 4.08, 5.52, 6.78, 7.94, etc. (18). The very
nontrivial sequencing of the spacing between
levels at the zone center agrees well with the
measured energies of all five observed bound
states (Fig. 3H), indicating that the weak
confinement limit captures the essential physics.

A full modeling of the data throughout the
Brillouin zone can be obtained (18) by consid-
ering an extension of Eq. 2 to finite wave vectors
and adding a short-range interaction between kinks,
responsible for stabilizing the observed bound state
near the zone boundary L = –1. Interestingly, this
is a kinetic bound state; that is, it is stabilized by
virtue of the extra kinetic energy gained by two
kinks if they hop together as a result of their short-
range interaction, as opposed to the Zeeman ladder
of confinement bound states (near L = 0), stabi-
lized by the potential energy V(x). The good agree-
ment with the dispersion relations of all the bound
states observed (Fig. 3D), as well as the overall
intensity distribution (compare Fig. 3, B and F),
shows that an effective model of kinks with a con-
finement interaction can quantitatively describe the
complete spin dynamics.

Having established the behavior at zero field,
we now consider the influence of the QPTat high
field. Figure 4C shows that the excitation gap
decreases upon approaching the critical field (as
quantum tunneling lowers the energy of the kink
quasiparticles), then increases again above BC in
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Fig. 3. Zero-field spin excitations in CoNb2O6. (A) In the 1D phase above TN1, a broad continuum occurs near
the zone center (L = 0) due to scattering by pairs of unbound kinks. (B) The continuum splits into a Zeeman
ladder of two-kink bound states deep in the ordered phase. (C and D) Model calculations (18) for hz = 0 and
0.02J to compare with data in (A) and (B), respectively. In (C) the thick dashed line is the kinetic two-kink bound
state stable only outside the two-kink continuum (bounded by the dashed-dotted lines). Open symbols in (C)
and (D) are peak positions from (A) and (B), respectively. (E) Energy scan at the zone center observing five
sharp modes [red and blue circles are data from (B) and (A), respectively; solid line is a fit to Gaussians]. (F)
Dynamical correlations Sxx(k,w) (18) convolved with the instrumental resolution to compare with data in (B).
(G) In the ordered phase, kink separation costs energy as it breaks interchain bonds J', leading to an effective
linear “string tension” that confines kinks into bound states. (H) Observed and calculated bound-state energies.
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eight “meson” bound states (the kinks playing the
role of quarks), with energies in specific ratios
given by a representation of the E8 exceptional
Lie group (2). Before discussing the results near
the QPT, we first develop a more sophisticated
model of the magnetism in CoNb2O6 including
confinement effects at zero field, where conven-
tional perturbation theories are found to hold.

The zero-field data in Fig. 3A reveal a gapped
continuum scattering at the ferromagnetic zone
center (L= 0) due to kink pairs, which are allowed
to propagate even in the absence of an external
field. This is caused by sub-leading terms in the
spin Hamiltonian. Upon cooling to the lowest
temperature of 40 mK, deep in the magnetically
ordered phase, the continuum splits into a sequence

of sharp modes (Fig. 3B). At least five modes can
be clearly observed (Fig. 3E), and they exist over a
wide range of wave vectors and have a quadratic
dispersion (open symbols in Fig. 3D). These data
demonstrate the physics of kink confinement under
a linear attractive interaction (6–9). In the ordered
phase, kink propagation upsets the bonds with
the neighboring chains (Fig. 3G) and therefore
requires an energy cost V(x) that grows linearly
with the kink separation x, V(x) = l|x|, where the
“string tension” l is proportional to the ordered
momentmagnitude 〈Sz〉 and the interchain coupling
strength [l = 2hz〈Sz〉/c̃, where hz = SdJd 〈Sz〉 is the
longitudinal mean field of the interchain couplings
and c̃ = c/2 is the lattice spacing along the chain].

The essential physics of confinement is ap-
parent in the limit of small l for two kinks near
the band minimum, where the one-kink dispersion
is quadratic: e(k) = mo + ħ2k2/(2m). In this case,
the Schrödinger’s equation for the relative motion
of two kinks in their center-of-mass frame is

–
ℏ2

m
d2ϕ
dx2

þ ljxjϕ ¼ m – 2moð Þϕ ð2Þ

(6–9, 22), which has only bound-state solutions
with energies (also called masses)

mj ¼ 2moþ zjl2=3
ℏ2

m

! "1=3

j ¼ 1, 2, 3, :::

ð3Þ

The bound states are predicted to occur above
the threshold 2mo for creating two free kinks in a
specific sequence given by the prefactors zn, the
negative zeros of the Airy function Ai(–zn) = 0, zj =
2.33, 4.08, 5.52, 6.78, 7.94, etc. (18). The very
nontrivial sequencing of the spacing between
levels at the zone center agrees well with the
measured energies of all five observed bound
states (Fig. 3H), indicating that the weak
confinement limit captures the essential physics.

A full modeling of the data throughout the
Brillouin zone can be obtained (18) by consid-
ering an extension of Eq. 2 to finite wave vectors
and adding a short-range interaction between kinks,
responsible for stabilizing the observed bound state
near the zone boundary L = –1. Interestingly, this
is a kinetic bound state; that is, it is stabilized by
virtue of the extra kinetic energy gained by two
kinks if they hop together as a result of their short-
range interaction, as opposed to the Zeeman ladder
of confinement bound states (near L = 0), stabi-
lized by the potential energy V(x). The good agree-
ment with the dispersion relations of all the bound
states observed (Fig. 3D), as well as the overall
intensity distribution (compare Fig. 3, B and F),
shows that an effective model of kinks with a con-
finement interaction can quantitatively describe the
complete spin dynamics.

Having established the behavior at zero field,
we now consider the influence of the QPTat high
field. Figure 4C shows that the excitation gap
decreases upon approaching the critical field (as
quantum tunneling lowers the energy of the kink
quasiparticles), then increases again above BC in
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Fig. 3. Zero-field spin excitations in CoNb2O6. (A) In the 1D phase above TN1, a broad continuum occurs near
the zone center (L = 0) due to scattering by pairs of unbound kinks. (B) The continuum splits into a Zeeman
ladder of two-kink bound states deep in the ordered phase. (C and D) Model calculations (18) for hz = 0 and
0.02J to compare with data in (A) and (B), respectively. In (C) the thick dashed line is the kinetic two-kink bound
state stable only outside the two-kink continuum (bounded by the dashed-dotted lines). Open symbols in (C)
and (D) are peak positions from (A) and (B), respectively. (E) Energy scan at the zone center observing five
sharp modes [red and blue circles are data from (B) and (A), respectively; solid line is a fit to Gaussians]. (F)
Dynamical correlations Sxx(k,w) (18) convolved with the instrumental resolution to compare with data in (B).
(G) In the ordered phase, kink separation costs energy as it breaks interchain bonds J', leading to an effective
linear “string tension” that confines kinks into bound states. (H) Observed and calculated bound-state energies.
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eight “meson” bound states (the kinks playing the
role of quarks), with energies in specific ratios
given by a representation of the E8 exceptional
Lie group (2). Before discussing the results near
the QPT, we first develop a more sophisticated
model of the magnetism in CoNb2O6 including
confinement effects at zero field, where conven-
tional perturbation theories are found to hold.

The zero-field data in Fig. 3A reveal a gapped
continuum scattering at the ferromagnetic zone
center (L= 0) due to kink pairs, which are allowed
to propagate even in the absence of an external
field. This is caused by sub-leading terms in the
spin Hamiltonian. Upon cooling to the lowest
temperature of 40 mK, deep in the magnetically
ordered phase, the continuum splits into a sequence

of sharp modes (Fig. 3B). At least five modes can
be clearly observed (Fig. 3E), and they exist over a
wide range of wave vectors and have a quadratic
dispersion (open symbols in Fig. 3D). These data
demonstrate the physics of kink confinement under
a linear attractive interaction (6–9). In the ordered
phase, kink propagation upsets the bonds with
the neighboring chains (Fig. 3G) and therefore
requires an energy cost V(x) that grows linearly
with the kink separation x, V(x) = l|x|, where the
“string tension” l is proportional to the ordered
momentmagnitude 〈Sz〉 and the interchain coupling
strength [l = 2hz〈Sz〉/c̃, where hz = SdJd 〈Sz〉 is the
longitudinal mean field of the interchain couplings
and c̃ = c/2 is the lattice spacing along the chain].

The essential physics of confinement is ap-
parent in the limit of small l for two kinks near
the band minimum, where the one-kink dispersion
is quadratic: e(k) = mo + ħ2k2/(2m). In this case,
the Schrödinger’s equation for the relative motion
of two kinks in their center-of-mass frame is

–
ℏ2

m
d2ϕ
dx2

þ ljxjϕ ¼ m – 2moð Þϕ ð2Þ

(6–9, 22), which has only bound-state solutions
with energies (also called masses)

mj ¼ 2moþ zjl2=3
ℏ2

m

! "1=3

j ¼ 1, 2, 3, :::

ð3Þ

The bound states are predicted to occur above
the threshold 2mo for creating two free kinks in a
specific sequence given by the prefactors zn, the
negative zeros of the Airy function Ai(–zn) = 0, zj =
2.33, 4.08, 5.52, 6.78, 7.94, etc. (18). The very
nontrivial sequencing of the spacing between
levels at the zone center agrees well with the
measured energies of all five observed bound
states (Fig. 3H), indicating that the weak
confinement limit captures the essential physics.

A full modeling of the data throughout the
Brillouin zone can be obtained (18) by consid-
ering an extension of Eq. 2 to finite wave vectors
and adding a short-range interaction between kinks,
responsible for stabilizing the observed bound state
near the zone boundary L = –1. Interestingly, this
is a kinetic bound state; that is, it is stabilized by
virtue of the extra kinetic energy gained by two
kinks if they hop together as a result of their short-
range interaction, as opposed to the Zeeman ladder
of confinement bound states (near L = 0), stabi-
lized by the potential energy V(x). The good agree-
ment with the dispersion relations of all the bound
states observed (Fig. 3D), as well as the overall
intensity distribution (compare Fig. 3, B and F),
shows that an effective model of kinks with a con-
finement interaction can quantitatively describe the
complete spin dynamics.

Having established the behavior at zero field,
we now consider the influence of the QPTat high
field. Figure 4C shows that the excitation gap
decreases upon approaching the critical field (as
quantum tunneling lowers the energy of the kink
quasiparticles), then increases again above BC in
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Fig. 3. Zero-field spin excitations in CoNb2O6. (A) In the 1D phase above TN1, a broad continuum occurs near
the zone center (L = 0) due to scattering by pairs of unbound kinks. (B) The continuum splits into a Zeeman
ladder of two-kink bound states deep in the ordered phase. (C and D) Model calculations (18) for hz = 0 and
0.02J to compare with data in (A) and (B), respectively. In (C) the thick dashed line is the kinetic two-kink bound
state stable only outside the two-kink continuum (bounded by the dashed-dotted lines). Open symbols in (C)
and (D) are peak positions from (A) and (B), respectively. (E) Energy scan at the zone center observing five
sharp modes [red and blue circles are data from (B) and (A), respectively; solid line is a fit to Gaussians]. (F)
Dynamical correlations Sxx(k,w) (18) convolved with the instrumental resolution to compare with data in (B).
(G) In the ordered phase, kink separation costs energy as it breaks interchain bonds J', leading to an effective
linear “string tension” that confines kinks into bound states. (H) Observed and calculated bound-state energies.
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Field evolution?

• Number of bound states evolves with h⟂

• Precisely at h⟂=h⟂c, there is an exact 
solution

• Scaling

h?hc
?FM PM

hk

1 N≫1
2 3

✏n ⇠ cn(hk/v)
8/15

the paramagnetic phase as a result of the increase
in Zeeman energy cost for spin-flip quasiparticles.
In a quasi-1D system such as CoNb2O6 with finite
interchain couplings, a complete gap softening is
only expected (23) at the location of the 3Dmag-
netic long-range order Bragg peaks, which occur at
a finite interchain wave vector q┴ that minimizes
the Fourier transform of the antiferromagnetic inter-
chain couplings; the measurements shown in Fig.
4C were in a scattering plane where no magnetic
Bragg peaks occur, so an incomplete gap softening
would be expected here, as indeed was observed.

For the critical Ising chain, a gapless spectrum
of critical kinks is predicted (Fig. 4F). Adding a
finite longitudinal field hz generates a gap and sta-
bilizes bound states (Fig. 4G). In the scaling limit
sufficiently close to the quantum critical point (i.e.,
hz << J, h = hC), the spectrum is predicted to have
eight particles with energies in specific ratios (given
by a representation of the E8 Lie group) with the
first mass atm1/J =C(hz/J )

8/15,C ≈ 1.59 (2). The
predicted spectrum for such an off-critical Ising

chain to be observed by neutron scattering is illus-
trated in Fig. 4E for the dominant dynamical
correlations Szz(k = 0,w) for which quantitative
calculations are available (7): Two prominent
sharp peaks due to the first two particles m1 and
m2 are expected at low energies below the onset
of the continuum of twom1 particles (24).

The neutron data taken just below the critical
field (Fig. 4, A and B) are indeed consistent with
this highly nontrivial prediction of two prominent
peaks at low energies, which we identify with the
first two particlesm1 andm2 of the off-critical Ising
model. Figure 4D shows how the ratio of the ener-
gies of those peaks varies with increasing field and
approaches closely (near 5 T just below the 3D
critical field of 5.5 T) the golden ratiom2/m1 = (1 +
ffiffiffi

5
p

)/2 = 1.618 predicted for the E8 masses. We
identify the field where the closest agreement with
the E8 mass ratio is observed as the field B1D

C
where the 1D chains would have been critical in
the absence of interchain couplings (25). Indeed,
it is in this regime (21) that the special quantum

critical symmetry theory would be expected to
apply.

Our results show that the exploration of con-
tinuous quantum phase transitions can open up
avenues to experimentally realize otherwise in-
accessible (1, 26) correlated quantum states of
matter with complex symmetries and dynamics.
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Fig. 5. Masses of the three lighest particles in the Ising field theory (1.1). The solid lines are
the plots of the dimensionless ratios Mi/|h|8/15 (i=1, 2, 3) versus the parameter (3.19). The
dashed lines represent the corresponding large-|g| expansions, Eqs. (5.2) and (5.3) (with all
terms explicitly written in these Eqs. included).

becomes negative, until finally at g < g2 (g2 % − 2.09, see Section 6 later)
only one particle remains stable. As g Q − . its mass M1 approaches |m|,3

3 The numerical value of the constant a in Eq. (5.3) comes from our estimate

a % s̄2(247/9 `3 − 23/2+14/3p)

of leading ( ’ h2) perturbative mass correction. The approximation used in this estimate is
similar to that proposed in ref. 37. We will present this calculation elsewhere.

M1=|m| (1+a/(−g)
15
4 +O((−g)−15

2 )); a % 10.75. (5.3)

Although a detailed discussion of the mass spectrum is outside the scope
of this paper (we intend to present it separately), we show in Fig. 5 the g
dependence of the first few meson masses obtained using the TFFSA.

The mesons described above are excitations over the stable vacuum of
the system (which is unique for h ] 0). If m > 0 and h is sufficiently small,
the system exhibits also an unstable ‘‘false vacuum,’’ a global resonance
state whose (complex) energy is an intensive quantity, i.e.,

Emeta=R Fmeta(m, h), (5.4)

where R Q . is the spatial size of the system. The corresponding energy
density Fmeta is a complex-valued quantity, and its imaginary part is inter-
preted as the decay probability density (the probability per unit volume
and unit time) of the false vacuum. According to standard arguments (see
refs. 39–41) the resonance energy density Fmeta(m, h) coincides with the
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Ising Model - Parting 
Shots

• We discussed continuous phase transitions in this 
specific context, but the lessons are much broader

• There is an important notion of universality:

• the critical properties (exponents etc.) of 
continuous transitions depend on very few things - 
symmetry, dimensionality being the main ones

• otherwise, transitions involving the same 
symmetries, even in completely different physical 
systems, show the same critical behavior - 
examples??
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Universality

• One explanation: Landau theory

• Near criticality, the order parameter is 
small, and one can Taylor expand the free 
energy in it.  This gives a form which 
depends only on symmetries

• Renormalization group provides a more 
refined explanation
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Antiferromagnets

• So far, we have talked about the Ising 
ferromagnet, which is about the simplest model 
of statistical mechanics

• Often much complex interactions and/or more 
complex ordering arises and the statistical 
mechanics becomes much more involved - and 
more interesting!

• In the case of magnetic systems, 
antiferromagnets show this kind of richness
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Antiferromagnets

• Antiferromagnet: 2 definitions

• A magnet which orders but has no net 
magnetization

• A material with exchange interactions 
which prefer anti-aligned spins

• Could be both, either, or neither, but both 
is common

Thursday, June 14, 12



Bipartite AFs

• A lattice is bipartite if it can be divided into 
two sets of sites,  A and B, with A sites 
neighboring B sites only, and vice-versa

• Then AF exchange is easily satisfied with A 
and B spins antiparallel

In this case, classical 
problem can be 

mapped back to the 
FM one by SB →-SB
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Frustration

• Competing interactions generate 
degenerate ground states

“geometric 
frustration”

Ising spins
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Degeneracy
• Ideally: frustration induces ground state 

degeneracy, and spins fluctuate amongst those 
ground states down to low temperature

• e.g. triangular lattice Ising antiferromagnet

1 frustrated 
bond per 
triangle

Wannier (1950): � = eS/kB S � 0.34NkB
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Estimate degeneracy?
• Dual representation

• honeycomb lattice
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Estimate degeneracy?
• Dual representation

• focus on the frustrated bonds
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Estimate degeneracy?
• Dual representation

• color “dimers” corresponding to 
frustrated bonds

• “hard core” dimer covering
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Estimate degeneracy?
• Dual representation

• A 2:1 mapping from Ising ground states 
to dimer coverings
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Dimer states
• First exercise: can we understand Wannier’s 

result?

• count the dimer coverings
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Dimer states
• Consider the “Y” dual sites

• each has 3 configurations

• this choice fully determines the dimer covering

• But we have to make sure the Y-1 sites are singly 
covered.  Make a crude approximation:

• Prob(dimer) = 1- Prob(no dimer)= 1/3

• Prob(good Y-1) = 2/3 * 2/3 * 1/3 * 3 = 4/9

• Hence 

S ≈ 0.29 N kB

Wannier S ≈ 0.34 N kB

⌦ ⇡ 3N
✓
4

9

◆N

= eN ln(4/3)
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Spin (and water) Ice

• This simple NN AF Ising model is rather 
idealized

• You may expect that there are always 
perturbations that split this degeneracy and 
change the physics

• BUT...turns out that something similar 
happens in spin ice, which really seems to be 
an almost ideally simple material - by accident!
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Water ice

• Common “hexagonal” ice: tetrahedrally 
coordinated network of O atoms - a 
wurtzite lattice

• Must be two protons in each H2O 
molecule - but they are not ordered

2 Michel J.P. Gingras

crystalline symmetry of ice and the local hydrogen bonding requirement of the water
molecule [4].

Over the past ten years, a certain class of insulating magnetic materials in which
the configurational disorder in the orientations of the magnetic moments is precisely
the same as that of water ice have been the subject of numerous experimental and
theoretical studies. Because of their analogy with water ice, these systems have
been coined the name spin ice [5, 6, 7, 8, 9]. Most chapters in this book focus on
geometrically frustrated antiferromagnets. The main reason for the interest in frus-
trated antiferromagnets is the pursuit of novel quantum ground states with exciting
properties which, because of the increased quantum zero point motion caused by
the frustration, lack conventional semi-classical long-range Néel order. This chapter
differs in that the spin ices are frustrated Ising ferromagnets and where quantum
fluctuations do not play a significant role. Yet, experimental and theoretical studies
have revealed a great richness of equilibrium and non-equilibrium thermodynamic
behaviors in spin ice systems [9]. This chapter reviews some of the salient elements
of the spin ice phenomenology. It draws particular attention to the problem of water
ice and the semi-formal origin of the Ising nature of the magnetic moments in spin
ice materials, two topics that are not usually covered in detail in standard graduate
solid state textbooks. It also reviews in some detail the mean-field theory of spin
ices as this simple tool played a key role in uncovering the microscopic origin behind
the emergence of the ice rules in real dipolar spin ice materals. We end the chapter
with a brief discussion of research topics on spin ices that are of current interest.

Fig. 1.1. Left: Local proton arrangement in water ice, showing O2− ions (large
white circles) and protons (hydrogen ions, H+, small black circles). Each O2− is
tetrahedrally coordinated with four other O2−, with two near covalently bonded
protons, and two further hydrogen bonded protons. In the hexagonal phase of ice, Ih,
the low energy configurations obey the so-called Bernal-Fowler “ice rules” [10] where
each O2− oxide has “two-near” and “two-far” protons. Right: Same as left picture,
but where the position of a proton is represented by a displacement vector (arrow)
located at the mid-point of the O2−−O2− (oxide-oxide) bond. The “two-near/two-
far” Bernal-Fowler ice rule then translates into a “two-in/two-out” configuration
of the displacement vectors. The displacement vectors become the Ising magnetic
moments in spin ice (see Fig. 1.2).
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Ice entropy

• Giauque 1930’s measured the “entropy 
deficit” by integrating C/T from low T and 
comparing to high T spectroscopic 
measurements

July, 1936 THE HEAT CAPACITY OF ICE 1145 

made by Rossini2 and various equilibrium data, 
including those relating to the reactions3 

HgO + Hz = Hg + Hz0 
Hg + ' / O z  HgO 

indicated that the C,d In T for water did not 
give the correct entropy. That this was so be- 
came a certainty when Giauque and Ashley4 calcu- 
lated the entropy of gaseous water from its band 
spectrum and showed that an entropy discrep- 
ancy of about one calorie per degree per mole 
existed. They presumed this to be due to false 
equilibrium in ice at low temperatures. 

Water is a substance of such importance that 
we considered further experimental investigation 
to be desirable not only to check the above dis- 
crepancy but especially to see whether slow cool- 
ing or other conditions favorable to the attain- 
ment of equilibrium could alter the experimental 
result. 

Apparatus.-In order to prevent strains in the resistance 
thermometer when the water was frozen a double-walled 
calorimeter, Fig. 1, was constructed. The outside wall 
was of copper, 0.5 mm. thick, 4.4 cm. 0. d., and 9 cm. long. 
The inside copper wall, 0.5 mm. thick, was tapered, being 
3.8 cm. 0. d. a t  the bottom and 4.0 cm. 0. d. a t  the upper 
end. The top of the inner container was made from a thin 
copper sheet, 0.2 mm. thick, which prevented the trans- 
mission of strains to the resistance thermometer. The 
neck for filling the calorimeter was in the center of this 
sheet. A series of thin circular slotted vanes of copper 
were soldered to the inner container, and the assembly 
forced inside the outer tube. A heavy copper plate, 1 
mm. thick inside the inner wall, and 2 mm. thick between 
the walls, served as the bottom of both tubes. The ther- 
mocouple was soldered into tube D by means of Rose's 
metal. 

A resistance thermometer-heater of No. 40 double silk 
covered gold wire containing about 0.1% silver was wound 
on the outside of the calorimeter. The resistance was 310 
ohms at 290°K. and dropped to about 17 ohms at  G0K.  
The resistance thermometer was calibrated during the 
measurements by means of copper-constantan thermo- 
couple No. 16 which had been compared with a hydrogen 
gas thermometer.6 However one of the five parallel con- 
stantan wires in the thermocouple had accidentally been 
broken since the original calibration. This wire was dis- 
carded and after the completion of the measurements the 
thermocouple was compared with the oxygen and hydro- 
gen vapor pressure thermometers.6b The thermocouple 
was also checked against the melting point, 54.39"K. 
and higher transition point, 43.76'K., of oxygen.'' On 

(2) (a) (HzO), Bur. Standards J .  Research, 6, 1 (1931); (b) (HCI), 

(3) See summary by Eastman, Circular 6125, U. S. Dept. of 

(4) Giauque and Ashley, Phys. Rev. ,  4S, 81 (1933). 
( 5 )  (a) Giauque, Buffington and Schulze, THIS JOURXAL, 49, 2343 

(1927): (h)  Giauque, Johnston and Kelley, i b id . ,  49, 2867 (1927). 

J T  

ibid.,9, 883 (1932). 

Comm., Bur. of Mines (1929). 

the basis of these comparisons a small correction to the 
original calibration was readily made. 

Helium gas was introduced into the space between the 
two walls by means of a German silver tube, A. A similar 
German silver tube was soldered by means of Wood's 
metal into the cap, B. The sample, C, was transferred 
through this tube into the calorimeter, and helium gas at 
one atmosphere pressure admitted. The German silver 
tube was then heated and removed from the cap, leaving 
the hole sealed with Wood's metal. After the measure- 
ments on the full calorimeter had been completed, the 
calorimeter was heated to the melting point of the Wood's 
metal (72°C.) and the water completely pumped out with- 
out dismantling the apparatus. The heat capacity of the 
empty calorimeter was then 

The remainder of the 
heat capacity apparatus, 
the method of making the 
measurements and calcula- 
tions, and accuracy consid- 
erations were similar to 
those previously de- 
scribed.'".' 

Purification of Water,- 
Distilled water from the 
laboratory still was trans- 
ferred into the vacuum- 
tight purification apparatus 
constructed from Pyrex 
glass. The apparatus was 
evacuated to remove dis- 
solved gases, and flushed 
out several times with he- 
lium gas. The water was 
distilled into a receiving 
bulb, the first fraction being 
discarded The calorimeter 
had previously been at- 
tached to the purification 
system and evacuated. 
When sufficient water had 
collected in the receiving 
bulb, it was transferred into 

I measured. 

D 
Fig. 1.-Calorimeter 

the calorimeter. Helium gas a t  one atmosphere pressure 
was admitted to the calorimeter which was then sealed off 
as described above. 

A series of short heat capacity measurements were made 
in the temperature region immediately below the melting 
point in order to determine the pre-melting effect due to 
liquid-soluble solid-insoluble impurity. From these meas- 
urements it was calculated that the mole fraction of im- 
purity was three parts in a million, 

The Heat Capacity of Ice.-The results of the 
heat capacity measurements are given in Table I. 

The data are shown in Fig. 2. 
In the calculations one 1 5 O  calorie was taken 

as equal to 4.1832 international joules. The 
calorimeter contained 72.348 g. of ice. 

In order to allow time for the establishment of 
an equilibrium state in the solid, the ice was cooled 
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very slowly. The following are temperatures 
reached at  various times after the ice was frozen : 
0 hours, 273.1'; 12 hours, 246'; 37 hours, 203'; 
GO hours, 180'; 84 hours, 168'; 92 hours, 156'; 
108 hours, 105'; 120 hours, 91'; 156 hours, 90'. 
The sample was then cooled from 90 to 68' in 
about three hours and the heat capacity measure- 
ments of series I taken. Next the calorimeter 
was cooled to the temperatures of liquid hydrogen 
at  the following rate: 0 hours, 85'; 1.5 hours, 
72'; 2 hours, 60'; 2.5 hours, 56'; 7 hours, 39'; 
(liquid hydrogen evaporated) 17.5 hours, 49' ; 
22 hours, 50' (more liquid hydrogen added) ; 23 
hours, 41'; 27 hours, 13'. The measurements of 
series I1 were then made. 

I--- - 
I 

01 / I I I 
I 

0 80 160 240 
Temperature, OK. 

Fig. 2.-Heat capacity in calories per degree per mole 
of ice. 

During this series of measurements which ex- 
tended from 15'K. to the melting point, and 
covered a period of eighty hours, the calorimeter 
was under constant observation. To make cer- 
tain that no unusual thermal situation was pres- 
ent in the solid near the melting point, the heat 
of fusion was determined a t  the end of the above 
series of measurements. The value obtained, 
1436 cal./mole, agrees well with that which has 
been chosen for the entropy calculation. 

TABLE I 
HEAT CAPACITY OF ICE 

(Molecular weight, 18.0156) OOC. = 273.10"K. 
T,OR. AT C, cal./deg./mole Series 
16.43 1.403 0.303 I1 
18.37 1.729 .410 I1 
20.78 2.964 .528 I1 
24.20 3.815 .700 I1 
28.05 3.596 .883 I1 
31.64 3.578 1.OG5 I1 
35.46 4 073 1.251 I1 
39 62 4 242 1.440 IT 

43.96 
48.52 
52.98 
57.66 
62.63 
G7.83 
70.61 
73.01 
75.60 
78.51 
79.98 
81.44 
82.42 
83.72 
83.94 
86.66 
87.25 
89.20 
91.32 
91.93 
94.93 
95.85 
97.37 
99.57 

100.69 
104.69 
110.13 
115.84 
121.74 
127.54 
133.50 
139.48 
145.43 
151.43 
157.48 
163.52 
169.42 
175.36 
181.25 
187.20 
192.96 
199.11 
205.32 
211.56 
217.97 
224.36 
230.08 
236.19 
242.40 
249.31 
256.17 
262.81 
267.77 

4.469 1.641 i1 
4.571 1.837 i1 
4.361 2.014 i1 
5.041 2.203 11 
5.228 2.418 11 
4.910 2.612 11 
5.403 2.723 1 
5.737 2.821 11 
4 I 638 2.922 1 
4.991 3.016 11 
4.133 3.070 1 
5.538 3.115 111 
4.860 3.163 I v 
5.438 3.191 11 
3.765 3.199 1 
4.893 3.286 111 
4.756 3.336 I V  
5.557 3,389 11 
4.394 3.488 111 
4.651 3.532 IV 
5.233 3.649 11 
4.649 3.660 111 
6.234 3.724 IV 
4.778 3.814 11 
4.980 3.832 111 
5.497 3.985 11 
5.373 4.136 11 
6.031 4.315 11 
5.908 4.489 11 
5.813 4. fi55 11 
6.005 4.808 11 
5.952 4,978 11 
5.928 5.135 11 
6.240 5.306 11 
5.837 5.466 11 
5.851 5 .  G63 11 
5.908 
5.996 
5.678 
5.983 
5.658 
6.133 
6.309 
6.554 
6.200 
6.935 
6.068 
6.101 
6.795 
6.903 
6.591 
6.303 
4,465 

5.842 
(i ,007 
6.185 
6.359 
A .  530 
6.710 
6.935 
7.119 
7.326 
7.519 
7.711 
7.887 
8.048 
8.295 
8.526 
8.732 
8.909 

11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 

In the heat capacity measurements between 
85 and lOO'K., the attainment of temperature 
equilibrium in the solid was much less rapid than 
at other temperatures. This observation is of 
considerable interest and some of its implications 
will be discussed below. 

'fo study possible effects due to rapid cooling. 
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vaporization of water are so accurately known that 
further investigation was unnecessary. 

The heat of fusion of ice has been accurately 
determined by a number of workers. The meas- 
urements prior to 1913 have been critically sum- 
marized by Dickinson, Harper and Osborne,14 who 
also made a number of measurements of the heat 
of fusion both by an electrical method and by the 
method of mixtures. Dickinson and Osborne6 
measured the heat of fusion in an aneroid calo- 
rimeter, using electrical heating. The measure- 
ments in which energy was introduced electrically 
were recalculated by us on the basis of 1 int. 
joule = 4.1832 calories (15’). A weighted aver- 
age of all the reported values yields 1435.7 cal./ 
mole with an estimated accuracy of *0.9 cal./ 
mole, for the heat of fusion. 

Fiock16 has reviewed the measurements of the 
heat of vaporization of water and compared them 
with the results of determinations at  the Bureau 
of Standards16 extending down to 50’. All meas- 
urements were converted into international joules. 
Of the data considered by Fiock, those of Grif- 
fiths, of Smith and of Henning contained meas- 
urements in the neighborhood of 25’C. Giving 
equal weight to the result of each of the above 
three observers and t o  the value extrapolated 
from the Bureau of Standards measurements, 
and taking 1 calorie (15’) = 4.1832 int. joules, 
we obtained an average value of 10,499 * 3 
(av. dev.) calories/mole for the heat of vaporiza- 
tion of water a t  25’. 

The “I.C.T.” values for the heat capacity of 
liquid waterI7 were plotted against the logarithm 
of the absolute temperature and integrated 
graphically to obtain the entropy between 0 and 
25’. The value for the vapor pressure a t  25’ was 
also obtained from the “I.C.T.”lS Using Berthe- 
lot’s equation of state and thermodynamics it 
can be shown that the entropy correctionla to the 
ideal gas state is almost negligible in this case 
The critical constants18 used were Tc = 647.1°K. 
and P, = 217.7 atm. 

The entropy between 10 and 273.10’K. was 
obtained by graphical integration of the measured 
heat capacities. The entropy between 0 and 

(14) Dickinson, Harper and Osborne, Bull. U. S. Bur. Slandards, 

(15) Fiock, Bur. Standards J .  &search, 6, 481 (1930). 
(16) (a) Osborne, Stimson and Fiock, ibid., 6,  411 (1930); (b) 

(17) “International Critical Tables,” McGraw-Hill Book Co., 

(18) “I.  C. T.,” Vol. 111, p. 211. 
(19) “I. C. T.,”Vol.  I I I , p .  248. 

10, 235 (1014). 

Fiock and Ginnings, ibid., 8, 321 (1932). 

New York, Vol. V, 1926, p. 113. 

IO’K. was calculated by means of the Debye 
equation, using hv/k = 192. A summary of the 
entropy calculation is given in Table 111. 

TABLE rrr 
CALCULATION OF ENTROPY OF U~ATER 

O-1O0K., Debye function hv/k = 192 0.022 

Fusion 1435.7/273.10 ,5,257 
273.10-298.1OGK., graphical 1 ,580 

10-273. 10°K., graphical 9.081 

Vaporization 10499/298.10 35,220 
Correction for gas imperfection O,OfL? 
Compression R In 2.3756/760 -6.88Ci 

Cal./dcg./~iiole 44.28*0.05 

The value of the entropy given in Table I11 
may be compared with that calculated from 
spectroscopic data. Giauque and Ashley4 util- 
ized the preliminary molecular constants of water 
as given by Mecke and Baumann20 to determine 
the entropy of water. Later Gordon21 recaleu- 
lated the thermodynamic quantities for water 
using the revised moments of inertia of Freuden- 
berg and Mecke.22 He obtained So~gB.l = 45.10 
cal./deg./mole. The difference between the 
spectroscopic and calorimetric values is 0.82 
cal./deg. /mole. 

The Problem of the False Equilibrium in 
Ice.-To account for the discrepancy between 
the calorimetric and spectroscopic values for the 
entropy of water Giauque and Ashley‘ offered an 
explanation based on the assumption that the 
ortho and para molecular states, which are known 
to exist in gaseous water, had persisted in the 
crystalline state at  low temperatures. The situa- 
tion was assumed to be similar to that which ac- 
counts for the entropy discrepancy in the case of 
solid The ortho water was as- 
sumed to have non-polar clockwise and counter 
clockwise rotations in ice, since the dielectric con- 
stant of ice at  low temperatures corresponds to 
that of non-polar substances. This leads to a 
calculated discrepancy of 3/4R In 2 = 1.03 cal./ 
deg. /mole. 

We have had many interesting private discus- 
sions with Professor Linus Pauling who has con- 
sistently objected to the ortho-para explanation. 
During the course of the present investigation 
Pauling2a offered an alternative explanation based 

(20) Mecke and Baumann, (a) Nafuvwiss . .  20, 657 (1932); (b) 

(21) Gordon, J .  Chem. Phys. ,  2,65 (1934). 
(22) Freudenberg and Mecke, Z. Phrsik,  81,465 (1933). 
(23) Pauling, (a) personal communication; (b) THIS JOURNAL, S I B  

Phys .  Z., 89, 833 (1932). 
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vaporization of water are so accurately known that 
further investigation was unnecessary. 

The heat of fusion of ice has been accurately 
determined by a number of workers. The meas- 
urements prior to 1913 have been critically sum- 
marized by Dickinson, Harper and Osborne,14 who 
also made a number of measurements of the heat 
of fusion both by an electrical method and by the 
method of mixtures. Dickinson and Osborne6 
measured the heat of fusion in an aneroid calo- 
rimeter, using electrical heating. The measure- 
ments in which energy was introduced electrically 
were recalculated by us on the basis of 1 int. 
joule = 4.1832 calories (15’). A weighted aver- 
age of all the reported values yields 1435.7 cal./ 
mole with an estimated accuracy of *0.9 cal./ 
mole, for the heat of fusion. 

Fiock16 has reviewed the measurements of the 
heat of vaporization of water and compared them 
with the results of determinations at  the Bureau 
of Standards16 extending down to 50’. All meas- 
urements were converted into international joules. 
Of the data considered by Fiock, those of Grif- 
fiths, of Smith and of Henning contained meas- 
urements in the neighborhood of 25’C. Giving 
equal weight to the result of each of the above 
three observers and t o  the value extrapolated 
from the Bureau of Standards measurements, 
and taking 1 calorie (15’) = 4.1832 int. joules, 
we obtained an average value of 10,499 * 3 
(av. dev.) calories/mole for the heat of vaporiza- 
tion of water a t  25’. 

The “I.C.T.” values for the heat capacity of 
liquid waterI7 were plotted against the logarithm 
of the absolute temperature and integrated 
graphically to obtain the entropy between 0 and 
25’. The value for the vapor pressure a t  25’ was 
also obtained from the “I.C.T.”lS Using Berthe- 
lot’s equation of state and thermodynamics it 
can be shown that the entropy correctionla to the 
ideal gas state is almost negligible in this case 
The critical constants18 used were Tc = 647.1°K. 
and P, = 217.7 atm. 

The entropy between 10 and 273.10’K. was 
obtained by graphical integration of the measured 
heat capacities. The entropy between 0 and 

(14) Dickinson, Harper and Osborne, Bull. U. S. Bur. Slandards, 

(15) Fiock, Bur. Standards J .  &search, 6, 481 (1930). 
(16) (a) Osborne, Stimson and Fiock, ibid., 6,  411 (1930); (b) 

(17) “International Critical Tables,” McGraw-Hill Book Co., 

(18) “I.  C. T.,” Vol. 111, p. 211. 
(19) “I. C. T.,”Vol.  I I I , p .  248. 

10, 235 (1014). 

Fiock and Ginnings, ibid., 8, 321 (1932). 

New York, Vol. V, 1926, p. 113. 

IO’K. was calculated by means of the Debye 
equation, using hv/k = 192. A summary of the 
entropy calculation is given in Table 111. 

TABLE rrr 
CALCULATION OF ENTROPY OF U~ATER 

O-1O0K., Debye function hv/k = 192 0.022 

Fusion 1435.7/273.10 ,5,257 
273.10-298.1OGK., graphical 1 ,580 

10-273. 10°K., graphical 9.081 

Vaporization 10499/298.10 35,220 
Correction for gas imperfection O,OfL? 
Compression R In 2.3756/760 -6.88Ci 

Cal./dcg./~iiole 44.28*0.05 

The value of the entropy given in Table I11 
may be compared with that calculated from 
spectroscopic data. Giauque and Ashley4 util- 
ized the preliminary molecular constants of water 
as given by Mecke and Baumann20 to determine 
the entropy of water. Later Gordon21 recaleu- 
lated the thermodynamic quantities for water 
using the revised moments of inertia of Freuden- 
berg and Mecke.22 He obtained So~gB.l = 45.10 
cal./deg./mole. The difference between the 
spectroscopic and calorimetric values is 0.82 
cal./deg. /mole. 

The Problem of the False Equilibrium in 
Ice.-To account for the discrepancy between 
the calorimetric and spectroscopic values for the 
entropy of water Giauque and Ashley‘ offered an 
explanation based on the assumption that the 
ortho and para molecular states, which are known 
to exist in gaseous water, had persisted in the 
crystalline state at  low temperatures. The situa- 
tion was assumed to be similar to that which ac- 
counts for the entropy discrepancy in the case of 
solid The ortho water was as- 
sumed to have non-polar clockwise and counter 
clockwise rotations in ice, since the dielectric con- 
stant of ice at  low temperatures corresponds to 
that of non-polar substances. This leads to a 
calculated discrepancy of 3/4R In 2 = 1.03 cal./ 
deg. /mole. 

We have had many interesting private discus- 
sions with Professor Linus Pauling who has con- 
sistently objected to the ortho-para explanation. 
During the course of the present investigation 
Pauling2a offered an alternative explanation based 

(20) Mecke and Baumann, (a) Nafuvwiss . .  20, 657 (1932); (b) 

(21) Gordon, J .  Chem. Phys. ,  2,65 (1934). 
(22) Freudenberg and Mecke, Z. Phrsik,  81,465 (1933). 
(23) Pauling, (a) personal communication; (b) THIS JOURNAL, S I B  

Phys .  Z., 89, 833 (1932). 
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Pauling argument

• Pauling made a simple “mean field” estimate 
of the entropy due to randomness of the 
protons, which turns out to be quite 
accurate

2 Michel J.P. Gingras

crystalline symmetry of ice and the local hydrogen bonding requirement of the water
molecule [4].

Over the past ten years, a certain class of insulating magnetic materials in which
the configurational disorder in the orientations of the magnetic moments is precisely
the same as that of water ice have been the subject of numerous experimental and
theoretical studies. Because of their analogy with water ice, these systems have
been coined the name spin ice [5, 6, 7, 8, 9]. Most chapters in this book focus on
geometrically frustrated antiferromagnets. The main reason for the interest in frus-
trated antiferromagnets is the pursuit of novel quantum ground states with exciting
properties which, because of the increased quantum zero point motion caused by
the frustration, lack conventional semi-classical long-range Néel order. This chapter
differs in that the spin ices are frustrated Ising ferromagnets and where quantum
fluctuations do not play a significant role. Yet, experimental and theoretical studies
have revealed a great richness of equilibrium and non-equilibrium thermodynamic
behaviors in spin ice systems [9]. This chapter reviews some of the salient elements
of the spin ice phenomenology. It draws particular attention to the problem of water
ice and the semi-formal origin of the Ising nature of the magnetic moments in spin
ice materials, two topics that are not usually covered in detail in standard graduate
solid state textbooks. It also reviews in some detail the mean-field theory of spin
ices as this simple tool played a key role in uncovering the microscopic origin behind
the emergence of the ice rules in real dipolar spin ice materals. We end the chapter
with a brief discussion of research topics on spin ices that are of current interest.

Fig. 1.1. Left: Local proton arrangement in water ice, showing O2− ions (large
white circles) and protons (hydrogen ions, H+, small black circles). Each O2− is
tetrahedrally coordinated with four other O2−, with two near covalently bonded
protons, and two further hydrogen bonded protons. In the hexagonal phase of ice, Ih,
the low energy configurations obey the so-called Bernal-Fowler “ice rules” [10] where
each O2− oxide has “two-near” and “two-far” protons. Right: Same as left picture,
but where the position of a proton is represented by a displacement vector (arrow)
located at the mid-point of the O2−−O2− (oxide-oxide) bond. The “two-near/two-
far” Bernal-Fowler ice rule then translates into a “two-in/two-out” configuration
of the displacement vectors. The displacement vectors become the Ising magnetic
moments in spin ice (see Fig. 1.2).
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⌅Si = êi�i

Classical realization: spin ice

• Rare earth pyrochlores Ho2Ti2O7, Dy2Ti2O7: 
spins form Ising doublets, behaving like 
classical vectors of fixed length, oriented 
along local easy axes

ê0 = (1, 1, 1)/
p
3 ê1 = (1,�1,�1)/

p
3 ê2 = (�1, 1,�1)/

p
3 ê3 = (�1,�1, 1)/

p
3
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• Exchange (due largely to dipolar 
interactions) is ferromagnetic

• Prefers “2 in - 2 out” states

�J ⌅Si · ⌅Sj =
J

3
�i�j

same as Ising 
antiferromagnet

“ice rules”

Spin Ice (simplified)

êi · êj = �1/3 i 6= j
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Entropy

• The integrated specific heat 
of Dy2Ti2O7 showed explicitly 
that the entropy did not 
vanish at low temperature 

• quantitative agreement with 
Pauling’s 1935 estimate 

• We call this situation, with 
spins fluctuating for kT<<J, a 
classical spin liquid

A.P. Ramirez et al, 1999
Thursday, June 14, 12



Spin liquid physics

• The spin liquid fluctuations are a form of 
“artificial magnetostatics” (classical)

• ice rules: divergence free condition

⇥⇥ ·⇥b = 0

⇤S � ⇤b
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Spin liquid physics

• The spin liquid fluctuations are a form of 
“artificial magnetostatics” (classical)

• ice rules: divergence free condition

⇥⇥ ·⇥b = 0

⇤S � ⇤b

field lines = loops or strings tracing spin configurations
Can we see effects in long-distance correlations?
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Structure Factor
• Static neutron structure factor 

• Typically, S(k) is used to distinguish ordered and 
paramagnetic states via Bragg peak

• Long range order: |i-j|≫ξ

• Short range order

h~Si · ~Sji ! h~Sii · h~Sji ⇠ |MQ|2 cos[Q · (ri � rj)]

S(k) ⇠ |MQ|2�(k �Q)

S(k) ⇠ A

(k �Q)2 + ⇠�2

Sµ⌫(k) =
X

i,j

hSµ
i S

⌫
j ieik·(ri�rj)
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Structure Factor

• In spin ice, there is no incipient ordered 
state: feature in correlations is more subtle 
than a peak

• Coarse-graining argument: correlations are 
governed by effective free energy

• Need to calculate 

He� =
�

d3r
c

2
|⌃b|2

hbµ(r)b⌫(r0)i =
1

Z

Z
[d~b(r)] �[~r ·~b] bµ(r)b⌫(r0) e��Heff [~b]
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Structure factor

• Fourier 

• Constraint

• Structure factor

~r ·~b = 0

He↵ =
X

k

c

2
|~bk|2

b
z

= �(k
x

b
x

+ k
y

b
y

)/k
z
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2
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=

✓
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Gaussian integrals

• General rule

• Proved in many many references...

�H =
1

2

X

ij

Kijxixj

hxixji =
1

Z

Z
[
Y

k

dxk]xixje
��H

=
⇥
K�1

⇤
ij
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Proof

• Generating function

• Shift

• Result

• Differentiating twice gives

he
P

i qixii = 1

Z

Z
[
Y

k

dx

k

]e�
1
2

P
ij Kijxixj+

P
i qixi

xi ! xi +
X

j

[K�1]ijqj

he
P

i qixii = e
1
2

P
ij [K

�1]ijqiqj

hxixji =
⇥
K

�1
⇤
ij
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Gaussian integrals

• General rule: invert the quadratic form

• With some algebra

• We could have guessed this!
X

µ

kµhb⇤µ(k)b⌫(k)i = 0

hb⇤µ(k)b⌫(k)i =
kBT

c

0

@1 + k2
x

k2
z

k
x

k
y

k2
z

k
x

k
y

k2
z

1 +
k2
y

k2
z

1

A
�1

hb⇤µ(k)b⌫(k)i =
kBT

c

✓
�µ⌫ � kµk⌫

k2

◆
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Power law correlations

• Neutrons

• Measured near a reciprocal lattice vector

• Not a peak but a singularity

S(k) =
X

µ⌫

(�µ⌫ � kµk⌫
k2

)Sµ⌫(k)

S(K002 + k) = S
xx

(K + k) + S
yy

(K + k)

⇡ 2�
k2
x

+ k2
y

k2
= 1 +

k2
z

k2
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 pinch points in Ho2Ti2O7

experiment theory

vanishes for kz=0

T. Fennell et al, 2009

S(K002 + k) ⇠ k2z
k2

kz
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Quality of singularity

pinch point sharpens 
with lower T

“Correlation length” for 
rounding of pinch point

Roughly ξ~ e1.8K/T
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Defects

• The ice rules constraint is not perfectly 
enforced at T>0

• Primitive defect is a “charged” tetrahedron 
with ∑i σi = ±1.
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Defects

• The ice rules constraint is not perfectly 
enforced at T>0

• Primitive defect is a “charged” tetrahedron 
with ∑i σi = ±1.

costs energy 2Jeff
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What to call it?

• Consider Ising “spin”

• Single flipped tetrahedron has SzTOT=±1/2

• “spinon”? (M. Hermele et al, 2004) 

• But Sz is not very meaningful in spin ice

• Use magnetic analogy: magnetic monopole

Sz
TOT =

X

i

�i =
1

2

X

t

Sz
t
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Magnetic monopoles
• Defect tetrahedra are sources and sinks of 

“magnetic” flux

• It is a somewhat non-local object

• Must flip a semi-infinite string of spins to create 
a single monopole

• Note similarity to 1d domain wall

div b = 1

Castelnovo et al, 2008
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String

stolen (by somebody else on youtube) 
from Steve Bramwell

• Note that the string is 
tensionless because the 
energy depends only on 
∑i σi on each tetrahedra

• In an ordered phase, 
this would cost 
energy

• Once created, the 
monopole can move by 
single spin flips
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Monopoles are “real”

• Monopoles actually are sources for 
(internal) magnetic field

• Magnetization M ∝ b

• hence div M ~ div H ~ q δ(r)

• Actual magnetic charge is small

Castelnovo et al, 2008
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Monopoles for 
dumbbells

Thursday, June 14, 12



Dumbbell model
ad magnetic charge ±q q = µ/ad

potential Vqq =
µ0

4⇡

qaqb
rab

µ ⇡ 10µBDy, Ho

=
µ0

4⇡

µ2

a2d

1

rab

Vee =
1

4⇡✏0

e2

r
Coulomb
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Dumbbell model

ratio Vee/Vqq =
e2

µ2

a2d
✏0µ0

=
e2c2a2d
µ2

✓
1

✏0µ0
= c2

◆

=
e2c2a2d
100µ2

B

✓
µ2
B =

e~
2me

◆

=
e2c2a2d(2me)2

100e2~2

=
a2d

25↵2a20

✓
a0 =

~
mec↵

◆

⇡ 56000

Magnetic Coulomb interaction is very weak, but 
comparable to kBT at T ~ 1K
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Experiment/Theory

• Some nice evidence from magnetic 
relaxation

• Rapid rise below 2K due to Coulomb!

140
IV Constrained Monopoles

Dynamics
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Figure IV.4: Deconfined monopoles: The experimental data of Snyder & al. [Sny04b]

(× and dashed line) are compared with different Arrhenius functions. Top: The quasi-

plateau region is in quantitative agreement with a thermally activated process with energy

barrier Ep = 2 Jeff (red line) whereas the spin freezing is well reproduced with Ep ≈ 6 Jeff

(green line), but no unique function can fit the whole temperature window. Bottom: The

characteristic excitation is the creation of a unique defect (Ep = 2 Jeff, red line) rather

than a single spin flip (Ep = 4 Jeff, grey line). The fit is improved at higher temperature

if we include the energy scales due to double defects in a modified Arrhenius law (blue

line).

Figure from L. Jaubert’s thesis

reasonable fit of 
activated monopoles

⌧ ⇠ eEm/kBT

magnetic field. The ac data taken in a magnetic field show
that a field enhances T f , which is consistent with the behav-
ior seen at the higher temperature spin-freezing.8 Unlike the
higher temperature feature, a reasonable extrapolation of T f
to very long times does approach the bifurcation temperature
seen in magnetization measurements. However, the fre-
quency dependence of T f cannot be fit to an Arrhenius law
( f! f 0e"Ea /kBT f), suggesting that this relaxation is not sim-
ply thermally activated. Such non-Arrhenius behavior has
previously been observed in the dilute Ising spin system
LiHo1"xYxF4 ,29 and is consistent with the previously sug-
gested importance of quantum spin relaxation in this
system,9,25
To further characterize spin relaxation time in Dy2Ti2O7 ,

we also measured !!( f ) at temperatures from 0.8 to 1.8 K,
as shown in Fig. 7. Like the higher temperature data, !!( f )

displays a single, relatively sharp peak which implies that
there is a narrow range of relaxation times or effectively a
single characteristic relaxation time, ", for the spins in zero
field #where 1/" is the frequency of the maximum in !!( f ) at
a given temperature$. The changing peak position with de-
creasing temperature reflects the evolution of "(T), and our
characterization of "(T) down to below T!1 K allows us to
understand the origins of the two different spin freezing tran-
sitions observed in the ac susceptibility. As shown in Fig. 8
and described previously,10,25 "(T) displays thermally acti-
vated behavior at high temperatures which changes to a
much weaker temperature dependence at Tcross%13 K. Our
data show that the strong temperature dependence then re-
emerges below T ice , as spin–spin correlations develop.10
The higher temperature activated relaxation is responsible
for the spin freezing observed at T %16 K in the higher
frequency ac susceptibility data. The crossover to relatively
weak temperature dependence results in the absence of freez-
ing at lower frequencies until "(T) begins to rise sharply
again at the lowest temperatures. This rapid increase of "
with decreasing temperature is actually faster than would be
expected for activated behavior &as shown in the inset to Fig.
8', which we attribute to the increasingly strong correlations
between the spins with decreasing temperature requiring sev-
eral spins to change orientation in order to follow the ac
field.

IV. DISCUSSION

With the above-presented data, we can contrast the T
#T ice spin-freezing with the well-studied transition to a spin

FIG. 6. &Color online' The frequency of the spin freezing tem-
perature below T ice . Note that the data do not follow Arrhenius
behavior and that the application of a magnetic field increases the
freezing temperature. The open symbols represent zero field data
taken in the dilution refrigerator while the closed symbols represent
the higher temperature data taken on the PPMS cryostat.

FIG. 7. &Color online' The imaginary part of the ac susceptibil-
ity as a function of frequency at low temperatures in zero applied
field. The prominent single peak in the data suggests that they are
well-described by a single characteristic relaxation time.

FIG. 8. &Color online' The temperature dependence of the char-
acteristic spin relaxation time. The open symbols represent zero
field data taken in the dilution refrigerator while the closed symbols
represent the higher temperature data taken on the PPMS cryostat.
The inset shows low temperature (T#4 K) data plotted as a func-
tion of 1/T which shows the non-Arrhenius behavior at low tem-
peratures. Note that "(T) is increasing at a rate which is faster than
exponential in 1/T , i.e., the increase is faster than what would be
expected for simple thermal activation. Although the data in the
inset appear to go asymptotically to a straight line at our lowest
temperatures, our frequency range does not allow us to explore
whether it becomes purely Arrhenius at lower temperatures than
those at which we can take data.

J. SNYDER et al. PHYSICAL REVIEW B 69, 064414 &2004'

064414-4

Snyder et al, 2004
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Experiment/Theory

• Theory including Coulomb interactions 
(Monte Carlo):

• Rise is due to binding of monopole-
antimonopole pairs

NATURE PHYSICS DOI: 10.1038/NPHYS1227 LETTERS
a

b

Figure 1 | Spin-ice structure and emergence of monopoles. a, The
magnetic ions (Ho3+ or Dy3+) lie on the sites of the pyrochlore lattice and
are constrained to the bonds of the dual diamond lattice (dashed lines).
Local topological excitations 3 in–1 out or 3 out–1 in correspond to magnetic
monopoles with positive (blue sphere) or negative (red sphere) charges
respectively. b, The diamond lattice provides the skeleton for the network
of Dirac strings with the position of the monopole restricted to the vertices.
The orientation of the Dirac strings shows the direction of the local field
lines in H.

anArrhenius law ⌧ =⌧0 exp(2 Jeff/kBT ), as shownby the red curve in
Fig. 2. The timescale ⌧0 is fixed by fitting to the experimental time
at 4 K with Jeff = 1.11K, the value estimated for Dy2Ti207 (ref. 7).
2 Jeff is the energy cost of a single, free topological defect in the
nearest-neighbour approximation and is half that for a single spin
flip. The calculation fits the data over the low-temperature part
of the quasi-plateau region, where one expects a significant defect
concentration without any double defects (4-in or 4-out), and gives
surprisingly good qualitative agreement at lower temperature, as
the concentration decreases. Although still in the tunnelling regime,
the plateau region corresponds to high temperature for the effective
Ising system. Good agreement here provides a stringent test and any

Temperature (K)

1

0 3 6 9 12 15 18

τ
(s

)

10¬4

10¬3

10¬2

10¬2

10¬1 10¬1

1

0 1 2 3

Figure 2 | Relaxation timescales ⌧ in Dy2Ti2O7: experiment and
simulation. The experimental data (crosses) are from Snyder et al.3. The
Arrhenius law (red line) represents the free diffusion of topological defects
in the nearest-neighbour model. The relaxation timescale of the Dirac
string network driven by Metropolis dynamics of magnetic monopoles has
been obtained for fixed chemical potential (pink filled triangles) and with µ

varying slowly to match the defect concentration in dipolar spin ice (blue
filled circles). The temperature scale is fixed without any free parameters.
Inset: The same data shown in the low-temperature region.

theory not fitting must be discarded. The above expression clearly
does a good job, enabling us to equate ⌧0 with the microscopic
tunnelling time. This test therefore already provides very strong
evidence for the fractionalization ofmagnetic charge2 and the diffu-
sion of unconfined particles.However, this (or any other) Arrhenius
function ultimately fails, underestimating the timescale at very low
temperature: although it is possible to fit the data reasonably below
2K by a single exponential function by varying the barrier height,
simultaneous agreement along the plateau and at lower temperature
is impossible. The role of the missing Coulomb interaction is there-
fore clear: although non-confining, it must considerably increase
the relaxation timescale by modifying the defect concentration and
slowing downdiffusion through the creation of locally boundpairs.

We have tested this idea by directly simulating a Coulomb gas of
magnetically charged particles (monopoles), in the grand canonical
ensemble, occupying the sites of the diamond lattice. The magnetic
charge is taken as q

i

= ±q. In the grand canonical ensemble, the
chemical potential is an independent variable, of which the value in
the correspondingmagnetic experiment is unknown. In a first series
of simulations, we have estimated it numerically by calculating
the difference between the Coulomb energy gained by creating
a pair of neighbouring magnetic monopoles and that required
to produce a pair of topological defects in the dipolar spin-ice
model, with parameters taken from ref. 7, giving a configurationally
averaged estimate µ/kB = 8.92K. In a second series of simulations,
µ was taken as the value required to reproduce the same defect
concentration as in a simulation of dipolar spin ice at temperature
T . Here, µ varied only by 3%, with the same mean value as
in the first series, showing that our procedure is consistent. The
chemical potential used is thus not a free parameter. As the
Coulomb interaction is long-ranged, we treat a finite system
using the Ewald summation method20,21. The monopoles hop
between nearest-neighbour sites through the Metropolis Monte
Carlo algorithm, giving diffusive dynamics, but with a further local
constraint: in the spin model a 3 in–1 out topological defect can
move at low energy cost by flipping one of the 3-in spins, the
direction of the out-spin being barred by an energy barrier of
8 Jeff. An isolated monopole can therefore hop to only 3 out of
4 of its nearest-neighbour sites, dictated by an oriented network
of constrained trajectories similar to the ensemble of classical

NATURE PHYSICS | VOL 5 | APRIL 2009 | www.nature.com/naturephysics 259
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Order by Disorder
• In spin ice, the ground state degeneracy seems to 

prevent an ordered phase forming

• Actually, this is not so obvious at low but non-
zero temperature

• In fact, many models with ground state 
degeneracy break that degeneracy at T>0 due to 
fluctuations

• “Order by disorder”, due to J. Villain

• Idea: free energy of states is generally different 
once fluctuations are included
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Domino Model

1263

Order as an effect of disorder

J. Villain (*), R. Bidaux, J.-P. Carton and R. Conte

DPh-G/PSRM, CEN de Saclay, B.P. N° 2, 91190 Gif-s/Yvette, France

(Reçu le 9 avril 1980, révisé le 3 juillet, accepté le Il juillet 1980)

Résumé. 2014 On considère un modèle d’Ising frustré généralisé sur un réseau bidimensionnel. Ce modèle est para-
magnétique à température nulle mais ferromagnétique pourvu que 0  T  Tc. On étudie également l’effet de
la dilution sur ce système, et l’on montre que l’ordre à longue distance est rétabli dans le modèle dilué sous certaines
conditions de concentration, température et interactions qui sont discutées en comparaison avec la percolation
usuelle.

Abstract. 2014 A generalized frustrated Ising model on a two-dimensional lattice is considered. This model is para-
magnetic at zero temperature but ferromagnetic provided 0  T  Tc. The effect of dilution on this system is
also investigated, and long range order is shown to be restored in the dilute model under certain conditions involving
concentration, temperature and interactions which are discussed in comparison with usual percolation.

J. Physique 41 (1980) 1263-1272 NOVEMBRE 1980, : 

Classification
Physics Abstracts
75.10H

1. Introduction. - A few theoretical models are
known to have the following unusual property :
they exhibit no long range order when the tempera-
ture T is strictly zero, whereas they do at low but
finite temperature. An important example is the

Ising model on the f.c.c. lattice with antiferromagnetic
interactions between nearest neighbours. Computer
simulations have detected a first order transition in
this model [1].
A similar effect can be derived in a generalized

version of the domino model invented by André
et al. [2], and defined in the next section. This model
does exhibit long range order at low temperature
and not at T = 0, as will be seen in section 3. The
effect of random impurities at frozen positions is

investigated in the following sections. It will be shown
that, in certain cases, they can restore order (e.g.
ferromagnetic order). Thus the unexpected effect
of both thermal disorder and quenched stoichiometric
disorder is, in certain exceptional systems, to restore
magnetic order ! 

2. The domino model. - The domino model is
an Ising model on a rectangular lattice with two kinds
of ions A, B (Fig. 1) forming alternating chains
parallel to Ov. There are 3 interactions Jpp, JBB,

Fig. 1. - The domino model and one of its ground states. Ferro-
magnetic bonds are full lines, antiferromagnetic bonds are dashed
lines.

JAB between nearest neighbours. A ferromagnetic
interaction JAA &#x3E; 0 and an antiferromagnetic inter-
action JBB  0 will be assumed, so that the model
is frustrated [4]. Periodic boundary conditions will
be assumed, so that the number N" of chains is even
as well as the number N’ = N/N" of sites per chain.
André et al. [2] considered a restricted model

with JAA = JAB. The model defined here is more
realistic since the Hamiltonian has the symmetry
of the problem.
Throughout this paper it will be assumed that

(*) Département de Recherche Fondamentale, Laboratoire de
diffraction neutronique, CEN, 85X, 38041 Grenoble Cedex, France.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:0198000410110126300

JAA, JAB ferromagnetic

JBB antiferromagnetic

0 < JAB < |JBB| < JAA

• Ground states are FM A chains and AF B 
chains, with 2N’’ degeneracy

N’

N’’
H = �1

2

X

ij

Jij�i�j

J. Villain et al, J. Physique 41, 1263 (1980).
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Order

• However, one can show that the model has 
a phase transition (by exact solution)

• Evidently it is ordered at low T despite the 
degeneracy - this is due to fluctuations.

• Let’s understand this in some simple limits

Thursday, June 14, 12



Very low T

• kBT << JAA, |JBB|, JAB : only rare excitations 
within each chain

• Ask: is there any preference for 
successive A chains to be aligned vs anti-
aligned?

• Do this by “integrating out” B chain 
between each pair of A chains

P [{�i2A}] =
1

Z

X

�j2B

e��H
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Very low T

• Two cases: 1265

Fig. 2. - Excited state of the domino model. Excitation (a) has
lower energy than excitation (b). This produces an effective ferro-
magnetic coupling between A chains if JAA &#x3E; 1 JBB 1.

energy 4 1 JBB 1 and their number is v, which leads
to the approximate partition function of the B chain :

Hence

One can notice that the partition function per spin
of the infinite Ising chain with antiferromagnetic
exchange 2 JBB between neighbouring spins, in the

presence of a uniform applied field H, is given by

and that, to first order in exponential terms at low
temperature

as could be expected.
Taking advantage once more of the low tempera-

ture limit, an alternative form of (3 . 5) is :

where

so that the effective Hamiltonian :Ieeff defined by
(3.4) is seen to be a sum of interactions - 2 J’ S.f Sf’

between facing spins of two neighbouring A columns,
which is justified only at low temperature. This result
is so simple because ZF/ZAF is expressible as a v

power.
Thus, eliminating B spins amounts to creating an

effective horizontal interaction J’ between spins
located on neighbouring A chains. Another ef’ect,
which is derived in Appendix A, is a renormalization
of the intra-chain interaction JAA which should be
replaced by (JAA + bJ AA) with

Therefore, the system of A spins reduces at low
temperature to a rectangular Ising model with inter-
actions J’and J" = JAp + ÔJAA between nearest

neighbours. Its average magnetization MA per site
is given by the standard formula [7] :

Formula (3.9) shows that the A system is ferro-
magnetic at low temperature T, and mA takes the
limit value 1 when T goes to zero. Since mA is zero
at T = 0 it may be helpful to consider the effect of
the stage at which the thermodynamic limit is carried
out. What we have proved in this section is :

However it can easily be checked that the limits
cannot be interchanged, in contrast with the non-
frustrated case JAA, JBB &#x3E; 0 :

in agreement with section 2. , 

As a concluding remark to this section, one may
note that the average magnetization mB per site of a B
chain can be deduced from (3.6) : in the low tempera-
ture limit each site of the chain undergoes a uniform
applied field 4 JAB and one finds :

Comparison with (3.9) shows that the net magne-
AMA-t-Wp tization per site m =MA + MB may have two types of

LE JOURNAL DE PHYSIQUE. 2014 T. 41, N° 11, NOVEMBRE 1980
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of the infinite Ising chain with antiferromagnetic
exchange 2 JBB between neighbouring spins, in the

presence of a uniform applied field H, is given by

and that, to first order in exponential terms at low
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so that the effective Hamiltonian :Ieeff defined by
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between facing spins of two neighbouring A columns,
which is justified only at low temperature. This result
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Thus, eliminating B spins amounts to creating an
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Therefore, the system of A spins reduces at low
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is given by the standard formula [7] :

Formula (3.9) shows that the A system is ferro-
magnetic at low temperature T, and mA takes the
limit value 1 when T goes to zero. Since mA is zero
at T = 0 it may be helpful to consider the effect of
the stage at which the thermodynamic limit is carried
out. What we have proved in this section is :

However it can easily be checked that the limits
cannot be interchanged, in contrast with the non-
frustrated case JAA, JBB &#x3E; 0 :

in agreement with section 2. , 

As a concluding remark to this section, one may
note that the average magnetization mB per site of a B
chain can be deduced from (3.6) : in the low tempera-
ture limit each site of the chain undergoes a uniform
applied field 4 JAB and one finds :

Comparison with (3.9) shows that the net magne-
AMA-t-Wp tization per site m =MA + MB may have two types of
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Hence

One can notice that the partition function per spin
of the infinite Ising chain with antiferromagnetic
exchange 2 JBB between neighbouring spins, in the

presence of a uniform applied field H, is given by

and that, to first order in exponential terms at low
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as could be expected.
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(3.4) is seen to be a sum of interactions - 2 J’ S.f Sf’

between facing spins of two neighbouring A columns,
which is justified only at low temperature. This result
is so simple because ZF/ZAF is expressible as a v
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Thus, eliminating B spins amounts to creating an

effective horizontal interaction J’ between spins
located on neighbouring A chains. Another ef’ect,
which is derived in Appendix A, is a renormalization
of the intra-chain interaction JAA which should be
replaced by (JAA + bJ AA) with

Therefore, the system of A spins reduces at low
temperature to a rectangular Ising model with inter-
actions J’and J" = JAp + ÔJAA between nearest

neighbours. Its average magnetization MA per site
is given by the standard formula [7] :

Formula (3.9) shows that the A system is ferro-
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B partition function

• We can place the domain wall in N’/2 
places

• This prefers ferromagnetic ordering

• Effectively this is like a FM exchange
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• Orders if 

1265

Fig. 2. - Excited state of the domino model. Excitation (a) has
lower energy than excitation (b). This produces an effective ferro-
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to the approximate partition function of the B chain :

Hence

One can notice that the partition function per spin
of the infinite Ising chain with antiferromagnetic
exchange 2 JBB between neighbouring spins, in the

presence of a uniform applied field H, is given by

and that, to first order in exponential terms at low
temperature

as could be expected.
Taking advantage once more of the low tempera-

ture limit, an alternative form of (3 . 5) is :

where

so that the effective Hamiltonian :Ieeff defined by
(3.4) is seen to be a sum of interactions - 2 J’ S.f Sf’

between facing spins of two neighbouring A columns,
which is justified only at low temperature. This result
is so simple because ZF/ZAF is expressible as a v

power.
Thus, eliminating B spins amounts to creating an

effective horizontal interaction J’ between spins
located on neighbouring A chains. Another ef’ect,
which is derived in Appendix A, is a renormalization
of the intra-chain interaction JAA which should be
replaced by (JAA + bJ AA) with

Therefore, the system of A spins reduces at low
temperature to a rectangular Ising model with inter-
actions J’and J" = JAp + ÔJAA between nearest

neighbours. Its average magnetization MA per site
is given by the standard formula [7] :

Formula (3.9) shows that the A system is ferro-
magnetic at low temperature T, and mA takes the
limit value 1 when T goes to zero. Since mA is zero
at T = 0 it may be helpful to consider the effect of
the stage at which the thermodynamic limit is carried
out. What we have proved in this section is :

However it can easily be checked that the limits
cannot be interchanged, in contrast with the non-
frustrated case JAA, JBB &#x3E; 0 :

in agreement with section 2. , 

As a concluding remark to this section, one may
note that the average magnetization mB per site of a B
chain can be deduced from (3.6) : in the low tempera-
ture limit each site of the chain undergoes a uniform
applied field 4 JAB and one finds :

Comparison with (3.9) shows that the net magne-
AMA-t-Wp tization per site m =MA + MB may have two types of
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Order?

• Estimate

• 1d Ising

• Entropy

• Together 
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Thus the A spins are ferromagnetically ordered!
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Continuous Spins

• Actual strictly Ising systems are rather rare 
in magnets, but similar phenomena can 
occur for continuous spins

• Example: frustrated square lattice “XY” AF - 
spins are unit vectors in the plane

VOLUME 62, NUMBER 17 PHYSICAL REVIEW LETTERS 24 APRIL 1989

Ordering Due to Disorder in a Frustrated Vector Antiferromagnet
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(Received 22 August 1988)

In many continuous spin systems, competing interactions give nontrivial degeneracies of the classical
ground states. Degeneracy-breaking free-energy terms arise from thermal (or quantum) Iluctuations,
which select for collinear states, and from dilution, which selects for "anticollinear" (yet long-range or-
dered) states. They are explicitly computed for an XY square-lattice antiferromagnet dominated by
second-neighbor antiferromagnetic exchange. The predicted phase diagram agrees qualitatively with
simulations.

PACS numbers: 75.40.Cx, 64.60.Cn, 75.25.+z, 75.50.Kj

Many periodic vector spin systems with competing ex-
change couplings have nonunique (classical) antiferro-
magnetic ground states: These form a continuous mani-
fold of degenerate states including not only the states
trivially related by the global rotational symmetry, but
additional sets of states related by applying different ro-
tations to the various antiferromagnetic sublattices. '
There is a large class of such systems: many spinels;

all face-centered-cubic (fcc) antiferromagnets including
type-I systems' (e.g. , y-Mn), type-II systems (e.g.,
MnO), type-III systems (e.g. , Cd~ Mn Te for larger
x), ' and possibly Cu nuclear spins; triangular antifer-
romagnets (possibly stacked) ' bcc type-II (e.g. ,
Ca3Fe2Ge30~2 garnet) ' dipolar-coupled spins on a
honeycomb lattice;' ' and fully frustrated cubic sys-
tems. ' In addition, they may be realized in certain su-
perconducting arrays at particular rational values of Aux
per plaquette.
When diluted by substituting nonmagnetic impurities,

such systems are supposed to become spin glasses: e.g.,
Cd] —~Mn~ Te, a diluted magnetic semiconductor '

where the Mn ions form a diluted fcc lattice with well
understood antiferromagnetic exchange constants. ' Ex-
perimentally, at p=0.4 this system is spin-glass-like'
while at p =0.7 it shows strong (but still local) antifer-
romagnetic order. ' ' Part of the motivation of this
work is to distinguish the spin glass from other phases
with random-field-like disorder which might be present
near p =1.
Not surprisingly, perturbations —thermal Auctuations,

quantum Auctuations, or dilution —lift these degenera-
cies and select specific states, reducing the continuous
degeneracy to a discrete one. ' ' I will call this "order-
ing due to disorder" ' by analogy to the Ising case.
In this Letter I argue that, in exchange-coupled sys-

tems, thermal and quantum disorder favor collinear
states, wherein spins are aligned parallel or antiparallel
to a single direction (which itself remains free to rotate);
but random dilution favors the least collinear states,
which I will call "anticollinear. " In addition, random di-

lution often makes effective "random exchange fields"
coupling to the discrete (but not the rotational) sym-
metries like a random field. These effects all compete,
yielding two or more antiferromagnetic phases. '
In the rest of the Letter, I will outline the general ar-

guments, and display the specific calculations for a 2D
XYsystem with second-neighbor exchange, ' the simplest
possible model with both rotational symmetry and non-
trivial continuous degeneracy. The rich phase diagram
predicted for this case is consistent with Monte Carlo re-
sults. "
Model system. —Let us take 4'Y spins on a square lat-

tice (lattice constant =1) with Hamiltonian=
2 g;IJ~Icos(8; —81), where JJ =J~ (J2) for nearest

(second-nearest) neighbors. If f Jq [/f J2 [ (2, the sys-
tem in its ground state breaks up into two square
(J2XJ2) sublattices, a and b, each ordered antifer-
romagnetically (Fig. 1). To label the ground states,
choose one reference spin from each sublattice, say at
[0,0] and [0,1] with angles 8, and 8b. Then p—:8,—8b
parametrizes a nontrivial "degeneracy, " since the
ground-state energy Ep= 2N

~
J2 ~

is independent of p.
This model might be realized in a two-layer square ar-

ray of superconducting islands with one quantum of Aux
per cell, in two layers of MnTe in CdTe (fabricable by
molecular-beam epitaxy), or in two adjacent square
Cu02 layers centered on each other (as in some high-T,
superconductors), where J& is a small interlayer ex-

FIG. l. Ground state on square lattice with J2 & ——,
~ J& ~
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Thermal fluctuations

• Consider expansion around an arbitrary 
ground state
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Thermal fluctuations

• Consider expansion around an arbitrary 
ground state

VOLUME 62, NUMBER 17 PHYSICAL REVIEW LETTERS 24 APRIL 1989

Ordering Due to Disorder in a Frustrated Vector Antiferromagnet

Christopher L. Henley
Department of Physics, Cornell University, Ithaca, New York 14853

and Department of Physics, Boston University, Boston, Massachusetts 02215t'
(Received 22 August 1988)

In many continuous spin systems, competing interactions give nontrivial degeneracies of the classical
ground states. Degeneracy-breaking free-energy terms arise from thermal (or quantum) Iluctuations,
which select for collinear states, and from dilution, which selects for "anticollinear" (yet long-range or-
dered) states. They are explicitly computed for an XY square-lattice antiferromagnet dominated by
second-neighbor antiferromagnetic exchange. The predicted phase diagram agrees qualitatively with
simulations.

PACS numbers: 75.40.Cx, 64.60.Cn, 75.25.+z, 75.50.Kj

Many periodic vector spin systems with competing ex-
change couplings have nonunique (classical) antiferro-
magnetic ground states: These form a continuous mani-
fold of degenerate states including not only the states
trivially related by the global rotational symmetry, but
additional sets of states related by applying different ro-
tations to the various antiferromagnetic sublattices. '
There is a large class of such systems: many spinels;

all face-centered-cubic (fcc) antiferromagnets including
type-I systems' (e.g. , y-Mn), type-II systems (e.g.,
MnO), type-III systems (e.g. , Cd~ Mn Te for larger
x), ' and possibly Cu nuclear spins; triangular antifer-
romagnets (possibly stacked) ' bcc type-II (e.g. ,
Ca3Fe2Ge30~2 garnet) ' dipolar-coupled spins on a
honeycomb lattice;' ' and fully frustrated cubic sys-
tems. ' In addition, they may be realized in certain su-
perconducting arrays at particular rational values of Aux
per plaquette.
When diluted by substituting nonmagnetic impurities,

such systems are supposed to become spin glasses: e.g.,
Cd] —~Mn~ Te, a diluted magnetic semiconductor '

where the Mn ions form a diluted fcc lattice with well
understood antiferromagnetic exchange constants. ' Ex-
perimentally, at p=0.4 this system is spin-glass-like'
while at p =0.7 it shows strong (but still local) antifer-
romagnetic order. ' ' Part of the motivation of this
work is to distinguish the spin glass from other phases
with random-field-like disorder which might be present
near p =1.
Not surprisingly, perturbations —thermal Auctuations,

quantum Auctuations, or dilution —lift these degenera-
cies and select specific states, reducing the continuous
degeneracy to a discrete one. ' ' I will call this "order-
ing due to disorder" ' by analogy to the Ising case.
In this Letter I argue that, in exchange-coupled sys-

tems, thermal and quantum disorder favor collinear
states, wherein spins are aligned parallel or antiparallel
to a single direction (which itself remains free to rotate);
but random dilution favors the least collinear states,
which I will call "anticollinear. " In addition, random di-

lution often makes effective "random exchange fields"
coupling to the discrete (but not the rotational) sym-
metries like a random field. These effects all compete,
yielding two or more antiferromagnetic phases. '
In the rest of the Letter, I will outline the general ar-

guments, and display the specific calculations for a 2D
XYsystem with second-neighbor exchange, ' the simplest
possible model with both rotational symmetry and non-
trivial continuous degeneracy. The rich phase diagram
predicted for this case is consistent with Monte Carlo re-
sults. "
Model system. —Let us take 4'Y spins on a square lat-

tice (lattice constant =1) with Hamiltonian=
2 g;IJ~Icos(8; —81), where JJ =J~ (J2) for nearest

(second-nearest) neighbors. If f Jq [/f J2 [ (2, the sys-
tem in its ground state breaks up into two square
(J2XJ2) sublattices, a and b, each ordered antifer-
romagnetically (Fig. 1). To label the ground states,
choose one reference spin from each sublattice, say at
[0,0] and [0,1] with angles 8, and 8b. Then p—:8,—8b
parametrizes a nontrivial "degeneracy, " since the
ground-state energy Ep= 2N

~
J2 ~

is independent of p.
This model might be realized in a two-layer square ar-

ray of superconducting islands with one quantum of Aux
per cell, in two layers of MnTe in CdTe (fabricable by
molecular-beam epitaxy), or in two adjacent square
Cu02 layers centered on each other (as in some high-T,
superconductors), where J& is a small interlayer ex-

FIG. l. Ground state on square lattice with J2 & ——,
~ J& ~
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Thermal fluctuations

• Consider expansion around an arbitrary 
ground state
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Ordering Due to Disorder in a Frustrated Vector Antiferromagnet

Christopher L. Henley
Department of Physics, Cornell University, Ithaca, New York 14853

and Department of Physics, Boston University, Boston, Massachusetts 02215t'
(Received 22 August 1988)

In many continuous spin systems, competing interactions give nontrivial degeneracies of the classical
ground states. Degeneracy-breaking free-energy terms arise from thermal (or quantum) Iluctuations,
which select for collinear states, and from dilution, which selects for "anticollinear" (yet long-range or-
dered) states. They are explicitly computed for an XY square-lattice antiferromagnet dominated by
second-neighbor antiferromagnetic exchange. The predicted phase diagram agrees qualitatively with
simulations.

PACS numbers: 75.40.Cx, 64.60.Cn, 75.25.+z, 75.50.Kj

Many periodic vector spin systems with competing ex-
change couplings have nonunique (classical) antiferro-
magnetic ground states: These form a continuous mani-
fold of degenerate states including not only the states
trivially related by the global rotational symmetry, but
additional sets of states related by applying different ro-
tations to the various antiferromagnetic sublattices. '
There is a large class of such systems: many spinels;

all face-centered-cubic (fcc) antiferromagnets including
type-I systems' (e.g. , y-Mn), type-II systems (e.g.,
MnO), type-III systems (e.g. , Cd~ Mn Te for larger
x), ' and possibly Cu nuclear spins; triangular antifer-
romagnets (possibly stacked) ' bcc type-II (e.g. ,
Ca3Fe2Ge30~2 garnet) ' dipolar-coupled spins on a
honeycomb lattice;' ' and fully frustrated cubic sys-
tems. ' In addition, they may be realized in certain su-
perconducting arrays at particular rational values of Aux
per plaquette.
When diluted by substituting nonmagnetic impurities,

such systems are supposed to become spin glasses: e.g.,
Cd] —~Mn~ Te, a diluted magnetic semiconductor '

where the Mn ions form a diluted fcc lattice with well
understood antiferromagnetic exchange constants. ' Ex-
perimentally, at p=0.4 this system is spin-glass-like'
while at p =0.7 it shows strong (but still local) antifer-
romagnetic order. ' ' Part of the motivation of this
work is to distinguish the spin glass from other phases
with random-field-like disorder which might be present
near p =1.
Not surprisingly, perturbations —thermal Auctuations,

quantum Auctuations, or dilution —lift these degenera-
cies and select specific states, reducing the continuous
degeneracy to a discrete one. ' ' I will call this "order-
ing due to disorder" ' by analogy to the Ising case.
In this Letter I argue that, in exchange-coupled sys-

tems, thermal and quantum disorder favor collinear
states, wherein spins are aligned parallel or antiparallel
to a single direction (which itself remains free to rotate);
but random dilution favors the least collinear states,
which I will call "anticollinear. " In addition, random di-

lution often makes effective "random exchange fields"
coupling to the discrete (but not the rotational) sym-
metries like a random field. These effects all compete,
yielding two or more antiferromagnetic phases. '
In the rest of the Letter, I will outline the general ar-

guments, and display the specific calculations for a 2D
XYsystem with second-neighbor exchange, ' the simplest
possible model with both rotational symmetry and non-
trivial continuous degeneracy. The rich phase diagram
predicted for this case is consistent with Monte Carlo re-
sults. "
Model system. —Let us take 4'Y spins on a square lat-

tice (lattice constant =1) with Hamiltonian=
2 g;IJ~Icos(8; —81), where JJ =J~ (J2) for nearest

(second-nearest) neighbors. If f Jq [/f J2 [ (2, the sys-
tem in its ground state breaks up into two square
(J2XJ2) sublattices, a and b, each ordered antifer-
romagnetically (Fig. 1). To label the ground states,
choose one reference spin from each sublattice, say at
[0,0] and [0,1] with angles 8, and 8b. Then p—:8,—8b
parametrizes a nontrivial "degeneracy, " since the
ground-state energy Ep= 2N

~
J2 ~

is independent of p.
This model might be realized in a two-layer square ar-

ray of superconducting islands with one quantum of Aux
per cell, in two layers of MnTe in CdTe (fabricable by
molecular-beam epitaxy), or in two adjacent square
Cu02 layers centered on each other (as in some high-T,
superconductors), where J& is a small interlayer ex-

FIG. l. Ground state on square lattice with J2 & ——,
~ J& ~

.
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Thermal Fluctuations

• Collecting terms

• Gaussian integral

�H ⇡ 1

2

X

k

Ak(�)|�✓k|2

Ak(�) = 4J2(1� cos k
x

cos k
y

)� 2J1 cos�(cos kx � cos k
y

)

Z ⇡ e��E0

Z
[
Y

k

d�✓k]e
��H ⇠ e��E0

Y

k

1p
Ak
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Entropy

• Free energy

F = �kBT lnZ ⇡ E0 +
kBT

2

X

k

lnAk

⌘ E0 � TS0

S0 = �N
kB
2

Z
d2k

(2⇡)2
lnAk

indep. of ϕ
lnAk = ln[4J2(1� cos k

x

cos k
y

)] + ln[1� J1 cos�

2J2

cos k
x

� cos k
y

1� cos k
x

cos k
y

]

more entropy if 
Ak is smaller
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Entropy
• Up to a constant

• This is an increasing function of |X|, so minimized 
when ϕ=0 or π: collinear state

• See this, e.g. by expanding in X using            
ln(1-ε) = -ε -ε2+...

S0(�) = const� Nk
B

2

Z
d2k

(2⇡)2
ln


1�X

cos k
x

� cos k
y

1� cos k
x

cos k
y

�

X =

J1 cos�

2J2
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Collinear states

• Why collinear states?

• Think about each sublattice as an 
antiferromagnet in a fluctuating field due to 
the other sublattice

• An antiferromagnet likes to “flop” normal 
to an applied field

• The fluctuating field from A sublattice on 
the B spins is normal to the A spins

H
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Collinear states

• So...the normal to A spins should be normal 
to B spins, i.e. A and B should be collinear!

• It has been suggested (Henley) that this is 
rather general.
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Quantum Fluctuations

• At T=0, we can imagine quantum zero point 
motions of the spins plays the role of thermal 
fluctuations

• Simple idea: quantize the normal mode 
frequencies corresponding to the modes δθk:

• This corresponds to the semi-classical “1/S” 
or spin-wave expansion

~!k =
p

Ak/m
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Zero point energy

• Harmonic oscillators

• The zero point energy is again minimized if 
Ak is smaller -

• one can check that this is again ϕ=0,π

E0�pt =
X

k

~!k

2
⇠ 1p

2m

X

k

p
Ak
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Seeing ObD
• In models, this is a generic phenomena: small 

fluctuations break “accidental” degeneracies

• But...many other perturbations also remove the 
accidental degeneracies

• e.g. explicit small J’ interaction

• How can you ever really know - in an 
experiment -  if order is due to disorder or 
just some interaction you missed?

• Lucile will tell you Thursday!

Thursday, June 14, 12



h

T

hc

FM

PM

Tc

Quantum phase 
transitions in metals

• Some quantum phase transitions are very 
similar to classical ones

• recall TFIM

Actually the same field theory describes classical 
and quantum transitions in the Ising model
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But some are not 

• Especially: quantum phase transitions in 
metals

“heavy fermion”

REVIEW ARTICLE FOCUS

The explicit identification of the QCPs in these and related
HF metals has in turn helped to establish a number of properties
that are broadly important for the physics of strongly correlated
electron systems. One of the modern themes, central to a variety
of strongly correlated electron systems, is how the standard
theory of metals, Landau’s Fermi-liquid (FL) theory, can break
down (see below, first section). Quantum criticality, through its
emergent excitations, serves as a mechanism for NFL behaviour,
as demonstrated by a T-linear electrical resistivity (Fig. 1b,c).
Moreover, the NFL behaviour covers a surprisingly large part of the
phase diagram. For instance, in Ge-doped YbRh2Si2, the T-linear
electrical resistivity extends over three decades of temperature
(Fig. 1c), a range that contains a large entropy (see below). Finally,
quantum criticality can lead to novel quantum phases such as
unconventional superconductivity (Fig. 1d).

These experiments have mostly taken place over the past
decade, and they have been accompanied by extensive theoretical
studies. The latter have led to two classes of quantum criticality
for HF metals. One type extends the standard theory of second-
order phase transitions to the quantum case9–11, whereas the other
type invokes new critical excitations that are inherently quantum
mechanical12–14. The purpose of this article is to provide a status
report on this rapidly developing subject.

MAGNETIC HF METALS AND FL BEHAVIOUR

HF phenomena were first observed in the low-temperature
thermodynamic and transport properties of CeAl3 in 1975 (ref. 15).
The 1979 discovery of superconductivity in CeCu2Si2 (ref. 16)
made HF physics a subject of extensive studies. This discovery was
initially received by the community with strong scepticism, which,
however, was gradually overcome with the aid of two observations,
of (1) bulk superconductivity in high-quality CeCu2Si2 single
crystals17 and (2) HF superconductivity in several U-based
intermetallics: UBe13 (ref. 18), UPt3 (ref. 19) and URu2Si2 (ref. 20;
W. Schlabitz, et al., unpublished). Around the same time, it was
recognized that CeCu2Si2, CeAl3 and other Ce-based compounds
behaved as ‘Kondo-lattice’ systems21.

KONDO EFFECT

Consider a localized magnetic moment of spin h̄/2 immersed
in a band of conduction electrons. The Kondo interaction—an
exchange coupling between the local moment and the spins of
the conduction electrons—is AF. It is energetically favourable for
the two types of spin to form an up–down arrangement: when
the local moment is in its up state, |⇤⌃, a linear superposition
of the conduction-electron orbitals will be in its down state,
|⌅⌃c, and vice versa. The correct ground state is not either of
the product states, but an entangled state—the Kondo singlet,
(1/2)(|⇤⌃|⌅⌃c � |⌅⌃|⇤⌃c). One of the remarkable features is
that there is a Kondo resonance in the low-lying many-body
excitation spectrum. The singlet formation in the ground state
turns a composite object, formed out of the local moment
and a conduction electron, into an elementary excitation with
internal quantum numbers that are identical to those of a bare
electron—spin h̄/2 and charge e. Loosely speaking, because of the
entanglement of the local moment with the spin degree of freedom
of a conduction electron, the local moment has acquired all the
quantum numbers of the latter and is transformed into a composite
fermion. We will use the term Kondo e�ect to describe the
phenomenon of Kondo-resonance formation at low temperatures.

At high temperatures, on the other hand, the system wants
to maximize the entropy by sampling all of the possible
configurations. It gains free energy by making the local moment
essentially free, which in turn weakly scatters the conduction
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Figure 1 Quantum critical points in HF metals. a, AF ordering temperature TN versus
Au concentration x for CeCu6�xAux (ref. 7), showing a doping-induced QCP.
b, Suppression of the magnetic ordering in YbRh2Si2 by a magnetic field. Also shown
is the evolution of the exponent � in ⇤⇥ ⇥ [⇥ (T )�⇥0] ⇧ T � , within the
temperature–field phase diagram of YbRh2Si2 (ref. 55). Blue and orange regions
mark � = 2 and 1, respectively. c, Linear temperature dependence of the electrical
resistivity for Ge-doped YbRh2Si2 over three decades of temperature (ref. 55),
demonstrating the robustness of the non-Fermi-liquid (NFL) behaviour in the
quantum-critical regime. d, Temperature-versus-pressure phase diagram for
CePd2Si2, illustrating the emergence of a superconducting phase centred around the
QCP. The Néel (TN) and superconducting (Tc) ordering temperatures are indicated by
filled and open symbols, respectively79.

electrons; this is the regime of asymptotic freedom, a notion
that also plays a vital role in quantum chromodynamics. It is
in this regime that Kondo discovered logarithmically divergent
correction terms in the scattering amplitude beyond the Born
approximation22. Kondo’s work opened a floodgate to a large body
of theoretical work23, which, among other things, led to a complete
understanding of the crossover between the high-temperature
weak-scattering regime and the low-temperature Kondo-singlet
state. This crossover occurs over a broad temperature range, and is
specified by a Kondo temperature; the latter depends on the Kondo
interaction and the density of states of the conduction electrons
at the Fermi energy. We will use Kondo screening to refer to the
process of developing the Kondo singlet correlations as temperature
is lowered.

KONDO LATTICE AND HEAVY FERMI LIQUID

HF metals contain a lattice of strongly correlated f electrons and
some bands of conduction electrons. The f electrons are associated
with the rare-earth or actinide ions and are, by themselves, in a
Mott-insulating state: the on-site Coulomb repulsion is so much
stronger than the kinetic energy that these f electrons behave as
localized magnetic moments, typically at room temperature and
below. They are coupled to the conduction electrons via an (AF)
Kondo interaction. In theoretical model studies, only one band of
conduction electrons is typically considered. Such a coupled system
is called a Kondo lattice.

It is useful to compare the HF metals with other strongly
correlated electron systems. The Mott-insulating nature of the f

nature physics VOL 4 MARCH 2008 www.nature.com/naturephysics 187

• Often superconducting state “covers” QCP
• Critical exponents non-classical
• Anomalous metallic behavior
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A ubiquitous phase diagram
A ubiquitous phase diagramLinear resistivity
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Why does metal make 
a difference?

• These phase transitions are nominally similar to those 
in insulators

• Might expect a Landau theory in Φ to apply

• But...usual assumption is that the only contributions 
to the critical behavior come from the ordering 
fluctuations, as only these persist to long distances (up to 
ξ)

• In a metal, there are other long-distance fluctuations 
and correlations which are due to low energy 
quasiparticles

h~S(r)i = ~�eiQ·r + c.c.
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Connection of quantum 
and classical stat. mech.
• In classical stat. mech., the partition 

function is a sum/integral over degrees of 
freedom in d dimensions

Z =
X

{�r}
e��

P
r Hr

⇠
Z

[d�(r)]e��
R
ddrH[�(r),r�(r)]
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Connection of quantum 
and classical stat. mech.
• In quantum stat. mech., the partition 

function is a trace

• There is nothing local about the matrix 
elements of exp[-βH]

Z = Tr
⇥
e��H

⇤

=
X

{�z
r }

h�z
r1�

z
r2 · · · |e

��H |�z
r1�

z
r2 · · · i
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Connection of quantum 
and classical stat. mech.
• Trotter formula

Z = Tr
⇥
e��H

⇤

= Tr
⇥
e��⌧He��⌧H · · · e��⌧H

⇤
�⌧ = �/N

}
N factors

=
X

{�z
r,⌧}

h{�z
r,�}|e��⌧H |{�z

r,���⌧}ih{�z
r,���⌧}|e��⌧H · · · h{�z

r,�⌧}|e��⌧H |{�z
r,0}i
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Connection of quantum 
and classical stat. mech.
• Trotter formula

• So one expects there to be a relation between the 
d dimensional quantum problem and a classical-like 
problem in d space and one “time-like” direction

Z = Tr
⇥
e��H

⇤
=

X

{�z
r,⌧}

e�
P

r,⌧ Lr,⌧

⇠
Z

[d�(r, ⌧)]e�
R
ddrd⌧L[�(r,⌧),@µ�(r,⌧)]

=

Z
[d�(r, ⌧)]e�S[�(r,⌧)] “Euclidean action”
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Degrees of freedom

• But...in a metal we do not just have spins

• really the trace must include the states of 
the electrons

• Trace includes Sr and ck

H =
1

2

X

r,r0

Jr,r0 ~Sr · ~Sr0 +
X

k

✏kc
†
k,↵ck,↵

+JK
X

r,k,k0

ei(k�k0)·r~Sr · c†k,↵
~�↵�

2
ck0,�
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Degrees of freedom

• But...in a metal we do not just have spins

• really the trace must include the states of 
the electrons

• Trace includes Sr and ck - so does the action

H =
1

2

X

r,r0

Jr,r0 ~Sr · ~Sr0 +
X

k

✏kc
†
k,↵ck,↵

+JK
X

r

~Sr · ~sr
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Path integral

• Formally

• We can try to reduce this to a d+1-
dimensional “classical” problem by 
integrating out c, c†

• How feasible is this?

Z =

Z
[d�][dc dc†]e�S[�,c,c†]
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Integrating out c,c†

• Formally 

• Fermionic integral may be singular

• It involves an infinite number of d.o.f.

• Fermions are gapless: low energy electron/
hole excitations mean fermion correlation 
functions behave like power-laws at large 
x,τ

Z =

Z
[d�][dc dc†]e�S[�,c,c†] =

Z
[d�]e�Seff [�]
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Hertz Theory

• Formally

• Result:

Z =

Z
[d�]e�Seff [�]

e�Seff [�] = e�Sspin[�]

Z
[dc dc†]e�Sel[c,c

†]e�JK
R
ddrd⌧(~�r,⌧e

iQ·r+c.c.)·~sr,⌧

}
expand this out

Se↵ [�] = Sspin[�]�
Z

ddkd!n

(2⇡)d+1

�0(Q+ k,!n)

2
~�k,!n · ~��k,�!n +O(�4)

J. A. Hertz, PRB 14, 1165 (1976)
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Hertz Theory
• The free electron susceptibility behaves like 

• Importantly, note the non-analytic |ωn| dependence 
- this reflects spin damping.  The spins can 
exchange energy (and spin) with the electron gas

• Unfortunately deriving this is a bit complicated, 
but you would learn it, e.g., in Physics 217b.

�0(Q+ k,!n) ⇡ c0 + c1k
2 + c2|!n|

⇡ c0 + c1k
2 + c2

|!n|
vF k

Q 6= 0

Q = 0
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Electron-hole pairs

• The non-analytic |ωn| term arises because 
the spin fluctuation can decay into or mix 
with an electron hole pair at low energy

8.5. TWO-PARTICLE CORRELATION FUNCTIONS OF MANY-BODY SYSTEMS143
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Figure 8.3: Absorption of a photon creates an electron-hole pair excitation in the free
electron gas. The possible range of q and ! is given by the dashed area in the right plot.
The strength of the interaction depends on the imaginary part of the polarization function,
see Eq. (8.82)

because hc†kcki = nF (ªk). In the frequency space, we find

¬R
0 (q,!) = °i

Z 1

t0
dt ei!t 1

V
X

kæ

£

nF (ªk)° nF (ªk+q)
§

ei(ªk°ªk+q)(t°t0)e°¥(t°t0),

=
1
V

X

kæ

nF (ªk)° nF (ªk+q)
ªk ° ªk+q + ! + i¥

. (8.81)

This function is known as the Lindhard function, and later on, when discussing the
elementary excitations of the electron gas, we will study it in much more detail.

Within the non-interacting approximation and according to Eq. (8.74) we then have
that the dissipation of the electron gas is proportional to

° Im¬R(q,!) =
º

V
X

kæ

£

nF (ªk)° nF (ªk+q)
§

±(ªk ° ªk+q + !). (8.82)

We can now analyze for what q and ! excitations are possible, i.e. for which (q,!)
Eq. (8.82) is non-zero. Let us take T = 0 where nF is either zero or one, which means
that nF (ªk) ° nF (ªk+q) is only non-zero if (k > kF and |k + q| < kF ) or (k < kF and
|k + q| > kF ). The first case corresponds to ! < 0, while the latter corresponds to ! > 0.
However, because of the symmetry ¬R

0 (q,!) = °¬R
0 (°q,°!), which is easily seen from

Eq. (8.81), we need only study one case, for example ! > 0. The delta function together
with the second condition thus imply

0 < ! = q2 1
2m

+ k · q 1
m

)
(

!max = 1
2mq2 + vF q

!min = 1
2mq2 ° vF q , q > 2kF .

(8.83)

Q/kFQ=kp-kh
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Landau expansion

• Add the fermion term to the Landau 
theory

+u

Z
d3dkid3!n,i

(2⇡)3d+3
�k1,!n1�k2,!n2�k3,!n3��k1�k2�k3,�!n1�!n2�!n3

a=0,1 (Q≠0, Q=0)

=

Z

ddkd!n

(2⇡)d+1

n

(k2 +
|!n|
ka

+ r)|�k,!n |2
o

S =

Z

ddkd!n

(2⇡)d+1

n

(k2 +
|!n|
ka

+ r)|�k,!n |2
o

+ u

Z

ddxd⌧ |�r,⌧ |4
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Power counting

• Rescaling:  

+u

Z
d3dkid3!n,i

(2⇡)3d+3
�k1,!n1�k2,!n2�k3,!n3��k1�k2�k3,�!n1�!n2�!n3

S =

Z

ddkd!n

(2⇡)d+1

n

(k2 +
|!n|
ka

+ r)|�k,!n |2
o

k ! k/b !n ! !n/b
z

�k,!n ! bd+z�d��bk,bz!n

z = 2+a

�d� z � 2 + 2(d+ z � d�) = 0

d+ a� 2d� = 0
d� =

d+ a

2
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k versus x scaling

• Note: Fourier transform

• Space-time scaling

• Hence

�
k,!n =

Z
ddx d⌧ e�ik·x�i!n⌧�

x,⌧

�
x,⌧ = b�d��0

x/b,⌧/bz

�
k,!n = b�d�

Z
ddx d⌧ e�ik·x�i!n⌧�0

x/b,⌧/bz

= b�d�+d+z

Z
ddx d⌧ e�ibk·x�ibz!n⌧�0

x,⌧

= b�d�+d+z�0
bk,bz!n

note 
difference!
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Power counting

• Rescaling:  

+u

Z
d3dkid3!n,i

(2⇡)3d+3
�k1,!n1�k2,!n2�k3,!n3��k1�k2�k3,�!n1�!n2�!n3

S =

Z

ddkd!n

(2⇡)d+1

n

(k2 +
|!n|
ka

+ r)|�k,!n |2
o

k ! k/b !n ! !n/b
z

�k,!n ! bd+z�d��bk,bz!n

d� =
d+ a

2

z = 2 + a r ! b2r

u is “irrelevant” when d+a>2

u ! b2�d�au = b4�d�zu

Thursday, June 14, 12



Aside: Classical Case

• Power counting

• Gradient term

• RG:

F =

Z
d

d
x

n
(r�)2 + r�2 + u�4}

x ! bx

�
x

! b�d��
x/b

d� =
d� 2

2

r ! b2r

u ! b4�du

u is irrelevant for d>4
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Upper critical 
dimension

• It turns out that for d>4, one gets mean field 
behavior.  We call du.c.=4 the upper critical 
dimension

• This coincides with - and is a consequence 
of - the fact that u is irrelevant, i.e. that the 
Gaussian fixed point is stable.

• Below the u.c.d., critical exponents are 
non-MF like

Thursday, June 14, 12



Classical scaling for d>4

• Correlation length: ν=1/2

• Free energy

• r>0:

• r<0: u is necessary for stability

⇠ = b g(r b2, u b4�d) = |r|�1/2g(±1, u|r|(d�4)/2)

f ⇠ |r|d/2

f = b�dF(r b2, u b4�d) = |r|d/2F(±1, u |r|(4�d)/2)

f ⇠ |r|d/2[u |r|(4�d)/2]�1 ⇠ r2/u α=0

u is a dangerously irrelevant operator
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Classical scaling for d>4

• Order parameter

• m vanishes for r>0 and again is singular for 
r<0 (m ~ u-1/2)

m ⇠ b�(d�2)/2M(±1, u|r|(d�4)/2)

m ⇠ b�(d�2)/2[u|r|(d�4)/2]�1/2 ⇠ |r|1/2

β=1/2
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Back to Hertz

• Additional ingredient for QCP: Temperature 
scaling:  

• relative to renormalized low energy 
scale, temperature increases under RG

• Also seen from action

+u

Z
d3dkid3!n,i

(2⇡)3d+3
�k1,!n1�k2,!n2�k3,!n3��k1�k2�k3,�!n1�!n2�!n3S =

Z

ddkd!n

(2⇡)d+1

n

(k2 +
|!n|
ka

+ r)|�k,!n |2
o

kBT ! bz kBT

S =

Z �

0
d⌧ · · ·

critical point is “trivial” ?
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“Fan” diagram

• Two relevant perturbations of QCP

• r: deviation from critical point at T=0

• T: temperature

pend on space and time only through the scaled vari-
ables k! and "!#, since ! is the only length scale and !# is
the only time scale in that regime. !Note that multiple
time scales may be present in a multicomponent system;
see Sec. III.H.1." The Fourier components of a physical
quantity X affected by the transition are thus expected
to exhibit the following scaling behavior:

X!k," ;r,T" = !dxFx!k!,"!#,!#/L#" !74"

=T−dx/zF̃x!kz/T,"/T,T/r$z" , !75"

where dx is the scaling dimension of the observable X.
Exactly at the quantum critical point this reduces to

X!k," ;r = 0,T = 0" = k−dxFx
*!kz/"" . !76"

We again note that all scaling relations are expected to
be valid only if the critical point satisfies hyperscaling
properties, which is true below the upper critical dimen-
sion dc

+. Scaling above dc
+ in the presence of a danger-

ously irrelevant variable will be discussed in Sec. III.D.

C. Itinerant fermion systems

Quantum phase transitions in itinerant electron sys-
tems were first studied by Hertz !1976". Hertz pointed
out that near a phase transition at T=0 static and dy-
namic properties are inextricably mixed and applied a
RG treatment to model systems of this type. This work
was later reconsidered and extended by Millis !1993".

1. Definition of the Hertz model

In the context of strongly correlated electron systems,
one is mainly interested in magnetic phase transitions in
metals. As prototypes we consider ferromagnetic !FM"
and antiferromagnetic !AFM" phase transitions. We as-
sume the collective behavior near the transition to be
characterized by a real N-component order-parameter
field %, representing the magnetization !for the FM" or
the staggered magnetization !for the AFM". A number
of simplifications occur in the limit N→&, although the
actual number of components is N'3. The effective ac-
tion may be derived from the Hamiltonian either by in-
troducing the collective field in functional integral rep-
resentation and integrating out the electron degrees of
freedom !Hertz, 1976" or by more conventional tech-
niques !Moriya, 1985". Assuming that the resulting ac-
tion S#%$ can be expanded in powers of % with spatially
local coefficients, one arrives at the Hertz model

S = S2 + S4 + ¯ . !77"

Here the second-order term is given by

S2 =
1

(V %
k,"n

)0&*0 + !0
2k2 +

'"n'
+!k"(%k,"n

· %−k,−"n
, !78"

where the prefactor of %2 is nothing but the inverse of
the dynamical spin susceptibility ,−1!k ,"n". In this case
the microscopic correlation length !0 is )kF

−1, where kF
is a Fermi wave vector and )0 is the microscopic energy

scale, given by the Fermi energy )F. The momentum
summation extends up to a !bare" cutoff -0.

The dynamic contribution '"n' /+!k" accounts for
damping of the spin fluctuations !k,"n

by particle-hole
pairs excited across the Fermi level !Landau damping".
Their phase space increases linear with ". For a ferro-
magnetic transition !or other transitions with a Q=0 or-
der parameter", +!k"=vFk as k→0, i.e., the damping rate
diverges due to the abundance of particle-hole pairs
with small momentum. This results in a theory with
!bare" dynamical exponent z=3. For an antiferromag-
netic transition +!k")+0, independent of k, yielding z
=2. These forms of +!k" hold if the wave vector of the
spin mode in either case is well inside the particle-hole
continuum, i.e., if the ordering wave vector Q connects
points on a !d−2"-dimensional manifold of points on the
Fermi surface. For an antiferromagnetic system with a
small Fermi volume and a large ordering vector Q
.2kF, the particle-hole pairs decouple from the spin
fluctuations and " enters quadratically as in Eq. !63".
The crossover from linear to quadratic " dependence
has been discussed by Sachdev, Chubukov, and Sokol
!1995", and by Sachdev !1999". The special situation
where an antiferromagnetic mode is tied to wave vector
2kF at the edge of the particle-hole continuum !“nest-
ing”" will be considered in Sec. III.H.5.

The fourth-order term S4 of the action accounts for
the self-interaction of spin excitations,

S4 = u0* d#* ddr+%!r,#"2,2, !79"

with u0 denoting the strength of the interaction.
We point out here that the damping term in the Hertz

theory has been derived under the assumption of Fermi-
liquid behavior of the electronic quasiparticles. This
needs to be justified a posteriori and is discussed in Sec.
III.H. We also note that in the ordered phase, i.e., r/0,
T/Tc in Fig. 3, the action !78" does not apply: the form

FIG. 3. Phase diagram of the Hertz model. I, Fermi-liquid
regime; II, III, quantum critical regime; IV, non-Gaussian clas-
sical critical regime; V, magnetically ordered phase. Regimes II
and III are distinguished by the behavior of the correlation
length !; see Eq. !97". The quantum critical regime also ex-
tends into the ordered phase, with singular behavior for T
.T*, similar to regime II. Note that transport properties may
show more complicated crossovers !see Sec. III.F".
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Quantum critical scaling

• Example: energy density

• Let’s sit at the QCP (r=0) and raise 
temperature

• Specific heat

" ⇠ b�(d+z)E(r b2, kBT bz, u b4�d�z)

" ⇠ b�(d+z)E(0, kBT bz, u b4�d�z)

⇠ (kBT )
d+z
z Ẽ(u (kBT )

d+z�4
z ) ⇠ (kBT )

d+z
z

cv ⇠ @"/@T ⇠ T d/z ⇠ T 3/2 for 3d AF
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Quantum critical scaling
• Thermal expansion coefficient

• We can deduce entropy scaling from specific heat

• Hence

• For a pressure tuned transition then r ~ p

↵ =
1

V

@V

@T

����
p

= � 1

V

@S

@p

����
T

S ⇠
Z T

0
dT 0 C(T 0)

T 0 ⇠ T 3/2

S ⇠ T 3/2S(rT�2/z)

↵ ⇠ @S

@r
⇠ T 1/2 (it is usually linear in a metal)
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Ce1-xLaxRu2Si2
• This seems to be one of the rare examples 

where Hertz theory works

Fit is to a (slightly) more sophisticated theory which includes r ≠0

cv ⇠ �T � cT 3/2

S. Kambe et al, JPSJ 
65, 3294 (1996)
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CeNi2Ge2

• Believed to be “close” to an AF QCP at 
ambient pressure

concentration of x ! 0:05 were grown from In flux as
described earlier [5,9]. From a careful EPMA, the effec-
tive Ge concentration is found to be xeff " 0:02# 0:01.
The large difference between nominal and effective Ge
content is due to the fact that Ge dissolves better than Si
in the In flux. A similar effective Ge content of 0:02#
0:004 [9] is deduced from hydrostatic pressure experi-
ments [19]. The residual resistivity of the Ge-doped crys-
tal is 5 !! cm. The thermal expansion and the specific
heat have been determined in dilution refrigerators by
utilizing an ultrahigh resolution capacitive dilatometer
and the quasiadiabatic heat pulse technique, respectively.

Figure 1 displays the T dependence of "a and "c, the
linear thermal expansion coefficients of CeNi2Ge2 mea-
sured along the tetragonal a and c axes. As shown by the
solid lines, the data can be described in the entire T range
investigated by the T dependence predicted [10] by the
three-dimensional (3D) SDW scenario, i.e., the sum of
(singular) square-root and (normal) linear contributions.
The corresponding fit parameters are listed in Table I. We
observe a moderate anisotropy "c ’ 1:8"a. As shown in
the inset, the volume expansion coefficient # ! 2"a $
"c, plotted as #%T&=T, is not a constant upon cooling, as
would be for a Fermi liquid, but shows a 1=

!!!!

T
p

divergence
over more than two decades in temperature from 6 K
down to at least 50 mK. This is one of the cleanest

observations of NFL behavior in a thermodynamic prop-
erty made in any system thus far.

We next consider the low-temperature specific heat
of CeNi2Ge2. As shown by several investigations,
C%T&=T strongly increases upon cooling from 6 to 0.4 K
[4,16,20–22]. This increase has either been described by
C%T&=T / ' log%T& [4,16] or C%T&=T ! $0 ' c

!!!!

T
p

[21].
Below 0.4 K, different behaviors have been reported.
While Knopp et al. found a peak at 0.3 K followed by a
6% decrease in C%T&=T from the maximum value [20],
Koerner et al. observed a leveling off in C%T&=T below
0.3 K [16]. In contrast, C%T&=T of a high-quality sample
with very low residual resistivity does not saturate but
shows an upturn at the lowest temperatures [22]. Very
recently, a systematic study of the low-temperature spe-
cific heat on different high-quality polycrystals, prepared
with a slight variation of the stoichiometry [15], has been
performed. The result was that nearly all of the different
investigated samples showed such an upturn in C%T&=T
below 0.3 K whose size, however, is strongly sample
dependent even for samples with similar %%T& and a
residual resistivity of only 0:2 !! cm [23]. In the follow-
ing, we analyze the specific heat (Fig. 2) measured on the
same sample that has been used for the thermal expansion
study. Below 3 K, the data can be described by C%T&=T !
$0 ' c

!!!!

T
p

$ d=T3 using the parameters listed in Table I
(solid lines in Fig. 2). Here we assume that the low-
temperature upturn, present in this single crystal as
well, could be ascribed to the high-temperature tail of a
Schottky anomaly [25]. Its influence on the Grüneisen
ratio is smaller than 5% at 0.1 K and therefore not visible
in the "%T& plot shown in the inset of Fig. 2. This is the
first observation of a divergent "%T& for T ! 0 in any
material and provides striking evidence that CeNi2Ge2 is
located very close to a QCP. The observed T dependence
is in full agreement with the 3D SDW prediction [10]. If
the investigated high-quality single crystal would enter a
Fermi liquid regime below 0.3 K as observed for the
sample studied in [16], "%T& should saturate below that
temperature.

The application of magnetic fields to CeNi2Ge2 is found
to gradually reduce the low-T specific heat coefficient.
For B ( 2 T, a nearly temperature-independent $%B& !
C%T; B&=T is observed at low temperatures with $%B& !
$0 ' const

!!!!

B
p

[21]. The low-temperature thermal expan-
sion shows a similar field-induced crossover to Fermi
liquid behavior (Fig. 3) and the field dependence
of "%T; B&=T in the field-induced FL regime diverges
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FIG. 1. Linear thermal expansions of CeNi2Ge2 vs tempera-
ture at B ! 0. The inset shows volume expansion as #=T vs T.
Solid lines are fits as specified in Table I.

TABLE I. Fit forms and parameters for CeNi2Ge2.

"%T& ! a
!!!!

T
p

$ bT " k c a ! 1:5) 10'6 K'1:5, b ! 0:87) 10'6 K'2

" k a a ! 0:99) 10'6 K'1:5, b ! 0:42) 10'6 K'2

#%T& ! a
!!!!

T
p

$ bT # a ! 3:5) 10'6 K'1:5, b ! 1:7) 10'6 K'2

C%T&=T ! $0 ' c
!!!!

T
p

$ d=T3 $0 ! 0:46 JK'2 mol'1, c ! 0:11 Jmol'1 K'5=2

d ! 102 !JKmol'1
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similar to 1=
!!!!

B
p

(not shown). Both features are consistent
with the predictions [10] from the itinerant 3D SDW
fluctuations at a zero-field AF QCP, assuming a linear
dependence between the magnetic field and the distance r
from the QCP.

We now turn to YbRh2!Si0:95Ge0:05"2, in which we have
measured the thermal expansion from 50 mK to 6 K.
Compared to CeNi2Ge2, here the volume thermal expan-
sion coefficient !!T" has an opposite sign reflecting the
opposite volume dependence of the characteristic ener-
gies. At T > 1 K, !!T" can be fit by #T log!T0=T" with
T0 $ 13 K (see Fig. 4). At T < 1 K, the best fit is given by
a1 % a0T. Both are not only different from the expected
3D-SDW results discussed earlier, but also weaker than
the lnlnT form [10] expected in a 2D-SDW picture [27].
The difference from the 2D-SDW picture is even more
striking when we look at the Grüneisen ratio. In Fig. 4,
we have also shown the electronic specific heat at zero
magnetic field. Here Cel & C# CQ, where CQ / 1=T2

denotes the nuclear quadrupolar contribution determined
from recent Mössbauer results [26]. At 20 mK, a maxi-
mum in Cel!T"=T marks the onset of very weak AF order
[9]. This is suppressed by a tiny critical magnetic field of
Bc & 0:027 T applied in the easy plane. At B & Bc, a
power law divergence Cel!T"=T / T#1=3 is observed
(which is already incompatible with the 2D-SDW picture)
[9]. At higher temperatures, the zero-field specific heat
coefficient also varies as log!T0

0=T" with T0
0 & 30 K

(Fig. 4) [5]. Because of the difference between T0
0 and

T0, the Grüneisen ratio is strongly temperature dependent.
Below 1 K, it diverges as !!T" & !0 % cT#2=3, i.e.,
weaker than the 1

T
lnln!T"
ln!T" form expected in a 2D-SDW
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FIG. 2. Specific heat at B & 0 as C=T vs T for CeNi2Ge2.
From the raw data (dashed line at low T), a contribution Cn &
"=T2 with " & 102 #JK=mol has been subtracted giving
the low-T open circles. The inset shows the T dependence of
the Grüneisen ratio ! & Vm=$T ' !=C, where Vm and $T
are the molar volume and isothermal compressibility, respec-
tively. Here, we use $T & 1:15( 10#11 Pa#1 as determined
from high-pressure lattice parameter measurements at room
temperature [24]. The solid line is a fit as specified in Table I.
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vs logT (at B & 0) with !cr & !!T" # bT and Ccr & C!T" #
!%T % d=T2" using the parameters listed in Table I. The solid
line represents !cr / 1=Tx with x & 1.
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FIG. 4. Electronic specific heat as Cel=T (left axis) and
volume thermal expansion as #!=T (right axis) vs T (on a
logarithmic scale) for YbRh2!Si0:95Ge0:05"2 at B & 0. The solid
lines indicate log!T0=T" dependences with T0 & 30 K and 13 K
for Cel=T and #!=T, respectively. The dotted line represents
#!=T & a0 % a1=T with a0 & 3:4( 10#6 K#2 and a1 &
1:34( 10#6 K#1. The inset displays the log-log plot of
!cr!T" with !cr & Vm=$T ' !cr=Ccr using $T & 5:3(
10#12 Pa#1 [26], !cr & !!T" % a0T, and Ccr & Cel!T". The
solid and dotted lines represent !cr / 1=Tx with x & 0:7 and
x & 1, respectively.
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Phase boundary

• What determines the shape of the phase 
boundary?

• Physics: thermal fluctuations suppress 
order 

pend on space and time only through the scaled vari-
ables k! and "!#, since ! is the only length scale and !# is
the only time scale in that regime. !Note that multiple
time scales may be present in a multicomponent system;
see Sec. III.H.1." The Fourier components of a physical
quantity X affected by the transition are thus expected
to exhibit the following scaling behavior:

X!k," ;r,T" = !dxFx!k!,"!#,!#/L#" !74"

=T−dx/zF̃x!kz/T,"/T,T/r$z" , !75"

where dx is the scaling dimension of the observable X.
Exactly at the quantum critical point this reduces to

X!k," ;r = 0,T = 0" = k−dxFx
*!kz/"" . !76"

We again note that all scaling relations are expected to
be valid only if the critical point satisfies hyperscaling
properties, which is true below the upper critical dimen-
sion dc

+. Scaling above dc
+ in the presence of a danger-

ously irrelevant variable will be discussed in Sec. III.D.

C. Itinerant fermion systems

Quantum phase transitions in itinerant electron sys-
tems were first studied by Hertz !1976". Hertz pointed
out that near a phase transition at T=0 static and dy-
namic properties are inextricably mixed and applied a
RG treatment to model systems of this type. This work
was later reconsidered and extended by Millis !1993".

1. Definition of the Hertz model

In the context of strongly correlated electron systems,
one is mainly interested in magnetic phase transitions in
metals. As prototypes we consider ferromagnetic !FM"
and antiferromagnetic !AFM" phase transitions. We as-
sume the collective behavior near the transition to be
characterized by a real N-component order-parameter
field %, representing the magnetization !for the FM" or
the staggered magnetization !for the AFM". A number
of simplifications occur in the limit N→&, although the
actual number of components is N'3. The effective ac-
tion may be derived from the Hamiltonian either by in-
troducing the collective field in functional integral rep-
resentation and integrating out the electron degrees of
freedom !Hertz, 1976" or by more conventional tech-
niques !Moriya, 1985". Assuming that the resulting ac-
tion S#%$ can be expanded in powers of % with spatially
local coefficients, one arrives at the Hertz model

S = S2 + S4 + ¯ . !77"

Here the second-order term is given by

S2 =
1

(V %
k,"n

)0&*0 + !0
2k2 +

'"n'
+!k"(%k,"n

· %−k,−"n
, !78"

where the prefactor of %2 is nothing but the inverse of
the dynamical spin susceptibility ,−1!k ,"n". In this case
the microscopic correlation length !0 is )kF

−1, where kF
is a Fermi wave vector and )0 is the microscopic energy

scale, given by the Fermi energy )F. The momentum
summation extends up to a !bare" cutoff -0.

The dynamic contribution '"n' /+!k" accounts for
damping of the spin fluctuations !k,"n

by particle-hole
pairs excited across the Fermi level !Landau damping".
Their phase space increases linear with ". For a ferro-
magnetic transition !or other transitions with a Q=0 or-
der parameter", +!k"=vFk as k→0, i.e., the damping rate
diverges due to the abundance of particle-hole pairs
with small momentum. This results in a theory with
!bare" dynamical exponent z=3. For an antiferromag-
netic transition +!k")+0, independent of k, yielding z
=2. These forms of +!k" hold if the wave vector of the
spin mode in either case is well inside the particle-hole
continuum, i.e., if the ordering wave vector Q connects
points on a !d−2"-dimensional manifold of points on the
Fermi surface. For an antiferromagnetic system with a
small Fermi volume and a large ordering vector Q
.2kF, the particle-hole pairs decouple from the spin
fluctuations and " enters quadratically as in Eq. !63".
The crossover from linear to quadratic " dependence
has been discussed by Sachdev, Chubukov, and Sokol
!1995", and by Sachdev !1999". The special situation
where an antiferromagnetic mode is tied to wave vector
2kF at the edge of the particle-hole continuum !“nest-
ing”" will be considered in Sec. III.H.5.

The fourth-order term S4 of the action accounts for
the self-interaction of spin excitations,

S4 = u0* d#* ddr+%!r,#"2,2, !79"

with u0 denoting the strength of the interaction.
We point out here that the damping term in the Hertz

theory has been derived under the assumption of Fermi-
liquid behavior of the electronic quasiparticles. This
needs to be justified a posteriori and is discussed in Sec.
III.H. We also note that in the ordered phase, i.e., r/0,
T/Tc in Fig. 3, the action !78" does not apply: the form

FIG. 3. Phase diagram of the Hertz model. I, Fermi-liquid
regime; II, III, quantum critical regime; IV, non-Gaussian clas-
sical critical regime; V, magnetically ordered phase. Regimes II
and III are distinguished by the behavior of the correlation
length !; see Eq. !97". The quantum critical regime also ex-
tends into the ordered phase, with singular behavior for T
.T*, similar to regime II. Note that transport properties may
show more complicated crossovers !see Sec. III.F".
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Phase boundary

• Fluctuation correction to location of critical 
point

• “Mean-field”-like approximation (technically 
self-energy correction)

S =

Z

ddkd!n

(2⇡)d+1

n

(k2 +
|!n|
ka

+ r)|�k,!n |2
o

+ u

Z

ddxd⌧ |�r,⌧ |4

shifts critical 
point to r<0

u�4
x,⌧ ! 6u

D
(�

x,⌧ )
2
E
(�

x,⌧ )
2

re↵ = r + 6u
D
(�

x,⌧ )
2
E
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The shift

• Fourier (introduce “cutoff” ε)

• We want to extract the small temperature 
behavior of this.  Poisson formula:

⌦
�2

x,⌧

↵
=

1

�

X

!n

Z ⇤

0

ddk

(2⇡)d
1

k2 + |!n|+ ✏ !2
n

1

�

X

!n

=
2⇡

�

Z
d!n

2⇡

X

m

�(!n � 2⇡m/�) =
X

m

Z
d!n

2⇡
eim�!n
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The shift

• We obtain

• Separate m=0 (T=0) term:

⌦
�2

x,⌧

↵
=

Z ⇤

0

ddk

(2⇡)d

Z
d!n

2⇡

1X

m=�1
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n

⌦
�

2
x,⌧

↵
= I0 + 2

1X

m=1

Z ⇤

0

ddk

(2⇡)d

Z
d!n

2⇡

cos(m�!n)
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n
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Analyzing the integral

• Rotate contour ωm = i y

Im = 2Re

Z ⇤

0

ddk

(2⇡)d

Z 1

0

d!n

2⇡

eim�!n

k2 + !n + ✏ !2
n

= 2Re

Z ⇤
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ddk

(2⇡)d

Z 1

0

dy

2⇡

i e�m�y

k2 + iy � ✏ y2

= 2
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0

ddk

(2⇡)d

Z 1

0

dy

2⇡
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Analyzing the integral

• Rescale: y = T u, k = T1/2 q

⇡ 2T 3/2

Z 1

0

d3q

(2⇡)3

Z 1

0

du

2⇡

ue�mu

u2 + q4

= 2T 3/2

Z ⇤p
T

0

d3q

(2⇡)3

Z 1

0

du

2⇡
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u2 + (q2 � ✏T 2u2)2

Im = 2

Z ⇤

0
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(2⇡)3

Z 1

0

dy

2⇡

ye�m�y
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= cmT 3/2

Thursday, June 14, 12



So finally...

• We obtain

• Which implies

• So the critical point occurs when

⌦
�2

x,⌧

↵
= I0 + cT 3/2

re↵ = r + 6u
D
(�

x,⌧ )
2
E

= re↵(T = 0) + c u T 3/2

re↵(T ) = 0 Tc =

✓
�re↵(T =0)

cu

◆2/3
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Phase boundary

• This gives the shape:

pend on space and time only through the scaled vari-
ables k! and "!#, since ! is the only length scale and !# is
the only time scale in that regime. !Note that multiple
time scales may be present in a multicomponent system;
see Sec. III.H.1." The Fourier components of a physical
quantity X affected by the transition are thus expected
to exhibit the following scaling behavior:

X!k," ;r,T" = !dxFx!k!,"!#,!#/L#" !74"

=T−dx/zF̃x!kz/T,"/T,T/r$z" , !75"

where dx is the scaling dimension of the observable X.
Exactly at the quantum critical point this reduces to

X!k," ;r = 0,T = 0" = k−dxFx
*!kz/"" . !76"

We again note that all scaling relations are expected to
be valid only if the critical point satisfies hyperscaling
properties, which is true below the upper critical dimen-
sion dc

+. Scaling above dc
+ in the presence of a danger-

ously irrelevant variable will be discussed in Sec. III.D.

C. Itinerant fermion systems

Quantum phase transitions in itinerant electron sys-
tems were first studied by Hertz !1976". Hertz pointed
out that near a phase transition at T=0 static and dy-
namic properties are inextricably mixed and applied a
RG treatment to model systems of this type. This work
was later reconsidered and extended by Millis !1993".

1. Definition of the Hertz model

In the context of strongly correlated electron systems,
one is mainly interested in magnetic phase transitions in
metals. As prototypes we consider ferromagnetic !FM"
and antiferromagnetic !AFM" phase transitions. We as-
sume the collective behavior near the transition to be
characterized by a real N-component order-parameter
field %, representing the magnetization !for the FM" or
the staggered magnetization !for the AFM". A number
of simplifications occur in the limit N→&, although the
actual number of components is N'3. The effective ac-
tion may be derived from the Hamiltonian either by in-
troducing the collective field in functional integral rep-
resentation and integrating out the electron degrees of
freedom !Hertz, 1976" or by more conventional tech-
niques !Moriya, 1985". Assuming that the resulting ac-
tion S#%$ can be expanded in powers of % with spatially
local coefficients, one arrives at the Hertz model

S = S2 + S4 + ¯ . !77"

Here the second-order term is given by

S2 =
1

(V %
k,"n

)0&*0 + !0
2k2 +

'"n'
+!k"(%k,"n

· %−k,−"n
, !78"

where the prefactor of %2 is nothing but the inverse of
the dynamical spin susceptibility ,−1!k ,"n". In this case
the microscopic correlation length !0 is )kF

−1, where kF
is a Fermi wave vector and )0 is the microscopic energy

scale, given by the Fermi energy )F. The momentum
summation extends up to a !bare" cutoff -0.

The dynamic contribution '"n' /+!k" accounts for
damping of the spin fluctuations !k,"n

by particle-hole
pairs excited across the Fermi level !Landau damping".
Their phase space increases linear with ". For a ferro-
magnetic transition !or other transitions with a Q=0 or-
der parameter", +!k"=vFk as k→0, i.e., the damping rate
diverges due to the abundance of particle-hole pairs
with small momentum. This results in a theory with
!bare" dynamical exponent z=3. For an antiferromag-
netic transition +!k")+0, independent of k, yielding z
=2. These forms of +!k" hold if the wave vector of the
spin mode in either case is well inside the particle-hole
continuum, i.e., if the ordering wave vector Q connects
points on a !d−2"-dimensional manifold of points on the
Fermi surface. For an antiferromagnetic system with a
small Fermi volume and a large ordering vector Q
.2kF, the particle-hole pairs decouple from the spin
fluctuations and " enters quadratically as in Eq. !63".
The crossover from linear to quadratic " dependence
has been discussed by Sachdev, Chubukov, and Sokol
!1995", and by Sachdev !1999". The special situation
where an antiferromagnetic mode is tied to wave vector
2kF at the edge of the particle-hole continuum !“nest-
ing”" will be considered in Sec. III.H.5.

The fourth-order term S4 of the action accounts for
the self-interaction of spin excitations,

S4 = u0* d#* ddr+%!r,#"2,2, !79"

with u0 denoting the strength of the interaction.
We point out here that the damping term in the Hertz

theory has been derived under the assumption of Fermi-
liquid behavior of the electronic quasiparticles. This
needs to be justified a posteriori and is discussed in Sec.
III.H. We also note that in the ordered phase, i.e., r/0,
T/Tc in Fig. 3, the action !78" does not apply: the form

FIG. 3. Phase diagram of the Hertz model. I, Fermi-liquid
regime; II, III, quantum critical regime; IV, non-Gaussian clas-
sical critical regime; V, magnetically ordered phase. Regimes II
and III are distinguished by the behavior of the correlation
length !; see Eq. !97". The quantum critical regime also ex-
tends into the ordered phase, with singular behavior for T
.T*, similar to regime II. Note that transport properties may
show more complicated crossovers !see Sec. III.F".

1030 Löhneysen et al.: Fermi-liquid instabilities at magnetic …
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Tc ⇠ (pc � p)2/3
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Resistivity
• This is very complicated, even in Hertz theory 

above the upper critical dimension!

• but...in general power-law behavior is expected, 
and usually different from that in an normal 
metal, i.e. away from the QCP

• In the simplest approximation, for d=3, z=2, one 
obtains ρ ~ ρ0 + A T3/2

• c.f. in a usual Fermi liquid, at low temperature ρ 
~ ρ0 + A T2

See von Löhneysen et al, RMP 79, 1015, sec. IIIF 
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Resistivity

• Behavior in CeNi2Ge2 seems consistent 
with the “simple” theory, which is expected 
to apply when the material is not too clean

VOLUME 82, NUMBER 6 PHY S I CA L REV I EW LE T T ER S 8 FEBRUARY 1999

Ce increment to the specific heat, DC, was determined
by subtracting from the measured specific heat that of
LaNi2Ge2.
Figures 1 and 2(a) illustrate the existence of NFL ef-

fects in CeNi2Ge2 at zero field and down to tempera-
tures T ¯ 0.2 K, i.e., more than 2 orders of magnitude
below the characteristic (Kondo) temperature of ¯30 K
[11,17]. For T # 2 K, the thermodynamic quantities,
plotted as DCsT dyT and asT dyT , are found to be roughly
proportional to 2 lnT . In the same temperature window,
the resistivity follows a power-law dependence, rsT d ≠
r0 1 bT

´, ´ # 1.5. As shown in Fig. 3, application of
a magnetic field to one of the high-purity samples sr0 ≠
0.43 mV cmd forces the low-temperature resistivity to turn
into a T

2 behavior. The slope of the low-field magnetore-
sistance, drydB, is negative for T $ 1.2 K and B # 2 T
but changes sign when increasing the field to B . 2 T.
For “standard-quality” samples (r0: 1.5 3 mV cm) a simi-
lar behavior was observed even at the lowest temperatures
[18]. The crossover temperature below which the resistiv-
ity shows a T

2 behavior increases proportionally to B

0.65

[Fig. 4(a)]. Note that a similar observation was recently
made by Grosche et al. [19]. At the same temperatures, at
which the resistivity behavior changes, both DCsT dyT and
asT dyT show strong deviations from the 2 lnT depen-
dence; cf. arrows in Figs. 1(a) and 1(b). These crossover
temperatures are pushed upwards with increasing field,
similar to what was first reported for CeCu62x

Au
x

[4].
The DrsT d ≠ r 2 r0 ≠ bT

1.5 dependence observed
in several CeNi2Ge2 samples with residual resistivi-
ties r0 ranging between 1.5 and 3 mV cm [see, e.g.,
Fig. 2(a)] is in accord with the prediction by the NAFFL
theory [1–3] for the asymptotic behavior (at B ≠ 0) in
a three-dimensional system. It characterizes a diverging
quasiparticle-quasiparticle scattering cross section being
proportional to asT d ≠ DrsT dyT

2 ~ T

20.5. In Fig. 4(b),
we show for all samples studied the slope a of the low-T
straight lines in the Dr vs T

2 plots (cf. Fig. 3) as a func-

FIG. 1. Ce increment to the specific heat (a) and thermal
expansion (b) of CeNi2Ge2 as CyT vs T and ayT vs T ,
on logarithmic temperature scales, for B ≠ 0 and differing
magnetic fields. Arrows indicate positions on the solid line
shown in Fig. 4(a).

tion of the magnetic field. Our data indicate a divergence
of a, i.e., the quasiparticle-quasiparticle cross section, and
hint at the existence of a quantum critical point (QCP)
near B ≠ 0.
A closer inspection of our data, however, raises ques-

tions as to whether the NAFFL concept can be applied to
CeNi2Ge2 at all: (i) Within this concept, the “crossover
regime” at moderate temperatures is characterized by
gsT d ≠ DCsT dyT ~ 2 lnT and Dr ≠ bT . However,
in the temperature range where gsT d and asT dyT show
a 2 lnT dependence, our resistivity data are well fitted
by power laws, Dr ≠ bT

´, with differing exponents
s1.37 # ´ # 1.5d, depending on sample quality. (ii) Fur-
ther on, in contrast to the asymptotic g0 2 gsT d ~ T

0.5

dependence expected [1–3] along with Dr ~ T

1.5 well
below this crossover regime, the specific-heat coefficient
gsT d was previously found [17] to exhibit a broad
maximum between T ≠ 0.2 K and T ≠ 0.3 K. This is
corroborated in Fig. 1(b) by the maximum in the B ≠ 0
data for asT dyT at T ≠ 0.2 K. These anomalies and
their shift to higher temperatures, induced by the B field,
can be interpreted by a freezing out of the long-lived
and long-range part of the spin-fluctuation spectrum and,
thus, by establishing a FL state at low T , as illustrated in
Fig. 4(a). (iii) In our B ≠ 0 results for the resistivity,
a corresponding change into a T

2 dependence cannot be
observed, though this is theoretically expected beyond a
QCP. The resistivity results rather locate this compound
very close to a QCP. In this case, a low-temperature tran-
sition into a T

2 dependence was theoretically predicted,
too [20]. Further on, if potential scattering in the sample
is reduced and the anisotropy of the quasiparticle lifetime
reinforced, an increase of the validity regime for the T

2

law is predicted in Ref. [20]: In a power-law represen-
tation of the data within a restricted temperature window
this should manifest itself in an increase of the resistivity
exponent with increasing perfection of the samples. Our
results displayed in Fig. 2(a) are at strong variance with

FIG. 2. Electrical resistivity as a function of tempera-
ture for three CeNi2Ge2 samples with r0 ≠ 2.7 mV cm
shd, 0.43 mV cm smd, and 0.34 mV cm s,d as r vs T

´

with differing exponents ´ (a) and dr ≠ r 2 sr0 1 bT

´d
vs T (b).
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When does it work?
• Not obvious: the assumption that integrating our 

electrons does nothing to higher order terms is 
questionable

• People have looked at these and it seems that it is OK 
when Q ≠0 in d=3

• For Q=0 in d=2,3 and for Q ≠ 0 in d=2 there are many 
singularities not captured by Hertz action

• In all these cases, one should try to study the QCP 
without integrating out fermions

• This is much more complicated and still a matter of 
current research
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Beyond LGW

• Driven partly by experiment and partly by 
theory, recent research in quantum 
criticality mostly focuses on situations 
beyond the Landau-Ginzburg-Wilson 
paradigm

• That is, situations in which an approach 
based on an order parameter alone is 
inadequate
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When do we go 
beyond?

1. When a neighboring phase has lots of 
gapless excitations (like in metals!)

2. When a neighboring phase is not described 
by an order parameter

3. Sometimes even if both the neighboring 
phases and their excitations are ordinary, 
unconventional behavior can emerge at the 
QCP
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When do we go 
beyond?

1. When a neighboring phase has lots 
of gapless excitations (like in 
metals!)

1. Failure of Hertz theory for most such 
QCPs motivates other approaches

2. Conservation approach: strongly-coupled 
fermion-boson criticality

3. Radical approach: “Kondo breakdown”
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Kondo effect

• Kondo effect: 

• a spin can be screened by coupling to 
conduction electrons

• this happens with a “binding energy” which 
is exponentially small

• When there are many spins, the Kondo 
effect competes with the tendency of spins 
to order - RKKY interaction

kBTK ⇠ ✏F e
�✏F /JK
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Doniach diagram

J/EF

~ J2/EF

“heavy 
fermion”: spins 
included in the 

carriers

“light” carriers

?? Is the QCP a Kondo breakdown transition ??
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When do we go 
beyond?

1. When a neighboring phase has lots of 
gapless excitations (like in metals!)

2. When a neighboring phase is not 
described by an order parameter

3. Sometimes even if both the neighboring 
phases and their excitations are ordinary, 
unconventional behavior can emerge at the 
QCP
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Phases without order 
parameters

• Phases are more fundamental - and more 
important - than phase transitions

• Usually, they are distinguished by symmetry

• But phases may differ even with the same 
symmetry

• Excitations or other properties may be 
qualitatively different in two phases
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Phases without order 
parameters

• Example: metal versus insulator

• both are possible with the same symmetry, but 
excitations differ qualitatively, as does conductivity

• but at T>0, they are the same phase

• one can still have a T>0 first order “Mott transition”, 
e.g. VO2, V2O3,...

• still not known if T=0 transition could be continuous

• There are other types of “quantum order” that can 
distinguish a phase
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Mott transitions

(d1-d2LI ) hybridization (Uozumi et al., 1993). Cluster-
model analysis has revealed considerable weight of
charge-transfer configurations, d3LI ,d4LI 2,. . . , mixed into
the ionic d2 configuration, resulting in a net d-electron
number of nd.3.1 (Bocquet et al., 1996). This value is
considerably larger than the d-band filling or the formal
d-electron number n52 and is in good agreement with
the value (nd53.0) deduced from an analysis of core-
core-valence Auger spectra (Sawatzky and Post, 1979).
If the above local-cluster CI picture is relevant to experi-
ment, the antibonding counterpart of the split-off bond-
ing state is predicted to be observed as a satellite on the
high-binding-energy side of the O 2p band, although its
spectral weight may be much smaller than the bonding
state [due to interference between the d2!d11e and
d3LI!d2LI 1e photoemission channels; see Eq. (3.12)].
Such a spectral feature was indeed observed in an ultra-
violet photoemission study by Smith and Henrich (1988)
and in a resonant photoemission study by Park and
Allen (1997). In spite of the strong p-d hybridization
and the resulting charge-transfer satellite mechanism de-
scribed above, it is not only convenient but also realistic
to regard the d1-d2LI bonding band as an effective V 3d
band (lower Hubbard band). The 3d wave function is
thus considerably hybridized with oxygen p orbitals and
hence has a relatively small effective U of 1–2 eV (Sa-
watzky and Post, 1979) instead of the bare value U
;4 eV. Therefore the effective d bandwidth W becomes
comparable to the effective U : W;U . With these facts
in mind, one can regard V2O3 as a model Mott-Hubbard
system and the (degenerate) Hubbard model as a rel-
evant model for analyzing the physical properties of
V2O3.

The time-honored phase diagram for doped V2O3 sys-
tems, (V12xCrx)2O3 and (V12xTix)2O3 , is reproduced
in Fig. 70. The phase boundary represented by the solid
line is of first order, accompanied by thermal hysteresis
(Kuwamoto, Honig, and Appel, 1980). In a Cr-doped
system (V12xCrx)2O3 , a gradual crossover is observed
from the high-temperature paramagnetic metal (PM) to

FIG. 69. Photoemission spectra of V2O3 in the metallic phase
taken using photon energies in the 3p-3d core excitation re-
gion. From Shin et al., 1990.

FIG. 68. Corundum structure of V2O3.

FIG. 70. Phase diagram for doped V2O3 systems,
(V12xCrx)2O3 and (V12xTix)2O3. From McWhan et al., 1971,
1973.

1147Imada, Fujimori, and Tokura: Metal-insulator transitions
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Quantum orders
• Simplest cases are quantum phases in which there is 

a gap to all (bulk) excitations

• In this situation, there are “topological orders”

• e.g. “Topological Insulators” : just non-interacting 
band insulators which are distinct from usual 
ones by “twisting” of wavefunctions of occupied 
bands

• more interesting are “topological phases” : 
ground states of interacting electrons that host 
exotic excitations with fractional (or nonabelian) 
statistics (Q)
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Examples?

• quantum Hall state (TI)

• toric code

• quantum spin liquid (RVB)

• entanglement entropy

• deconfined quantum critical points
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