
• For ions with spherical symmetry, have 
“Hund’s rules”

• In this case, total S, L commute with H 
(neglecting SOC).

• Hund’s rule 1: Maximize S

• Hund’s rule 2: Maximize L (after applying 
1)

• Hund’s rule 3: apply SOC 



Hund’s rules

• Example: 2 electrons

...

25+2*5*4/2=45 states



Hund’s rules

• Example: 2 electrons

• Rule 1: maximize spin

• Forces S=1

• Reason: Pauli exclusion: 
electrons are kept 
further apart, which 
minimizes 1/r Coulomb 
energy

...

3*5*4/2=30 states

n.b. Sz=1, S=0 OK



Hund’s rules
• Example: 2 electrons

• Rule 1: maximize spin

• S=1

• Rule 2: maximize L

• L=3

• This is also to minimize 
Coulomb repulsion but it 
is less obvious! 

...
(2S+1)(2L+1)

=3*7=21 states

n.b. Sz=1, S=0 OK

n.b. Lz=2, L=3 OK

One picture - but I am not sure it is the right one! 
- is that electrons orbiting in the same direction 
are less likely to meet



Hund 3

• Hund’s third rule includes the effect of spin-orbit 
coupling

• λ L ⋅ S implies states with different J = L + S 
have different energy

• quantum mechanics: |L-S| ≤ J ≤ L+S

• Hund 3:

• For a less than half-filled shell, J= |L-S|

• For a more than half-filled shell, J = L+S
This is basically just SOC applied to holes



Hund’s rules

• Example: 2 electrons

• Rule 1: maximize spin

• S=1

• Rule 2: maximize L

• L=3

• Rule 3: J = |L-S|=2 ...

2J+1=5 states

n.b. Sz=1, S=0 OK

n.b. Lz=2, L=3 OK

45 → 30 → 21 → 5 states  



Moments in solids
• An ion in a solid is subjected to crystal fields, which 

lower the symmetry from spherical, and hence split the 
atomic multiplets

• Typically this reduces the orbital angular momentum 
which is possible

• an extreme case (low symmetry): effectively L=0 
because no orbital degeneracy

• Those crystal fields may be comparable to the atomic 
Coulomb energies, and hence compete with Hund’s 
rules 1+2.  They are often larger than Hund 3.  



Local moments

• How do we know local moments exist?

• Curie Susceptibility 

• Electron spin resonance

• Specific heat (entropy)



Curie Susceptibility

• Magnetic moment in general is proportional 
to spin

• Magnetic dipole interaction

µ = gµBS/~

Bohr magneton
µB =

e~
2me

= 9.3⇥ 10�24J/T

g-factor 
(could be a tensor)

g ≈ 2 for pure spin 
moment

spin S quantum spin
S2=S(S+1)ℏ²

H = �µ ·H

= 0.671K/T



Compare with metals
Curie Law

� =
N(gµB)2

3

S(S + 1)

kT

Pauli paramagnetism 

basically kT → εF

Much larger susceptibility than delocalized 
electrons

� = V
(gµB)2

4
D(✏F )



Magnetic cooling

• The large susceptibility of free spins at low 
temperature means they are easily aligned 
by small magnetic fields

• This alignment corresponds to a drastic 
reduction of entropy.  One can use this 
control over entropy to remove entropy 
from another system, thereby cooling it.



Magnetic Cooling

heat 
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Magnetic Cooling
• A→ B: isothermal step - 

raise field, lower entropy

• B→ C: adiabatic step - 
lower field, same 
entropy: lower 
temperature

• For paramagnetic spins, S 
= S(H/T)

• Hence H1/Tf=H2/Ti

H=H1

H=H2>H1

A

B
C

S

TTiTf



Exchange

• How do spins interact?

• Magnetostatic dipole-dipole coupling

• This is rather weak, ≲ 1K for even large 
spins

• Electrostatic interaction usually dominates, 
just as it does inside atoms

• Indirectly leads to spin coupling through 
Pauli principle

Hd�d = � µ0

4�r3
[3(m · r)(m0 · r)�m ·m0]








