
Week 14: Group theory primer 1

Useful Reading material

• Fulton and Harris, Representation Theory, Graduate texts in Mathe-

matics, Springer

1 SU(N)

Most of the analysis we are going to do is for SU(N). So we will mention
some modifications accordingly, but without too many details.

We assume that Lie algebras are defined by generators T a, satisfying the
equations

[T a, T b] = ifabcT c (1)

where F abc are the structure constants of the Lie algebra. A representation
of the Lie algebra is a realization of these commutation relations on a set of
M ×M matrices.

The theory of the group SU(N) begins with a Hilbert space where SU(N)
acts as a set of isometries. We have a basis of N-orthogonal vectors |1〉, . . . |N〉.
We are going to define an ordering on the basis elements. This ordering is
not an ordering on the Hilbert space.

IN the ordering we have

|1〉 > |2〉 > . . . |N〉 (2)

At this stage this ordering is completely arbitrary. Given this basis, we can
define the Cartan elements of the Lie algebra of SU(N) as those that are
diagonal in the |i〉 basis. This is, the |i〉 are eigenvectors of the Cartan.
In general, the Cartan is a maximal set of linearly independent commuting
generators of the Lie algebra. Since they commute, they can always be
diagonalized simultaneously.

Remember that the SU(N) generators are traceless (this is part of the
definition os SU(N)). There are N−1 linearly independent diagonal traceless
matrices. Thus the Cartan subalgebra has N−1 generators. Let us call them
Hi. Since the |j〉 are eigenvectors, we have the relation

Hi|j〉 = λij |j〉 (3)
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The numbers λij are called the weights of the vector |j〉. The state |1〉 will
be called the highest weight state.

It is natural to split thee other generators of the lIe algebra in terms of
their eigenvalues with respect to the H generators. This is, we diagonalize
the action of the H on the Lie algebra itself.

We will define the roots of the Lie algebra Ẽα by the relation

[Hi, Ẽα] = αiẼα (4)

Notice that the Ẽα are not hermitian. Indeed, if the H are hermitian,
then

[Hi, Ẽ
†
α] = −([Hi, Eα])

† = −αiẼ
†
α (5)

So we can have the relation
Ẽ†

α = Ẽ−α (6)

The list of the αi are called the weights of Ẽα. We use the αi themselves as
the labels representing α

Using the Jacobi identity, we can calculate the structure constants in this
basis

[H − i[Ẽα, Ẽβ]] = [[Hi, Ẽα], Ẽβ] + [Ẽα, [Hi, Ẽβ]] (7)

= (αi + βi)[Ẽα, Ẽβ] (8)

So we have that
[Ẽα, Ẽβ] = sαβẼα+β (9)

because, after all, [Ẽα, Ẽβ] is an eigenvector of weight α+β. Thus, the labels
α, β can be added or subtracted by commutation (use Ẽ−α for substraction).

If we have any representation of G, we always get some collection of
weights γi under the Cartan. Thus we have a basis classified by the eigen-
values (weights)

Hi|γ〉 = γi|γ〉 (10)

From here, we have that

HiẼα|γ〉 = [Hi, Ẽα]|γ〉+ ẼαHi|γ〉 (11)

= αi (̃̃Eα|γ〉) + Ẽαγi|γ〉 (12)

= (αi + γi)Ẽα|γ〉 ≃ nαγ |γ + α〉 (13)

This is, the Ẽα raise or lower the weights by the labels α. They are generalized
ladder operators.
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A weight will be called positive if on the basis |1〉, . . . |N〉 we have that

Ẽα|m〉 > |m〉 (14)

In standard conventions where

|1〉 =















1
0
0
0
...















, |2〉 =















0
1
0
0
...















, . . . (15)

The Ẽα > 0 are upper triangular matrices with only one non-zero entry.
A positive root Eα is called a simple root if it raises weights by a minimal

amount. These are written without a tilde.
This is, one such that Eα|m+1〉 = |m〉 for some m. There are N−1 such

simple roots. As a set they hug the principal diagonal of the N×N matrices,
on the upper triangular side. These roots can be labeled as E12 ≃ E1, E23 ≃
E2 . . . , where on the left we have the corresponding nonzero component and
on the right we just have the first label.

For a general simple Lie algebra all the same concepts apply. One can
prove that there are always dim(H) simple roots. (We always need at least
dim(H) independent elements to distinguish the Hα by their eigenvalues on
Lie).

It’s also obvious that
[Eα, E−α] ∈ H (16)

Since we have dim(H) simple roots α, the right hand side must be a basis.
Thus, define the Cartan elements by

Hα = [Eα, E−α] (17)

Each of these triples Eα, Hα, E−α defines an SU(2) algebra. Normalize
the constants so that

[Hα, Eα] = 2Eα (18)

[Hα, E−α] = −2E−α (19)

This is called the Chevaley basis. It is constructed so that all of the weights
of the roots are integer valued.
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Given the set {Hα, Eα, E−α one can always generate the the full Lie al-
gebra by commutators. For example, in SU(2), we have that

E+ =

(

0 1
0 0

)

, E− =

(

0 0
1 0

)

= E†
+ (20)

and
[E+, E−] = H = σ3 (21)

Thus, in the spin 1/2 representation, the H is twice the usual σz. This means
that H is normalized to twice the spin (which is always an integer).

In general, we have relations of the form

[Hβ, Eα] = cβαEα (22)

The cβα must be some important matrix describing the Lie algebra. These
are integers, and this is called the Cartan Matrix. By construction Cαα = 2.

For simply laced groups, the Cartan is symmetric. (These are the ADE
groups: look at a table)

If we insist on unitary representations of SU(N) (as required in most
applications), then all the SU(N) have finite dimensional representations,
and one can not raise thee weights indefinitely.

A state is called a highest weight state if it is annihilated by all the
positive ( simple roots)

Eα|W 〉 = 0∀α > 0 (23)

The weights are given by

Hα|W 〉 = wα|W 〉 (24)

the wα are not arbitrary (they end up being integers, and are highest weight
states for a list of SU(2)).

Thus the allowed set of weights forms a lattice of dimension dimH . (
Because we can tensor representations we can add weights). This is called
the weight lattice (denoted by ΛW ). The sublattice generated by the roots
is called the root lattice (Λr). These are in general different lattices.

For SU(N) the Cartan Matrix can be calculated to be given by

cαβ ∼















2 −1
−1 2 −1

−1 2 −1
. . . −1
−1 2















(25)
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These are the weights of the simple roots with respect to the Cartan. The
different SU(2) subalgebras act onthe spaces generated by |i〉, |i+1〉 as dou-
blets.

We can draw this matrix in a convenient graphical notation, where for
each root (or each Hα) we draw a node. We then draw a line for each pair
of nodes that is connected by a −1. This graphical representation is called a
Dynkin diagram. The ADE groups have a similar structure, with −2 in the
diagonal, and −1 in various other places. For non-simply laced groups the
rules are slightly more complicated (there are long root and short roots, so
some elements of the diagonal are not of size 2). You should read abut these
separately.

For example, we can have for SU(6)

• • • • • (26)

The classification of simple Lie algebras is equivalent to the classification
of Dynkin diagrams. The Cαβ is always a positive definite matrix or Lie
algebras.

To describe representations, we can label the Dynkin diagram with the
weights of the highest weight state. For example, the fundamental of SU(N)
is labeled by

1 0 0 0 0

• • • • •

(27)

The symmetric tensor representation is labeled by

2 0 0 0 0

• • • • •

(28)

And the antisymmetric tensor representation is labeled by the highest
weight state

0 1 0 0 0

• • • • •

(29)

We can also label the Dyknin diagram for arbitrary weights (not a highest
weight state).
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For the fundamental of SU(N), these are given by

0 0 −1 1 0

• • • • •

(30)

where a −1 is followed by a 1. This is easy to show with the specific matrices
that we have given so far.

The complex representation is characterized by Charge conjugation, so
all weights change sign. This way we find that the highest weight state of
the antifundamental is given by

0 0 0 0 1

• • • • •

(31)

as this is the only purely positive eight that is allowed. This is the same as
the totally antisymmetric representation with N − 1 indices.

1.1 Tensor products of representations

Let R,R′ be two unitary representations of a Lie algebra G. These are
classified by their highest weight states, which we shall denote by hws(R)
and hws(R′).

The spaces R,R′ are two Hilbert spaces. Their tensor product is denoted
by R⊗R′ and this is a vector space whose elements are by definition of the
form

∑

|v〉 ⊗ |v′〉 (32)

with |v〉 ∈ R and |v′〉 ∈ R′.
The norm is the obvious norm, given by

(〈ṽ| ⊗ 〈ṽ′|)|v〉 ⊗ |v′〉 = 〈ṽ|v〉〈ṽ′|v′〉 (33)

with the usual linearity axioms.
If G acts on R by unitary transformations, and on R′ by unitary trans-

formations, then the action of UR, UR′ preserves the norm in the Hilbert
space.
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One can consider the action of G on R ⊗R′ given by

UR⊗R′ = UR ⊗ UR′ (34)

so that
UR⊗R′ |v〉 ⊗ |v′〉 = UR|v〉 ⊗ UR′ |v′〉 (35)

It is easy to check the group properties, and that UR⊗R′ preserves the norm.
The group G is continuous, which means that U can be made infintesimal,

and then we have the equation

Uθ ∼ 1 + iθaT a (36)

where the T a are the generators of the Lie algebra. Applying the distribu-
tivity and to linear order in θ we find that

UR⊗R′;θ ≃ UR;θ ⊗ UR′;θ = (1 + iθaT a
R)⊗ (1 + iθaT a

R′) (37)

= 1⊗ 1 + iθa(T a
R ⊗ 1 + 1⊗ T a

R′) (38)

the last equation can be interpreted as a generalized addition of angular
momentum. This can be schematically represented by

T a
R⊗R′ = T a

R + T a
R′ (39)

Remember that a highest weight state is characterized by

Eαhws(R) = 0 (40)

it is annihilated by all of the positive simple roots. Consider the state

hws(R)⊗ hws(R′) (41)

It is obviously annihilated by the positive simple roots, so it acts as a highest
weight state of the group G on R⊗R′. We can use this highest weight state
to build a representation of G. Thus, we can decompose the tensor product
into representations of G as follows

R⊗R′ ∼ ⊕iRi (42)

where the i are labeled by their highest weight state.
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Let us do an example with SU(N), and two copies of the fundamental
representation that we tensor together. The highest weight state is |1〉. Thus,
in the tensor product, the highest weight state is

|1〉 ⊗ |1〉 (43)

The table of how the lowering operators act on the |I〉 is simple to write
down. We have that

E−1|1〉 = |2〉 (44)

E−2|2〉 = |3〉 (45)
... (46)

E−(N−1)|N − 1〉 = |N〉 (47)

all other combinations vanish. This can be simplified to

E−i|j〉 = δij|j + 1〉 (48)

The weights of |1〉 ⊗ |1〉 are the sum of two copies of the weights of |1〉, and
this ends up giving the representation characterized by the obvious highest
weight state

2 0 0 0 0

• • • • •

(49)

Now, to build the rest of the representation, we act with the E−α. Only
E−1 can act non-trivially on |1〉. We find that

E−1(|1〉 ⊗ |1〉) = (E−1 ⊗ 1 + 1⊗ E−1)|1〉 ⊗ |1〉 (50)

= (E−1|1〉)⊗ |1〉+ |1〉 ⊗ (E−1|1〉) (51)

= |2〉 ⊗ |1〉+ |1〉 ⊗ |2〉 (52)

= |1〉 ⊗ |2〉+ |2〉 ⊗ |1〉 (53)

Now, similarly, we find that

E−1(|1〉 ⊗ |2〉+ |2〉 ⊗ |1〉) = |2〉 ⊗ |2〉+ |2〉 ⊗ |2〉 = 2|2〉 ⊗ |2〉 (54)

We can now drop the tensor product symbols everywhere to condense nota-
tion (it is understood in the obvious way).
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So, for example

E−2(|1〉|2〉+ |2〉|1〉) = |1〉|3〉+ |3〉|1〉 (55)

And we can continue this way. It is easy to show that we get all of the states
of the form

|i〉|j〉+ |j〉|i〉 (56)

These are all symmetric. There areN(N+1)/2 such states, which is not equal
to N2 (the dimension of the tensor product). Thus there must be another
representation of lower dimension in the tensor product of two fundamentals.

We notice that in the symmetric tensor only get one state with the weights
of wt(|1〉) + wt(|2〉).

However, in the tensor product there are two such states |1〉|2〉 and |2〉|1〉.
We should find the orthogonal state to |1〉|2〉 + |2〉|1〉. We need a linear
combination of the form

α|1〉|2〉+ β|2〉|1〉 (57)

requiring orthogonality with the norm we have constructed gives a state
where α = −β ≃= 1, where we have chosen the normalization of α to be
equal to one.

The state we obtain is of the form

|1〉|2〉 − |2〉|1〉 (58)

and it is antisymmetric in the 12 labels. We can ask if this is a highest weight
state. It is easy to check that Ei|1〉|2〉−|2〉|1〉 = 0 for i > 1, as it acts by zero
on both. The only one that needs checking is E1. remember that E1|2〉 = |1〉.
Thus we get

E1(|1〉|2〉 − |2〉|1〉) = |1〉|1〉 − |1〉|1〉 = 0 (59)

We see that the state above is therefore a highest weight state: it is annihi-
lated by all positive roots. For this highest weight state, we add the weights
of |1〉 and |2〉 in the Dynkin diagram, and we obtain

0 1 0 0 0

• • • • •

(60)

Now, we can build the descendants by lowering operators. For example

E−1(|1〉|2〉 − |2〉|1〉) = |2〉|2〉 − |2〉|2〉 = 0 (61)
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and
E−2(|1〉|2〉 − |2〉|1〉) = |1〉|3〉 − |3〉|1〉 (62)

In the end, it is also easy to show that we get all state of the form

|i〉|j〉 − |j〉|i〉 (63)

There are N(N − 1)/2 such states. If we combine the information from both
representations, we find that the tensor product of two fundamentals is a
copy of the symmetric plus the antisymmetric combination.

A (horrible) notation would be

F × F = A + S (64)

where we use a different label F,A, S for fundamental, symmetric and anti-
symmetric. Another standard notation is to denote representations by their
dimension. thus, we would have

N ×N =
N(N + 1)

2
+

N(N − 1)

2
(65)

There is a better notation, which is described by Young Tableaus. Let us
introduce a box for each fundamental. The box can take the labels 1, . . .N
(or equivalently |1〉 . . . |N〉.

To denote symmetric combinations, we put boxes side by side. To denote
antisymmetric combinations, we put boxes on top of one another. Thus, we
could have the equation

⊗ = ⊕ (66)

These tabelaux can be filled with integers i to indicate vectors. The rules
are that the label on the right box has to be greater or equal than the label
to it’s left, and that the label of a box below another one has to bee strictly
greater than the one above.

Thus, for the symmetric representation, we are allowed the labels

1 1 1 2 . . . 1 N

2 2 . . . 2 N

. . .
...

N N

(67)
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which gives us the complete collection of states.
Similarly, we are allowed the labels

1

2

1

3

2

3

...
...

. . .

1

N

2

N . . .

N-1

N

(68)

We can now consider the problem of three boxes. We have clearly the
highest weight state given by

|1〉|1〉|1〉 ≃ |111〉 (69)

If we act with E−1 lowering operators, again we get states like

|112〉+ |121〉+ |211〉 (70)

which are completely symmetric in the labels.
To this representation we would associate the Young tableaux

(71)

and the two states would be given by

1 1 1 , 1 1 2 (72)

which follow our convention on numbering.
The total number of such states is N(N+1)(N+2)/6. It can be related to

counting boson states in statistical mechanics, where it becomes a standard
formula

The highest weight state has labels

3 0 0 0 0

• • • • •

(73)
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Similarly, we can have a totally antisymmetric representation given by the
tableaux

(74)

There are a total of N(N − 1)(N − 2)/6 such states. These can be thought
of as the number of fermion states. Our rules would require that the labels
are strictly increasing downwards, so the minimal labels we can put are

1

2

3 (75)

and in the Dynkin diagrams we would add the weights of states one two and
three, giving us

0 0 1 0 0

• • • • •

(76)

However, when we apply the theory of descendants, we only get one state
with the labels of |112〉, while there are three such states. We have three
such possibilities |112〉, |121〉, |211〉.

We should again pick an orthogonal state to |112〉+ |121〉+ |211〉. Now,
we find that there are two orthogonal states with those same weights. So we
should have two copies of the corresponding representation.

The best choice is to pick the simplest combination that does the trick.
We begin with the ordering given by

|11; 2〉 (77)

and we take an antisymmetric combination of the form

|11; 2〉 − |21; 1〉 (78)

where we antisymmetrize in the first label after the semicolon. This is or-
thogonal to E−1|111〉. Notice that the first state we wrote is symmetric on
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the first two indices, but we antisymmetrized later and lost this property.
This is a general feature. To this object we associate the tableaux

(79)

This is symmetric in the elements of the first row, and antisymmetric in the
elements of the first column.

The highest weight state is described by the labeling

1 1

2 (80)

where we use the rules requiring that numbering on a column is strictly
increasing. To this object we associated the state

|11; 2〉 − |21; 1〉 (81)

where we antisymmetrize over the corresponding columns. The semicolon
tells us where to make the breaks to match the Young tableaux in an obvious
way. The corresponding representation would be characterized by the highest
weight state

1 1 0 0 0

• • • • •

(82)

For example, the following labels are allowed

1 4

2 (83)

but the labels

4 1

2 (84)

are not. This labeling would give rise to the same state as before and to a
net overcounting of states.
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For the first one, we would get

|14; 2〉+ |41; 2〉 (85)

after symmetrization in the first row. This is invariant under the exchange of
1, 4. Then we need to anstisymmetrize on columns to get that the tableaux
with those labels would correspond to the state

|14; 2〉 − |24; 1〉+ |41; 2〉 − |21; 4〉 (86)

Notice that after antisymmetrization the object is not symmetric in the first
two indices any longer, but it is symmetric in the labels 1, 4.

You should also check that this object is orthogonal to

1 2 4 (87)

which is built by symmetrizing in 124 (this produces 6 permutations).
As the set of weights of the form 112 has another state, there is a second

representation with the same weight as the highest weight we found. Thus
there are two copies of the same representation associated to a corner. This
saturates the set of representations.

Thus we can have the equation

dim

( )3

= dim

( )

+ dim













































+ 2dim





















(88)

Giving us the result that

dim





















=
N(N − 1)(N + 1)

3
(89)
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2 Hooks and general highest weight states

Consider again the tableaux given by

(90)

For each box we can define a hook

�

(91)

which is a path that goes upward on the diagram and turns right at he box.
The length of a hook is the number of boxes that it crosses. In the example
above the length of the hook is three. For the other hooks we get

�

, � (92)

that their hook lengths are one.
Now, fill the boxes of the tableaux with the following labels

N N+1

N-1 (93)

starting with N in the left upper corner, and adding one as we go to the
right, while subtracting one ass we go down. These labels are not for states.

The dimension of a representation associated to a Young tableaux R can
be calculated by the following rule

dim(R) =
∏

boxes

Nb

hb

(94)

where Nb are the labels N,N = 1, etc, and hb is the length of the hook.
All representations of SU(N) can be written in this form. One quickly

finds out that the representation of the symmetric and antisymmetric objects
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with three boxes comes out right, as well as the one above (which we have
calculated already). For example, for

dim

N N+1 N+2

N-1 N

N-2 N-1

=
N(N + 1)(N + 2)(N − 1)N(N − 2)(N − 1)

5× 4× 1× 3× 2× 2× 1

(95)
For a general tableaux, the highest weight state is obtained by filling the

first row with ones, the second row with twos, the third row with threes, etc.
This is the minimal filling consistent with our rules. Thus, for the example
above we get

1 1 1

2 2

3 3 (96)

Thus, we would begin with the state given by

|111; 22; 33〉 (97)

To build the highest weight state we are instructed to antisymmetrize on
columns. These are permutations of the labels in the columns with the sign
of the permutation included. Thus, we have that

hws(3|3|1) =
∑

σ∈π(Col)

(−1)σσ|111; 22; 33〉 (98)

where σ acts on the Hilbert space by permutation of the vectors in the
columns. This action commutes with the action of the Lie algebra on the set
of states.

For example, antisymmetrizing on the first column would lead to a state
of the form

|111; 22; 33〉−|211; 12; 33〉−|311; 22; 13〉−|111; 32; 23〉+|211; 32; 13〉+|311; 12; 13〉
(99)

This state would be further antisymmetrized on the second column, turning
each of the kets above into 6 different vectors (giving a total of 36 kets
contributing to the sum). It is a lot easier to present the state as in equation
96, which contains all of these sums implicitly.

16



3 Tensor products of two tableaux

Let us consider now tensor products of representations. For example, let us
consider a tensor product of two symmetric tensors of SU(N). The hws of
the symmetric representation is |11〉, so the highest weigh state of the tensor
product will be given by

|11〉 ⊗ |11〉 ∼ |1111〉 (100)

Thus we find that in the tensor product there is a four-tensor with sym-
metric indices. We can also consider states of the form

|11〉 ⊗ |22〉 ∼ |11; 22〉 (101)

which are obviously symmetric in the first pair of two indices and the second
pair of indices. However, we should consider states with only one two and
three ones. There are two such states, given by

1 2 ⊗ 1 1 , 1 1 ⊗ 1 2 (102)

But only one of them is a descendant of |11〉 ⊗ |11〉. The orthogonal combi-
nation can be shown to be a highest weight state. Thus, if we consider the
possibilities above we find that

⊗ * * ∼ * * (103)

⊕ * * (104)

⊕

*

* (105)

where we have indicated how we stack the boxes from the second tableaux
with asterisks. We see that objects in the same row are allowed to be
in different rows in the tensor product. This is, we are allowed to cross-
antisymmetrize between elements of the first tableaus and the second one.

The tensor product is commutative (there is an obvious way to relate
one basis to the other and to show that the Lie algebra is the same). Thus,
consider for example
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⊗ * = * ⊕ * (106)

If we do it in the opposite order, we find that it would be in principle
possible to write three tabelaux

* ⊗ ∼ * ⊕

*

⊕

* ?

? ? (107)

by allowing the stacking. But this third one can not be allowed if the tensor
product is commutative. We see the reason why is obvious on closer inspec-
tion. In the left hand side the unmarked boxes are all symmetric, but in the
third diagram we are trying to antisymmetrize them further. Such a process
gives zero. Thus we find that we are not allowed to move a box that started
in the same row as another box, to a box that is in the same column after
the tensor product.

There is a similar rule for boxes that begin in the same column: you are
not allowed to move them so that they appear on the same row as another
such box. These rules saturate the possibilities, while taking into account
the minimal ordering of labels that we can have.

For example, consider the products

⊗

* * *

X =

* * *

X (108)

⊕

* *

*

X ⊕

*

* *

X (109)

⊕

* * *

X (110)

But we then realize that the following are also allowed

⊕

*

* * X ⊕

* *

* X (111)
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This can be verified easily for SU(2) representations, where objects antisym-
metric in three indices are identically zero, and where objects antisymmetric
in two indices are trivial. This is because the box marked with X never
shows up in the same row as the first box that is marked with an asterisk.

You can verify that the dimensions of the representations add up to each
other.

from the point of view of HWS, we find that the labels

|111〉 ⊗ |122; 2〉, |111〉 ⊗ |112; 2〉 (112)

show up in various places and can be symmetrized accordingly.
Again, you should consult books on group theory for more information.

4 Branching rules

We want to consider standard splitting of a group reprsentation into repre-
sentations of subgroups SU(N) → SU(M)×SU(N −M)×U(1) into a block
diagonal form, where we have a standard embedding. This is schematically

(

SU(M) 0
0 SU(N −M)

)

(113)

where the extra U(1) is embedded as

(

diag(1/M) 0
0 diag(−1/(M −N))

)

(114)

It is easy to realize how to embed the Dynkinm diagrams of SU(M) and
SU(NM) into the one of SU(N). After all, we have an obvious identification
of the roots and the Cartan. We find that the split is obtained by deleting one
node (the one connecting the SU(M) and the SU(N −M)). Schematically,
this is

• • • ⊗ • • • (115)

where the node demarcated with the ⊗ is to be deleted. Above we have the
splitting SU(8) → SU(4)× SU(4)× U(1). How to treat the U(1) is hidden.
Let us consider splitting the fundamental representation. It should be clear
that

N ∼ M ⊕ N−M (116)
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We can follow the weights of the different states to to this split.

1 0 0 0 0 0 0

• • • ⊗ • • •

(117)

This is the highest weight state of the fundamental of SU(M). As we consider
the weights of other elements we eventually find the state

0 0 0 −1 1 0 0

• • • ⊗ • • •

(118)

where the −1 is over the deleted node and therefore does not count. We see
that this is a highest weight state with respect to the SU(N −M).

We can do this similarly for the antifundamental. (Just change signs for
all weights). The highest weight state of the complex conjugate representa-
tion comes from flipping the diagram on the horizontal direction with the
highest weight states labels.

For example, consider the highest weight state of the adjoint representa-
tion

1 0 0 0 0 0 1

• • • ⊗ • • •

(119)

This is a hws for a product

M ⊗ N−M (120)

One also finds the following hws in the product

1 0 1 −1 0 0 0

• • • ⊗ • • •

(121)

and
0 0 0 −1 1 0 1

• • • ⊗ • • •

(122)
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These two are the adjoint of SU(M) and the adjoint of SU(M − N). We
see that whenever we start moving the weights to the deleted node we get
transitions between different representations. We also have the hws state

0 0 1 −2 1 0 0

• • • ⊗ • • •

(123)

which corresponds to the complex conjugate of the first representation.
There is an extra singlet that appears in this product (this can be seen

by adding the dimensions of the representations and finding one missing
element.). This can be also understood from

AdjSU(N) ≃ N ⊗ N̄ − trace (124)

So that when we split, we find that

AdjSU(N) ≃ (M ⊕ (N −M))⊗ (M̄ ⊕N −M)− trace (125)

IN the product we get two adjoints, and each of them involves removing a
trace. However, we have subtracted only one trace in AdjSU(N), while we
have subtracted two traces in AdjSU(M and AdjSU(N−M). Thus, the left hand
side must have an extra trace. This is just the U(1) we had above. The
off-diagonal elements of the matrix decomposition are those that are charged
under both gauge groups.

5 Some other useful Dynkin diagrams and

hws.

The Dynkin diagram for SO(2N) is represented by

•

• • • • • •

~~~~~~~

•

@@@@@@@

(126)
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There is an obvious SU(N) subgroup by deleting a node

⊗

• • • • • •

~~~~~~~

•

AAAAAAAA

(127)

The HWS of the fundamental is given by

1 •

• • • • • •

��������

•

@@@@@@@

(128)

While for the spinor it is given by

1

•

• • • • • •

~~~~~~~

•

@@@@@@@

(129)

The complex conjugate spinor has HWS given by

•

• • • • • •

��������
1

•

????????

(130)

The complex conjugation symmetry is obtained by reflection along a hori-
zontal line (an obvious symmetry of the diagram). The fact that the HWS
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of the fundamental is invariant implies that the fundamental representation
is real.

Under the SO(2N) → SU(N) splitting, the fundamental splits into a
fundamental plus an antifundamental of SU(N). This lets one fill in all of
the weights in a unique way.

The Dynkin diagram for E6 is given by

•

• • • • •

(131)

It has an obvious SU(6) subgroup and an obvious SO(10) subgroup. It also
has an obvious reflection, which corresponds to complex conjugation.

The Dynkin diagram for E7 is similar, given by

•

• • • • • •

(132)

It has an obvious E6 and an obvious SU(7) symmetry. It also has an obvious
SO(12) subgroup. There is no reflection symmetry associated to complex
conjugation, so all of the representations are necessarily pseudo-real.

Finally, the Dynkin diagram for E8 is given by

•

• • • • • • •

(133)

The diagram has an obvious E7 subgroup symmetry, an obvious SU(8),
and an obvious SO(14), depending on which node one deletes first. One also
has an obvious split into E6 × SU(2).

Finally, there are non-simply laced groups SO(2N + 1) and Sp(N) (the
so called B,C groups). Each of these is of rank N (the number of nodes)
They have long roots and short roots. These are indicated by arrows

• • • • • • +3 • (134)

• • • • • • ks • (135)
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Notice also the obvious identities of diagrams Sp(2) ∼ SO(5), SU(4) ∼
SO(6), SO(3) ∼ SU(2) ∼ Sp(1). These are the classical coincidences of
various series of groups. Under this rubric the exceptional series would have
E5 ∼ SO(10), E4 ∼ SU(3)× SU(2), E3 ∼ SU(2)× SU(2) (these sometimes
show with this name in string theory)
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