String Theory 230A Homework # 4 Solutions

Richard Eager
Department of Physics
University of California; Santa Barbara, CA 93106

Problem 1 (Polchinski 2.1)

\[
\partial \bar{\partial} \ln |z|^2 = \partial \bar{\partial} (\ln z + \ln \bar{z}) \\
= \partial \left(\frac{1}{\bar{z}} \right)
\]

Away from \((z, \bar{z}) = (0, 0)\), \(\ln |z|^2\) is \(C^\infty\) and we can freely apply equality of mixed paritals to conclude

\[
\partial \bar{\partial} \ln |z|^2 = \partial \bar{\partial} (\ln z + \ln \bar{z}) \\
= \bar{\partial} \partial \left(\frac{1}{z} \right)
\]

Applying the divergence theorem

\[
\int_R d^2z \left(\partial_z v^z + \partial_{\bar{z}} v^{\bar{z}} \right) = i \oint v^z d\bar{z} - v^{\bar{z}} dz
\]

with \(v_z = 1/\bar{z}\)

\[
\int_R \partial \bar{\partial} \ln |z|^2 = \int_R d^2z \partial \bar{\partial} \left(\frac{1}{z} \right) \\
= i \oint \frac{dz}{\bar{z}}
\]

Evaluating over the contour \(z = Re^{i\theta}\), we have \(\bar{z} = Re^{-i\theta}, d\bar{z} = -i\bar{z} d\theta\) which lets us evaluate the contour integral

\[
i \oint \frac{d\bar{z}}{z} = i \oint (-i) d\theta = 2\pi
\]

Therefore

\[
\int_R \partial \bar{\partial} \ln |z|^2 = 2\pi
\]

and we conclude that

\[
\partial \bar{\partial} \ln |z|^2 = 2\pi \delta^2(z, \bar{z}).
\]
Problem 2 - Linear Dilaton CFT

(a)
For a free scalar field with (modified) stress energy tensor

\[T(z) = -\frac{1}{\alpha'} : \partial X(z) \partial X(z) : + \beta \partial^2 X \]

the OPE : \(T(z)T(0) \) : will contain the usual contribution

\[T_0(z)T_0(0) \sim \frac{1}{2z^4} + \frac{2T_0(0)}{z^2} + \frac{\partial T_0(0)}{z} \]

where \(T_0(z) = -\frac{1}{\alpha'} : \partial X(z) \partial X(z) : \) but will have additional contributions from

\[: \beta \partial^2 X(z) : \beta \partial^2 X(w) : \sim -\frac{\alpha'^2}{2} \partial^2 \partial^2 \ln |z-w|^2 \]

\[\sim \frac{6\alpha' \beta^2}{2(z-w)^4} \]

There are cross contractions of the form

\[-\frac{1}{\alpha'} : \beta \partial^2 X(z) : \partial' X(w) \partial' X(w) : + (z \leftrightarrow w) = \frac{-2\beta \partial' X(w)}{(z-w)^3} + \frac{2\beta \partial X(z)}{(z-w)^3} \]

Taylor expanding

\[\partial X(z) = \partial' X(w) + (z-w) \partial^2 X(w) + \frac{(z-w)^2}{2} \partial^3 X(w) + \ldots \]

we have

\[\frac{-2\beta \partial' X(w)}{(z-w)^3} + \frac{2\beta \partial X(z)}{(z-w)^3} = \left[\frac{-2\beta \partial' X(w)}{(z-w)^3} + \frac{2\beta \partial X(w)}{(z-w)^3} \right] + \frac{2\beta}{(z-w)^2} \partial^2 X(w) + \frac{\beta}{(z-w)} \partial' \partial^2 X(w). \]

The term in []'s cancels and we are left with the appropriate modification to preserve the OPE

\[T(z)T(0) \sim \frac{c}{2z^4} + \frac{2T(0)}{z^2} + \frac{\partial T(0)}{z} \]

where we have determined

\[c = 1 + 6\alpha' \beta^2 \]

(b)

(c)

Problem 3

(a)
Using the two-point functions

\[: X_L(z)X_L(z') : = X_L(z)X_L(z') + \frac{\alpha'}{2} \ln(z-z') \]

\[: X_R(\bar{z})X_R(\bar{z}') : = X_R(\bar{z})X_R(\bar{z}') + \frac{\alpha'}{2} \ln(\bar{z}-\bar{z}') \]

\[: X_L(z)X_R(\bar{z}') : = 0 \]
We derive the more general contraction rule
\[F := \exp \left(-\frac{\alpha'}{2} \int dz dz' \ln(z-z') \frac{\delta}{\delta x_F} \frac{\partial}{\partial X_{GL}} - \frac{\alpha'}{2} \int d\bar{z} d\bar{z}' \frac{\delta}{\delta x_{FR}} \frac{\delta}{\delta x_{GR}} \right) : F G : \]

using this,
\[O_{k,\bar{k}}(z,\bar{z}) := \exp \left(\frac{1}{4} k \bar{k} \ln(z) + \frac{1}{4} \bar{k} k \ln(\bar{z}) \right) : O_{k',\bar{k}'}(0,\bar{0}) : \]

See also Polchinski 8.2.19.

(b)
Operators \(O_{k,\bar{k}} \) and \(O_{k',\bar{k}'} \) are mutually local if and only if their OPE is single-valued on the complex plane which requires \(z^{k} \bar{k} \) to be single-valued. Therefore
\[\langle k, k' \rangle = k \bar{k}' - \bar{k} k' \]

must be an integer.

(c)
Given a set \(S \) of mutually local operators closed under the OPE and two operators \(O_{n(k,\bar{k})}, O_{m(k',\bar{k}')}, \in S \) then
\[O_{n(k,\bar{k})} \in S \]
since it occurs in the OPE of \(O_{k,\bar{k}} \) with itself \(n \) times. Similarly we can take the OPE of \(O_{n(k,\bar{k})} \) and \(O_{m(k',\bar{k}')} \) to conclude \(O_{n(k,\bar{k})} + m(k',\bar{k}') \in S \).

(c) Bonus
This part was unclear, but additionally we can show that if \(O_{k,\bar{k}}, O_{k',\bar{k}'} \in S \) are mutually local operators then \(O_{n(k,\bar{k})} + m(k',\bar{k}') \) is mutually local with all other operators in \(S \). For example with given three mutually local operators \(O_{k,\bar{k}}, O_{k',\bar{k}'}, O_{l,\bar{l}}, \in S \) then
\[O_{n(k,\bar{k})} + m(k',\bar{k}') \]
is mutually local to \(O_{l,\bar{l}} \) if
\[n(lk + m\bar{k}') - \bar{l}(nk + m\bar{k}) \]
is an integer. A simple rearrangement of terms shows this expression equals
\[n(lk - \bar{l}k) + m(lk' - \bar{l}k') \]
which is a sum of integer terms since \(O_{k,\bar{k}} \) and \(O_{k',\bar{k}'} \) are mutually local.

Problem 4
From the Ward identities we can always show that the OPE of the stress energy tensor \(T(z) \) with an operator \(O(0,\bar{0}) \) is of the form
\[T(z) O(0,\bar{0}) = \frac{\partial O}{\partial z} + \sum_{j \geq 2} a_{-j} O_j(a,\bar{0}). \]
However in the spirit of this problem we directly show this for operators of the form
\[\mathcal{O} = \partial^{a_1} X \partial^{a_2} X \ldots \partial^{a_k} X. \]

First we verify the claim for the special case
\[\mathcal{O}^{(n)}(w, \bar{w}) = \partial^n X(w, \bar{w}) \]

\[: T(z) :: \mathcal{O}^{(n)}(w, \bar{w}) : = \partial X(z) \partial^n \left(\frac{1}{z - w} \right) \]
\[= \frac{n!}{(z - w)^n} \left[\partial X(w) + \cdots + \left(\frac{z - w}{n} \right)^n \partial^{n+1} X(w) + \cdots \right] \]
\[= \frac{\partial \mathcal{O}^n(w, \bar{w})}{z - w} + \sum_{j \geq 2} a_j \mathcal{O}_j(o, \bar{0}). \]

where we have Taylor expanded \(X(z) \) about \(w \). Now consider a more general operator
\[\mathcal{O}(w, \bar{w}) = \mathcal{O}^{(a_1)} \mathcal{O}^{(a_2)} \ldots \mathcal{O}^{(a_k)}(w, \bar{w}) \]

The contributions to the \(1/(z - w) \) pole in the \(: T(z) :: \mathcal{O}(w, \bar{w}) :_1 \) contraction OPE with a single contraction are
\[\partial \mathcal{O}^{(a_1)} \mathcal{O}^{(a_2)} \ldots \mathcal{O}^{(a_n)} + \mathcal{O}^{(a_1)} \partial \mathcal{O}^{(a_2)} \ldots \mathcal{O}^{(a_n)} + \cdots + \mathcal{O}^{(a_1)} \mathcal{O}^{(a_2)} \ldots \partial \mathcal{O}^{(a_n)} \]

which is simply \(\partial \mathcal{O}(w, \bar{w}) \). The terms with two contractions have all poles with order at least two and all operators in the OPE are expanded about \(w \) so there is no way to get a contribution to the \(1/(z - w) \) pole.

Alternatively, the generating functional for normal ordering (Polchinski 2.2.10) can be used to give a short proof of this result.