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Problem 2 - Geodesic Equations

Consider a relativisitic point particle in d+ 1 dimensions, with action

Sτ = −m
∫ √

−gµν
dxµ

dτ

dxν

dτ
dτ = −m

∫
ds

(a)

Under the reparametrization
τ ′ = τ ′(τ)

the action becomes

Sτ = −m
∫ √

−gµν
dxµ

dτ ′
dxν

dτ ′

(
dτ ′

dτ

)
dτ

= −m
∫ √

−gµν
dxµ

dτ ′
dxν

dτ ′ dτ
′

= Sτ ′

where we have repeatedly used the chain rule. So the action is invariant under
reparametrization.

(b)

If we choose
ds

dτ
=
(
−gµν

dxµ

dτ

dxν

dτ

)1/2

then (
−gµν

dxµ

ds

dxν

ds

)
= 1

by part (a).

(c)

We compute the following variations

∂S

∂ẋα
= gαµẋ

µ

∂S

∂xα
=

1
2

(∂αgµν)ẋµẋν

d

ds

(
∂S

∂ẋα

)
= (∂νgαµ)ẋµẋν + gαµẍ

µ

1



where we have set (
−gµν

dxµ

ds

dxν

ds

)
= 1

after computing the variation. After symmetrizing

(∂νgαµ)ẋµẋν =
1
2

(∂νgαµ + ∂µgαν) ẋµẋν

the Euler-Lagrange equation yields

ẍµ +
1
2

(gαµ,ν + gαν,µ − gµν,α) ẋµẋν = 0.

Finally we raise the index on ẍµ by contracting both sides with gαβ yielding the
geodesic equation

ẍβ + Γβµν ẋ
µẋν = 0.
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1. (15 Points)

(a) The Lagrangian for the point particle in an EM field is, from the lecture notes:

L = −m
√

−ẋµẋµ ± eAµẋ
µ (1)

Therefore the Euler-Lagrange equations give the equations of motion:

∂

∂τ

∂L
∂ẋµ

=
∂L
∂xµ

(2)

∂

∂τ

(

mẋµ√
−ẋν ẋν

± eAµ

)

= ±e∂Aν

∂xµ
ẋν (3)

mu̇µ ± e
∂xν

∂τ

∂

∂xν
Aµ = ±e∂Aν

∂xµ
ẋν (4)

(5)

mu̇µ ± e(∂νAµ − ∂µAν)ẋν = 0 (6)

mu̇µ = ±eFµν ẋ
ν (7)

(b) Instead of the hint in the problem, we can obtain the identical system by choosing a particular parameterization,
namely we choose τ such that −ẋµẋµ = m2. Taking this constraint, we see that the equation of motion derived
in part a becomes simply:

ẍµ = ±eFµν ẋ
ν (8)

m2 = −ẋµẋµ (9)

Choose the positive sign for e so we stop carrying around those pesky ±’s. Plugging in for the explicit form of
Fµν , we get

ẍ1 = ẍ2 = 0 (10)

ẍ3 = −eBẋ4 (11)

ẍ4 = eBẋ3 (12)

plus the constraint above. These are a standard set of coupled differential equations, their solutions are well know,
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and easily derived:

x1 = a1 + a2τ (13)

x2 = b1 + b2τ (14)

x3 = c1 +
c2

eB
sin(eBτ) +

c3

e2B2
cos(eBτ) (15)

x4 = c4 −
c2

eB
cos(eBτ) +

c3

e2B2
sin(eBτ) (16)

(17)

If we assume simplifying initial conditions such that a1 = 0 an a2 = 1, then τ = x1 = t, and we can rewrite the
solution in a more standard classical form:

~x(t) = (b1 + b2t)x̂2 +
(

c1 +
c2

eB
sin(eBt) +

c3

e2B2
cos(eBt)

)

x̂3 (18)

+
(

c4 −
c2

eB
cos(eBt) +

c3

e2B2
sin(eBt)

)

x̂4 (19)

This motion is now immediately identified as a helix in the 3-4 plane, as we would expect for the motion of a
charged particle in a constant magnetic field.

(c) Starting from the covariant form of the lagrangian:

L = −1

2
(ẋµẋµ −m2) ± eAµẋ

µ (20)

(note there is a typo in the lecture notes with the sign of m2) The conjugate momenta of the xµ is trivially found:

pµ ≡ ∂L
∂ẋµ

= −ẋµ ± eAµ (21)

So the Hamiltonian is:

H ≡ pµẋµ − L (22)

= −pµ(pµ ∓ eAµ) +
1

2
(ẋµẋµ −m2) ∓ eAµẋµ (23)

= −pµ(pµ ∓ eAµ) +
1

2
((pµ ∓ eAµ)(pµ ∓ eAµ) −m2) + eAµ(pµ ∓ eAµ) (24)

= −1

2
(pµ ∓ eAµ)(pµ ∓ eAµ) − 1

2
m2 (25)

Because the original action was manifestly covariant, we know that the constraint will just be H = 0 or H |ψ〉 = 0
on quantum states. Let’s verify this. We know that the constraint with η = 1 from the η equations of motion
imply that m2 = −ẋµẋµ. Therefore, in terms of the momentum variables, m2 + (pµ ∓ eAµ)(pµ ∓ eAµ) = 0, which
is exactly H = 0 as we derived above.

So, defining Dµ = ∂µ ∓ ieAµ, if we replace the momentum in the normal way pµ → −i∂µ, the quantum constraint
is:

H |ψ〉 = 0 (26)

(−i∂µ ∓ eAµ)(−i∂µ ∓ eAµ) +m2) |ψ〉 = 0 (27)

(∂µ ∓ ieAµ)(∂µ ∓ ieAµ) −m2) |ψ〉 = 0 (28)

(DµD
µ −m2) |ψ〉 = 0 (29)
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That is the Klein-Gordon equation.

2. 15 Points

(a) The action of the point particle coupled to a background of the form given in the problem becomes:

S = −m
∫

dτ

√

ẋ+ẋ− + βx2
⊥
ẋ+2 − ẋ2

⊥
(30)

Using reparameterization invarience to choose x+ = τ , it becomes:

S = −m
∫

dτ

√

ẋ− + βx2
⊥
− ẋ2

⊥
(31)

Now we follow the lecture notes, and find the Hamiltonian corresponding to this system. First we get the conjugate
momentum:

p⊥ =
∂L
∂ẋ⊥

=
mẋ⊥√
A

(32)

p− =
∂L
∂ẋ−

= − m

2
√
A

(33)

A = ẋ− + βx2
⊥
− ẋ2

⊥
(34)

Note that

√
A = − m

2p−
(35)

ẋ⊥ = − p⊥

2p−
(36)

ẋ− =
m2 + p2

⊥

4p2
−

− βx2
⊥

(37)

The Hamiltonian is then

H = p−ẋ
− + p⊥ẋ⊥ − L (38)

=
m2 + p2

⊥

4p−
− p−βx

2
⊥
− p2

⊥

2p−
− m2

2p−
(39)

= −1

4

(

m2 + p2
⊥

p−

)

− p−βx
2
⊥ (40)

We know that p− is constant since it is related to p+ by p− = − 1

2
p+, so in terms of p+ we simply have

H =
m2

2p+
+

p2
⊥

2p+
+
βp+x2

⊥

2
(41)

We recognize this as simply the hamiltonian of the simple harmonic oscillator, with β being the frequency, and p+

playing the role of mass.
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(b) The equations of motion (given the hamiltonian above) are trivially:

ẍ⊥ + βx⊥ = 0 (42)

This is simply the standard harmonic oscillator solution for the directions perpendicular to the light cone.

x⊥(τ) = c1 cos(
√

βτ) + c2 sin(
√

βτ) (43)

For the one extra direction x−, we use the fact that p− is a constant, therefore A is a constant as defined above,
call it d:

A = d (44)

ẋ− = d+ ẋ2
⊥ − βx2

⊥ (45)

ẋ− = d+ (c22 − c21) cos(2
√

βτ) − 2c1c2 sin(2
√

βτ) (46)

x− = e+ dτ +
(c22 − c21)

2
√
β

sin(2
√

βτ) +
c1c2√
β

cos(2
√

βτ) (47)

with a little bit of algebra, where c1, c2, d, and e are constants.

(c) With the Lagrange multiplier, the action becomes:

S =
1

2

∫

dτ
(

η−1(ẋ− + βx2
⊥
− ẋ2

⊥
) + ηm2

)

(48)

The η equation of motion is:

η2 =
ẋ− + βx2

⊥
− ẋ2

⊥

m2
(49)

so upon substitution back into the action we recover the original action.

The Euler Lagrange equation of motion for x⊥ is:

η−1ẍ⊥ + η−1βx⊥ = 0 (50)

(d) Choosing η = 1, the equation of motion becomes:

ẍ⊥ + βx⊥ = 0 (51)

exactly as we had before (actually, we could have chosen η as anything except 0 and this equation of motion would
have been the same, but the next equation would not be) Combined with the constraint

m2 = ẋ− + βx2
⊥
− ẋ2

⊥
(52)

we have the exact same set of equations as we did in part b, and therefore the solutions will be identical as well.

(e) Let’s see the hamiltonian again:

H =
m2

2p+
+

p2
⊥

2p+
+
βp+x2

⊥

2
(53)

As stated above, this is nothing but the harmonic oscillator hamiltonian in the D − 2 directions perpendicular
to the light cone. So upon quantization, you will get D − 2 uncoupled harmonic oscillators, each contributing
energy

√
β(n+ 1

2
) for some integer quantum number n. Since you have D− 2 oscillators, you have D− 2 quantum

numbers to describe the state.

4


