String Theory 230A Homework \# 1 Solutions

Richard Eager
Department of Physics
University of California; Santa Barbara, CA 93106

Problem 2-Geodesic Equations

Consider a relativisitic point particle in $d+1$ dimensions, with action

$$
S_{\tau}=-m \int \sqrt{-g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}} d \tau=-m \int d s
$$

(a)

Under the reparametrization

$$
\tau^{\prime}=\tau^{\prime}(\tau)
$$

the action becomes

$$
\begin{aligned}
S_{\tau} & =-m \int \sqrt{-g_{\mu \nu} \frac{d x^{\mu}}{d \tau^{\prime}} \frac{d x^{\nu}}{d \tau^{\prime}}}\left(\frac{d \tau^{\prime}}{d \tau}\right) d \tau \\
& =-m \int \sqrt{-g_{\mu \nu} \frac{d x^{\mu}}{d \tau^{\prime}} \frac{d x^{\nu}}{d \tau^{\prime}}} d \tau^{\prime} \\
& =S_{\tau^{\prime}}
\end{aligned}
$$

where we have repeatedly used the chain rule. So the action is invariant under reparametrization.

(b)

If we choose

$$
\frac{d s}{d \tau}=\left(-g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}\right)^{1 / 2}
$$

then

$$
\left(-g_{\mu \nu} \frac{d x^{\mu}}{d s} \frac{d x^{\nu}}{d s}\right)=1
$$

by part (a).
(c)

We compute the following variations

$$
\begin{aligned}
\frac{\partial S}{\partial \dot{x}^{\alpha}} & =g_{\alpha \mu} \dot{x}^{\mu} \\
\frac{\partial S}{\partial x^{\alpha}} & =\frac{1}{2}\left(\partial_{\alpha} g_{\mu \nu}\right) \dot{x}^{\mu} \dot{x}^{\nu} \\
\frac{d}{d s}\left(\frac{\partial S}{\partial \dot{x}^{\alpha}}\right) & =\left(\partial_{\nu} g_{\alpha \mu}\right) \dot{x}^{\mu} \dot{x}^{\nu}+g_{\alpha \mu} \ddot{x}^{\mu}
\end{aligned}
$$

where we have set

$$
\left(-g_{\mu \nu} \frac{d x^{\mu}}{d s} \frac{d x^{\nu}}{d s}\right)=1
$$

after computing the variation. After symmetrizing

$$
\left(\partial_{\nu} g_{\alpha \mu}\right) \dot{x}^{\mu} \dot{x}^{\nu}=\frac{1}{2}\left(\partial_{\nu} g_{\alpha \mu}+\partial_{\mu} g_{\alpha \nu}\right) \dot{x}^{\mu} \dot{x}^{\nu}
$$

the Euler-Lagrange equation yields

$$
\ddot{x}_{\mu}+\frac{1}{2}\left(g_{\alpha \mu, \nu}+g_{\alpha \nu, \mu}-g_{\mu \nu, \alpha}\right) \dot{x}^{\mu} \dot{x}^{\nu}=0 .
$$

Finally we raise the index on \ddot{x}_{μ} by contracting both sides with $g^{\alpha \beta}$ yielding the geodesic equation

$$
\ddot{x}^{\beta}+\Gamma_{\mu \nu}^{\beta} \dot{x}^{\mu} \dot{x}^{\nu}=0
$$

String Theory 229A Homework Solution Set \#1

Sam Pinansky

January 24, 2006

1. (15 Points)
(a) The Lagrangian for the point particle in an EM field is, from the lecture notes:

$$
\begin{equation*}
\mathcal{L}=-m \sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}} \pm e A_{\mu} \dot{x}^{\mu} \tag{1}
\end{equation*}
$$

Therefore the Euler-Lagrange equations give the equations of motion:

$$
\begin{align*}
\frac{\partial}{\partial \tau} \frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}} & =\frac{\partial \mathcal{L}}{\partial x^{\mu}} \tag{2}\\
\frac{\partial}{\partial \tau}\left(\frac{m \dot{x}_{\mu}}{\sqrt{-\dot{x}^{\nu} \dot{x}_{\nu}}} \pm e A_{\mu}\right) & = \pm e \frac{\partial A_{\nu}}{\partial x^{\mu}} \dot{x}^{\nu} \tag{3}\\
m \dot{u}_{\mu} \pm e \frac{\partial x^{\nu}}{\partial \tau} \frac{\partial}{\partial x^{\nu}} A_{\mu} & = \pm e \frac{\partial A_{\nu}}{\partial x^{\mu}} \dot{x}^{\nu} \tag{4}\\
m \dot{u}_{\mu} \pm e\left(\partial_{\nu} A_{\mu}-\partial_{\mu} A_{\nu}\right) \dot{x}^{\nu} & =0 \tag{6}\\
m \dot{u}_{\mu} & = \pm e F_{\mu \nu} \dot{x}^{\nu}
\end{align*}
$$

(b) Instead of the hint in the problem, we can obtain the identical system by choosing a particular parameterization, namely we choose τ such that $-\dot{x}^{\mu} \dot{x}_{\mu}=m^{2}$. Taking this constraint, we see that the equation of motion derived in part a becomes simply:

$$
\begin{align*}
\ddot{x}_{\mu} & = \pm e F_{\mu \nu} \dot{x}^{\nu} \tag{8}\\
m^{2} & =-\dot{x}^{\mu} \dot{x}_{\mu} \tag{9}
\end{align*}
$$

Choose the positive sign for e so we stop carrying around those pesky \pm 's. Plugging in for the explicit form of $F_{\mu \nu}$, we get

$$
\begin{align*}
& \ddot{x}_{1}=\ddot{x}_{2}=0 \tag{10}\\
& \ddot{x}_{3}=-e B \dot{x}_{4} \tag{11}\\
& \ddot{x}_{4}=e B \dot{x}_{3} \tag{12}
\end{align*}
$$

plus the constraint above. These are a standard set of coupled differential equations, their solutions are well know,
and easily derived:

$$
\begin{align*}
& x_{1}=a_{1}+a_{2} \tau \tag{13}\\
& x_{2}=b_{1}+b_{2} \tau \tag{14}\\
& x_{3}=c_{1}+\frac{c_{2}}{e B} \sin (e B \tau)+\frac{c_{3}}{e^{2} B^{2}} \cos (e B \tau) \tag{15}\\
& x_{4}=c_{4}-\frac{c_{2}}{e B} \cos (e B \tau)+\frac{c_{3}}{e^{2} B^{2}} \sin (e B \tau) \tag{16}
\end{align*}
$$

If we assume simplifying initial conditions such that $a_{1}=0$ an $a_{2}=1$, then $\tau=x_{1}=t$, and we can rewrite the solution in a more standard classical form:

$$
\begin{align*}
& \vec{x}(t)=\left(b_{1}+b_{2} t\right) \hat{x}_{2}+\left(c_{1}+\frac{c_{2}}{e B} \sin (e B t)+\frac{c_{3}}{e^{2} B^{2}} \cos (e B t)\right) \hat{x}_{3} \tag{18}\\
&+\left(c_{4}-\frac{c_{2}}{e B} \cos (e B t)+\frac{c_{3}}{e^{2} B^{2}} \sin (e B t)\right) \hat{x}_{4} \tag{19}
\end{align*}
$$

This motion is now immediately identified as a helix in the $3-4$ plane, as we would expect for the motion of a charged particle in a constant magnetic field.
(c) Starting from the covariant form of the lagrangian:

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2}\left(\dot{x}^{\mu} \dot{x}_{\mu}-m^{2}\right) \pm e A_{\mu} \dot{x}^{\mu} \tag{20}
\end{equation*}
$$

(note there is a typo in the lecture notes with the sign of m^{2}) The conjugate momenta of the x^{μ} is trivially found:

$$
\begin{equation*}
p_{\mu} \equiv \frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}}=-\dot{x}_{\mu} \pm e A_{\mu} \tag{21}
\end{equation*}
$$

So the Hamiltonian is:

$$
\begin{align*}
H & \equiv p^{\mu} \dot{x}_{\mu}-\mathcal{L} \tag{22}\\
& =-p^{\mu}\left(p_{\mu} \mp e A_{\mu}\right)+\frac{1}{2}\left(\dot{x}^{\mu} \dot{x}_{\mu}-m^{2}\right) \mp e A^{\mu} \dot{x}_{\mu} \tag{23}\\
& =-p^{\mu}\left(p_{\mu} \mp e A_{\mu}\right)+\frac{1}{2}\left(\left(p_{\mu} \mp e A_{\mu}\right)\left(p^{\mu} \mp e A^{\mu}\right)-m^{2}\right)+e A^{\mu}\left(p_{\mu} \mp e A_{\mu}\right) \tag{24}\\
& =-\frac{1}{2}\left(p_{\mu} \mp e A_{\mu}\right)\left(p^{\mu} \mp e A^{\mu}\right)-\frac{1}{2} m^{2} \tag{25}
\end{align*}
$$

Because the original action was manifestly covariant, we know that the constraint will just be $H=0$ or $H|\psi\rangle=0$ on quantum states. Let's verify this. We know that the constraint with $\eta=1$ from the η equations of motion imply that $m^{2}=-\dot{x}^{\mu} \dot{x}_{\mu}$. Therefore, in terms of the momentum variables, $m^{2}+\left(p_{\mu} \mp e A_{\mu}\right)\left(p^{\mu} \mp e A^{\mu}\right)=0$, which is exactly $H=0$ as we derived above.
So, defining $D_{\mu}=\partial_{\mu} \mp i e A_{\mu}$, if we replace the momentum in the normal way $p_{\mu} \rightarrow-i \partial_{\mu}$, the quantum constraint is:

$$
\begin{align*}
H|\psi\rangle & =0 \tag{26}\\
\left.\left(-i \partial_{\mu} \mp e A_{\mu}\right)\left(-i \partial^{\mu} \mp e A^{\mu}\right)+m^{2}\right)|\psi\rangle & =0 \tag{27}\\
\left.\left(\partial_{\mu} \mp i e A_{\mu}\right)\left(\partial^{\mu} \mp i e A^{\mu}\right)-m^{2}\right)|\psi\rangle & =0 \tag{28}\\
\left(D_{\mu} D^{\mu}-m^{2}\right)|\psi\rangle & =0 \tag{29}
\end{align*}
$$

That is the Klein-Gordon equation.
2. 15 Points
(a) The action of the point particle coupled to a background of the form given in the problem becomes:

$$
\begin{equation*}
S=-m \int d \tau \sqrt{\dot{x}^{+} \dot{x}^{-}+\beta x_{\perp}^{2} \dot{x}^{+2}-\dot{x}_{\perp}^{2}} \tag{30}
\end{equation*}
$$

Using reparameterization invarience to choose $x^{+}=\tau$, it becomes:

$$
\begin{equation*}
S=-m \int d \tau \sqrt{\dot{x}^{-}+\beta x_{\perp}^{2}-\dot{x}_{\perp}^{2}} \tag{31}
\end{equation*}
$$

Now we follow the lecture notes, and find the Hamiltonian corresponding to this system. First we get the conjugate momentum:

$$
\begin{align*}
p_{\perp} & =\frac{\partial \mathcal{L}}{\partial \dot{x}_{\perp}}=\frac{m \dot{x}_{\perp}}{\sqrt{A}} \tag{32}\\
p_{-} & =\frac{\partial \mathcal{L}}{\partial \dot{x}^{-}}=-\frac{m}{2 \sqrt{A}} \tag{33}\\
A & =\dot{x}^{-}+\beta x_{\perp}^{2}-\dot{x}_{\perp}^{2} \tag{34}
\end{align*}
$$

Note that

$$
\begin{align*}
\sqrt{A} & =-\frac{m}{2 p_{-}} \tag{35}\\
\dot{x}_{\perp} & =-\frac{p_{\perp}}{2 p_{-}} \tag{36}\\
\dot{x}^{-} & =\frac{m^{2}+p_{\perp}^{2}}{4 p_{-}^{2}}-\beta x_{\perp}^{2} \tag{37}
\end{align*}
$$

The Hamiltonian is then

$$
\begin{align*}
H & =p_{-} \dot{x}^{-}+p_{\perp} \dot{x}_{\perp}-\mathcal{L} \tag{38}\\
& =\frac{m^{2}+p_{\perp}^{2}}{4 p_{-}}-p_{-} \beta x_{\perp}^{2}-\frac{p_{\perp}^{2}}{2 p_{-}}-\frac{m^{2}}{2 p_{-}} \tag{39}\\
& =-\frac{1}{4}\left(\frac{m^{2}+p_{\perp}^{2}}{p_{-}}\right)-p_{-} \beta x_{\perp}^{2} \tag{40}
\end{align*}
$$

We know that p_{-}is constant since it is related to p^{+}by $p_{-}=-\frac{1}{2} p^{+}$, so in terms of p^{+}we simply have

$$
\begin{equation*}
H=\frac{m^{2}}{2 p^{+}}+\frac{p_{\perp}^{2}}{2 p^{+}}+\frac{\beta p^{+} x_{\perp}^{2}}{2} \tag{41}
\end{equation*}
$$

We recognize this as simply the hamiltonian of the simple harmonic oscillator, with β being the frequency, and p^{+} playing the role of mass.
(b) The equations of motion (given the hamiltonian above) are trivially:

$$
\begin{equation*}
\ddot{x}_{\perp}+\beta x_{\perp}=0 \tag{42}
\end{equation*}
$$

This is simply the standard harmonic oscillator solution for the directions perpendicular to the light cone.

$$
\begin{equation*}
x_{\perp}(\tau)=c_{1} \cos (\sqrt{\beta} \tau)+c_{2} \sin (\sqrt{\beta} \tau) \tag{43}
\end{equation*}
$$

For the one extra direction x^{-}, we use the fact that p_{-}is a constant, therefore A is a constant as defined above, call it d :

$$
\begin{align*}
A & =d \tag{44}\\
\dot{x}^{-} & =d+\dot{x}_{\perp}^{2}-\beta x_{\perp}^{2} \tag{45}\\
\dot{x}^{-} & =d+\left(c_{2}^{2}-c_{1}^{2}\right) \cos (2 \sqrt{\beta} \tau)-2 c_{1} c_{2} \sin (2 \sqrt{\beta} \tau) \tag{46}\\
x^{-} & =e+d \tau+\frac{\left(c_{2}^{2}-c_{1}^{2}\right)}{2 \sqrt{\beta}} \sin (2 \sqrt{\beta} \tau)+\frac{c_{1} c_{2}}{\sqrt{\beta}} \cos (2 \sqrt{\beta} \tau) \tag{47}
\end{align*}
$$

with a little bit of algebra, where c_{1}, c_{2}, d, and e are constants.
(c) With the Lagrange multiplier, the action becomes:

$$
\begin{equation*}
S=\frac{1}{2} \int d \tau\left(\eta^{-1}\left(\dot{x}^{-}+\beta x_{\perp}^{2}-\dot{x}_{\perp}^{2}\right)+\eta m^{2}\right) \tag{48}
\end{equation*}
$$

The η equation of motion is:

$$
\begin{equation*}
\eta^{2}=\frac{\dot{x}^{-}+\beta x_{\perp}^{2}-\dot{x}_{\perp}^{2}}{m^{2}} \tag{49}
\end{equation*}
$$

so upon substitution back into the action we recover the original action.
The Euler Lagrange equation of motion for x_{\perp} is:

$$
\begin{equation*}
\eta^{-1} \ddot{x}_{\perp}+\eta^{-1} \beta x_{\perp}=0 \tag{50}
\end{equation*}
$$

(d) Choosing $\eta=1$, the equation of motion becomes:

$$
\begin{equation*}
\ddot{x}_{\perp}+\beta x_{\perp}=0 \tag{51}
\end{equation*}
$$

exactly as we had before (actually, we could have chosen η as anything except 0 and this equation of motion would have been the same, but the next equation would not be) Combined with the constraint

$$
\begin{equation*}
m^{2}=\dot{x}^{-}+\beta x_{\perp}^{2}-\dot{x}_{\perp}^{2} \tag{52}
\end{equation*}
$$

we have the exact same set of equations as we did in part b , and therefore the solutions will be identical as well.
(e) Let's see the hamiltonian again:

$$
\begin{equation*}
H=\frac{m^{2}}{2 p^{+}}+\frac{p_{\perp}^{2}}{2 p^{+}}+\frac{\beta p^{+} x_{\perp}^{2}}{2} \tag{53}
\end{equation*}
$$

As stated above, this is nothing but the harmonic oscillator hamiltonian in the $D-2$ directions perpendicular to the light cone. So upon quantization, you will get $D-2$ uncoupled harmonic oscillators, each contributing energy $\sqrt{\beta}\left(n+\frac{1}{2}\right)$ for some integer quantum number n. Since you have $D-2$ oscillators, you have $D-2$ quantum numbers to describe the state.

