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Problem 2 - Geodesic Equations

Consider a relativisitic point particle in d + 1 dimensions, with action
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where we have repeatedly used the chain rule. So the action is invariant under
reparametrization.
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after computing the variation. After symmetrizing
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the Euler-Lagrange equation yields
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Finally we raise the index on &, by contracting both sides with g*? yielding the

geodesic equation

i’ + T8 iti” = 0.
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1. (15 Points)

(a) The Lagrangian for the point particle in an EM field is, from the lecture notes:

L=—my\/—iti, +eA,i" (1)

Therefore the Euler-Lagrange equations give the equations of motion:
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(b) Instead of the hint in the problem, we can obtain the identical system by choosing a particular parameterization,
namely we choose 7 such that —it1, = m?. Taking this constraint, we see that the equation of motion derived
in part a becomes simply:

iy = teF,, " (8)

m? = —itg, 9)

Choose the positive sign for e so we stop carrying around those pesky +’s. Plugging in for the explicit form of

F,.,, we get
B =39 =0 (10)
fi‘3 = —63&13‘4 (11)
j4 = eBifg (12)

plus the constraint above. These are a standard set of coupled differential equations, their solutions are well know,



and easily derived:
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x5 =c1 + ec—; sin(eBT) + 6201332
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Ty =cCq— ec_; cos(eBT) + sin(eBT)
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If we assume simplifying initial conditions such that a1 = 0 an as = 1, then 7 = x1 = ¢, and we can rewrite the
solution in a more standard classical form:

Z(t) = (b1 + bat)To + (01 + ec_; sin(eBt) ;;2 cos(eBt)) (18)

+ (04 - :—; cos(eBt) + sm(eBt)) (19)
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This motion is now immediately identified as a helix in the 3-4 plane, as we would expect for the motion of a
charged particle in a constant magnetic field.
Starting from the covariant form of the lagrangian:
1
L= —5(55%“ —m?) £ ed,i" (20)

(note there is a typo in the lecture notes with the sign of m?) The conjugate momenta of the z* is trivially found:
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Pu= 5o = -3, e, (21)
So the Hamiltonian is:
H=pli, — L (22)
= —p"(pu F eAy) + %(j;”x'# —m?) F eAliy, (23)
(0 F ) (0 F AP F eAF) —m?) + eAM(p, F €A (24)
5 F AP F eA) L (25)

Because the original action was manifestly covariant, we know that the constraint will just be H =0 or H |¢)) =0
on quantum states. Let’s verify this. We know that the constraint with n = 1 from the 1 equations of motion
imply that m? = —i#i,. Therefore, in terms of the momentum variables, m? + (p,, F eA,,)(p" F eA*) = 0, which
is exactly H = 0 as we derived above.

So, defining D, = 0, FieA,, if we replace the momentum in the normal way p, — —i0,, the quantum constraint
is:

H ) = (26)

(—i8, T eA,)(—id" F eAM) +m?) |¢) = (27)
(8, FieA,) (0" FieAr) —m?) i) = (28)
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That is the Klein-Gordon equation.
2. 15 Points

(a) The action of the point particle coupled to a background of the form given in the problem becomes:

S:—m/ dT\/x'JFd:*—I—Bxﬁ_:z':*Q—j:i

Using reparameterization invarience to choose ™ = 7, it becomes:

S:—m/ dry/@= + Ba? —i?

Now we follow the lecture notes, and find the Hamiltonian corresponding to this system
momentum:

oL m:bJ_

(30)

(31)

. First we get the conjugate

PL= 5 T (32)
p = (575 -0 (33)
A=3" + B2 — 33 (34)
Note that
m
VA= ~Zp- (35)
i = —% (36)
b= TP (37)
The Hamiltonian is then
H=p_ i +pi, —L (38)
e s (39)
- () —posa (40)
We know that p_ is constant since it is related to p* by p_ = —1p™, so in terms of p* we simply have
_ % 2% ks (41)

We recognize this as simply the hamiltonian of the simple harmonic oscillator, with 8 being the frequency, and p™

playing the role of mass.



(b)

The equations of motion (given the hamiltonian above) are trivially:
T, +pPr; =0 (42)
This is simply the standard harmonic oscillator solution for the directions perpendicular to the light cone.

21 (1) = ¢1 cos(v/BT) + casin(y/B7) (43)

For the one extra direction x~, we use the fact that p_ is a constant, therefore A is a constant as defined above,
call it d:

A=d (44)
i =d+ 3% - Bt (45)
i =d+ (2 — ) cos(2y/B7) — 2¢1¢9 sin(24/B7) (46)
o et dry @ =6) sin(2y/F7) + 2 cos(21/Fr) (47)
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with a little bit of algebra, where ¢y, co,d, and e are constants.
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With the Lagrange multiplier, the action becomes:

1 - .
S = 5/ dr (7771(17 + Bxi — xi) + an) (48)
The 7n equation of motion is:
P 2 . 2
o AT+ Py — a7 4
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7 3 (49)
so upon substitution back into the action we recover the original action.
The Euler Lagrange equation of motion for x is:

n~li 4+ e =0 (50)
Choosing 1 = 1, the equation of motion becomes:
i+ BrL =0 (51)

exactly as we had before (actually, we could have chosen 7 as anything except 0 and this equation of motion would
have been the same, but the next equation would not be) Combined with the constraint

m? =i~ + Boi — i3 (52)

we have the exact same set of equations as we did in part b, and therefore the solutions will be identical as well.

Let’s see the hamiltonian again:
2

H = m_ + i + ﬁp*‘xi
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As stated above, this is nothing but the harmonic oscillator hamiltonian in the D — 2 directions perpendicular
to the light cone. So upon quantization, you will get D — 2 uncoupled harmonic oscillators, each contributing
energy v/B(n+ %) for some integer quantum number n. Since you have D — 2 oscillators, you have D — 2 quantum

numbers to describe the state.

(53)



