1) (15 points) A symplectic manifold is an ordinary manifold \(M \) with an antisymmetric tensor \(\Omega_{\alpha\beta} = \Omega_{[\alpha\beta]} \) which has an inverse \(\Omega^{\alpha\beta} \Omega_{\beta\gamma} = \delta^\alpha_\gamma \) and satisfies \(\nabla_{[\alpha} \Omega_{\beta\gamma]} = 0 \). (This is the geometrical setting for classical mechanics. \(M \) represents the phase space and the Poisson bracket of two functions is \(\{ f, g \} = \Omega^{\alpha\beta} \nabla_\alpha f \nabla_\beta g \).)

(a) An infinitesimal canonical transformation is a vector field \(\xi \) satisfying \(\mathcal{L}_\xi \Omega = 0 \) where \(\mathcal{L}_\xi \) denotes the Lie derivative. Write this condition in terms of the covariant derivative \(\nabla_\alpha \) associated with a metric \(g_{\mu\nu} \) on \(M \).

(b) Show that every function \(F \) gives rise to an infinitesimal canonical transformation via \(\xi_\alpha = \Omega^{\alpha\beta} \nabla_\beta F \). (Note: Do not confuse this with Goldstein’s discussion of generators of finite canonical transformations which are different.)

2) (20 points) Consider the 2-dimensional metric:

\[
d s^2 = f(u,v)dudv
\]

where \(f \) is a positive function.

(a) What is the signature of this metric?

(b) Show that the curves \(u = \) constant are geodesics (for any choice of the function \(f \)). Are these timelike, spacelike, or null geodesics?

(c) Find the condition on \(f \) so that \(v \) is an affine parameter along the \(u = \) constant geodesics.

continued on page 2
3) (20 points) Consider the 3-dimensional spacetime

\[ds^2 = - \left(1 - \frac{r_0^2}{r^2} \right) dt^2 + dr^2 + (r^2 - r_0^2) d\varphi^2 \]

where \(r_0 \) is a constant. We are only interested in the region \(r > r_0 \).

(a) This space has two Killing fields. What are they? What are the conserved quantities along affinely parameterized geodesics?

(b) Compute the gravitational redshift experienced by a radial photon emitted at \(r = r_1 > r_0 \) and later observed at \(r = r_2 > r_1 \).

(c) Write down the equation for timelike geodesics. What is the condition for circular orbits?

4) (20 points) A cosmic string has a stress energy tensor whose only nonzero components are

\[T_{tt} = -T_{xx} = \mu \delta(y)\delta(z) \]

where \(\mu > 0 \) is the energy per unit length.

(a) Find a static solution to the linearized Einstein equation for this source.

(b) Describe the motion of a test particle that is initially moving parallel to the cosmic string. Work to first order in the perturbation.

(c) Solve Poisson’s equation \(\partial_i \partial^i \phi = 4\pi \rho \) with \(\rho = T_{tt} \) to find the Newtonian gravitational potential for a cosmic string. Compare your answer to (b) with the corresponding prediction of Newtonian gravity.