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1. Introduction

The theoryof the interactionof light with atomicmatterloomslargein the historicaldevelop-
mentof quantummechanics.Thiscircumstanceis not accidental,but simply a consequenceof
the fact that the light emittedor absorbedby atomicmatterprovidescluesinto its nature.The
synthesisof the quantumtheorythat resultedfrom spectroscopicandotheroptical investigations
is a fascinatingstory which, in manyrespects,is still developing.The purposeof this articleis to
reviewa recentandperhapsyet to be completedchapterof this story,namely,the currentdebate
overthe rangeof validity of semiclassicalradiationtheory. In this theory,which may assume
severalforms,electromagneticradiationis treatedas a classicallyprescribedfield while the atomic
matterwith which it interactsis describedaccordingto the dictatesof quantummechanics.

Quantumtheoryhas,of course,beendevelopedandappliedwith remarkablesuccessin many
areasof physics,but it is importantto rememberthat it was originally a theoryof the interaction
of light with atomsandmolecules.In this historicalsense,semiclassicalradiation theorystrikes
at the veryrootsof quantummechanics.Semiclassicalapproacheshavebeensuccessfulin ex-
plaining severalphenomenawhich hadbecomeparadigmsfor illustrating thefailure of classical
theory. It is interestingto reflect on what consequencestheseresultsmight havehad for the
developmentof quantumtheoryhadtheybeenknown,say,in 1927,theyearin which Dirac [11
publishedthe first work on field quantization.

Oneof the outstandingsuccessesof Dirac’s radiation theory was thederivationof theEinstein
A-coefficient for spontaneousemission.The conceptof spontaneousemissionwas introducedby
Einstein [21 in his classic 1 91 7 derivationof theblackbodyspectrum.Einstein’s rate-equation
approachled to a relationbetweenthe ratesof spontaneousandstimulatedemissionfor a system
in thermalequilibrium,but neitherof theseratescould at the time beevaluatedfrom first prin-
ciples. With the new radiationtheoryDirac showed,usingperturbationtheory,that thesponta-
neousemissionrate from atomiclevel m to n is given by

Amn = 4mnI2~nn13~3, (1.1)

where

hWmn=EmEn, (1.2)

and

~mn (mlerln) efd3r~.~(r)r~~(r), (1.3)

~m(’) beingan atomicstationarystatewith energyeigenvalueEm~Therate of energylossby the
atom is thush~)mn~

4mn= 41Mmn 2 w~~3c3,the sameexpressiononeobtainsfor theenergyloss
by a classicaloscillatingdipolewith dipolemoment2Re[Pmn exp(iwmn t)] ; thisresult was alsoob-
tainedby KramersandHeisenberg[31from the CorrespondencePrinciple.

Perhapsit is this closeformal similarity to the classicaltheory which hasinspiredvarious
attemptsto constructa theoryof spontaneousemissionwhich doesnot quantizethe radiation
field. In anycase,half a centuryafterDirac’s paper,thereis active interestin a semiclassical
theoryof spontaneousemission,andthe subjecthasbeenthe topic of oneor moresessionsin at
leastthreequantumopticsandelectronicsconferencesheldwithin the pastthreeyears.One of
the primaryaims of this reviewis to presentthevariousargumentswhich havearisenin assessing
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the mostsuccessfulsemiclassicaltheory of spontaneousemission,the “neoclassical”theoryad-
vancedby Jaynesandhis collaborators[4—6]. It hasbeenfound that,asidefrom its basicim-
portanceas a ubiquitousnaturalphenomenon,spontaneousemissionforcesconsiderationof
suchfundamentaltheoreticalquestionsas the radiationreactionfield of a point charge,the
vacuumfluctuationsof the radiationfield, andthe “paradox” of Einstein,PodolskyandRosen
[7].

Anotheraspectof spontaneousemissionprocessesthatis currentlyenjoyingmuch attention
was first introducedby Dicke [81, andisusuallyreferredto as “superradiance”[9]. This is the
phenomenonwherebya systemof atomsor moleculesradiatesspontaneouslyin a cooperative
manner,sothat the emissionproceedsat a ratevery muchhigher thanwouldbe expectedfrom
a modelof independentlyradiatingsources.Complementingsuchsuperradiantstatesof the
collectiveatomicsystemare“subradiant”statesin which the spontaneousemissionrateis very
low. Superradiancehasbeenobservedexperimentallyonly recently [101, anda semiclassical
treatment[11] seemsto accountratherwell for the experimentalresults;hereagain,however,
thereis somedisagreementregardingthevalidity of asemiclassicaltheory.A similar effect,the
modificationof spontaneousemissionratesby the presenceof mirrors, hasrecentlybeenob-
served[12, 13]. This effectcanbe describedas thecooperativeemissionof theemitterandits
mirror images[14]. As in the caseof a “free” atom,semiclassicalandquantum-electrodynamical
treatmentsarefound to give identical expressionsfor theradiativelinewidth.

The conceptof stimulatedemissionalso hadits debutin Einstein’spaper“On theQuantum
Theoryof Radiation” [2]. In fact,whereasEinstein consideredtheassumptionof spontaneous
emissionto be a naturalone,in completeanalogyto the radiation from a Hertz dipole, the
assumptionof stimulatedemissionprovedto bethe key to derivingPlanck’slawratherthan
Wien’s. Stimulatedemissionwas alsothe sinequa nonof theimportant“negative-oscillator”
termsin the Kramers—Heisenbergformula [3]; thisresult in turn implied the commutationrela-
tion [x, p~]= iFi. Theconceptof stimulatedemission,so importantin the chainof developments
leadingby 1927 to a considerablycompletequantumtheory,is alsoan ingredientof semiclassical
theory.Thefact that stimulatedemissionis well describedsemiclassicallyis borne out by the
theoryof the laser.Theuseof the semiclassicaltheory in this caseis usuallyjustified on the
groundsthat, for high “photon” densities,the quantum-mechanicaldescriptionof the field should
approachthe classical.

Oneof the apparentlyimportantfeaturesof the quantumtheoryof radiationis its prediction
of afluctuatingzero-pointfield of energydensity~1iw per mode.A “classical” theoryof zero-
pointeffectsresultsfrom takingsuch a field as thehomogeneoussolutionof the Maxwell equa-
tion, ratherthanthe usualnull source-freesolution.The field associatedwith eachmodein the
plane-waveexpansionis given a phasewhich is a uniformly distributedrandomvariableover
[0,2ir], andit is assumedthat thereis no phasecorrelationof differentmodes.Someimplications
of this “randomelectrodynamics”havebeeninvestigatedby Boyer [15—21]. In particular,such
a modelof interactingradiationandmatteraccountsfor the blackbodyspectrumandthe
vander Waalsforcesbetweenneutralpolarizableparticles.It is interestingto notethat thesere-
sultswere obtainedfrom a classicaltreatmentof the “atoms”, in the spirit of the Lorentzmodel.
The theory is thereforeneitherquantumelectrodynamicalnor semiclassical,in the usualsense.
The rathersurprisingresultsmentionedabove,however,necessitatesomediscussionof random
electrodynamicsin this article.
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RatherthanconcludingthisIntroductionin the usualfashionby outlining thecontentsof the
remainderof the paper,alreadyto befound in the tableof contents,only a statementof intent
will be made.It is hopedthat this article will providea readable,accurateaccountof the current
statusof semiclassicalradiationtheory asit is usedin quantumopticsandelectronics.The em-
phasisis on the meaningof semiclassicaltheoryat a basiclevel, andhow it compareswith the
quantum-electrodynamicaltheoryat thislevel. Perhapsthereaderwho hasnot beenparticularly
interestedin the currentcontroversywill learnwhat all the fussis about.

2. Quantum-electrodynamicalapproachto spontaneousemission

2.1.Introduction

The approximationof treatingspontaneousradiationas a single-atomprocessis usually avery
accurateone.Collisionsbetweenatomsin a luminousgas,for example,produceexcitedatoms
which canundergotransitionsto lower energystatesandin sodoing emit light at theBohr fre-
quencies.The differentatomsemit independently,sinceeachatom hasthe samelikelihood of ex-
citationat thermalequilibrium, regardlessof the statesof excitationof its neighbors.Quantum
mechanically,the statevectorof the atomicsystemis a direct productof the statevectorsde-
scribingthe individual atoms,with no phasecorrelationsbetweenthe transitionamplitudesfor
differentatoms.Furthermore,thevisible radiationfrom sucha systemis usuallypreponderantly
spontaneous;the ratio of the rateof spontaneousto stimulatedemissionat frequency~ is simply
exp(hv/kT)—1.For the sodiumD linesandthe solar temperatureT—’ 6000°K,for example,this
ratio is about58.

Aside from its relevance,the problemof single-atomspontaneousemissionis of morefunda-
mentalimportancethanis generallyimagined.As mentionedearlier,certainaspectsof sponta-
neousemissionhavea bearingon severalfundamentaltheoreticalquestionsof continuinginterest.
As thereaderhasundoubtedlysurmised,the problemoccupiesa centralrole in mostassessments
of semiclassicalradiationtheory.

Treatmentsof the theoryof spontaneousemissionusuallyfollow somevariant of the original
Weisskopf—Wigner[22] approach.While this approach,of course,leadswithoutdifficulty to the
spontaneoustransitionrate(1.1), it doesnot satisfythe student’sdesireto understandthe
phenomenonin a physically intuitive manner.Why shouldan atom,in anotherwisestationary
excitedstate,for no apparentreasonmakea transitionto a stateof lower energy?Theusual
responseto this questionis to point out that the quantumtheoryof radiationpredictstheexistence
of a radiationfield evenin thevacuum,whereclassicallyall fields wouldvanishidentically. While
this radiationfield hasexpectationvaluezero, its fluctuationsperturbthe excitedatom in sucha
manneras to trigger the releaseof its storedenergyin the form of electromagneticradiation; the
physicalpictureis vaguelysuggestiveof leavesbeingjostledfrom atreeby the wind. Computational
supportfor this pictureCanbe foundin Welton’s elegantapproachto the Lambshift [23]. Indirect
supportcomesfrom a semiclassicaltheoryof spontaneousemission,whereperforcethereareno
vacuumfield fluctuations,andno spontaneousemissionfrom an atom in apureexcitedstateis
predicted.

Oneof the mostappealingfeaturesof Jaynes’neoclassicaltheory is that spontaneousemissionis
attributedto a classicallyfamiliar concept,namely,the radiationreactionfield of an oscillating
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dipole. Suchan interpretationof spontaneousemissionwas in fact alludedto by Slater [24] in
1924.More recently,Ackerhalt,Knight andEberly [25] haveshownthatthe radiationreaction
interpretationhasa quantum-mechanicalbasisas well. Working in theHeisenbergpicture,they
find equationsformally similar to the neoclassicalones,andthe differencesbetweentheneo-
classicalandfully quantum-mechanicaltheoriesare clearlydisplayed[261. Moreover,radiation
reactionis not the only possibleconceptualbasisfor understandingspontaneousemission.It has
beenshownthat an understandingbasedon the conceptof vacuumfield fluctuationsis equally
justified,andin fact that radiationreactionandvacuumfield fluctuationsprovideessentially
complementaryconceptualbasesfor the interpretationof spontaneousdecayandthe accompanying
line width andshift [27—29].

Experimentswhich seemto supportthe quantum-electrodynamicaltheoryof spontaneous
emissionvis-à-visthe neoclassicaltheory havein mostcasesnot beenentirelydefinitive. A striking
exception,however,which seemsto eludeanyexplanationbasedon a classicalelectromagnetic
theory,is the experimentof KocherandCommins[301 on the photonpolarizationcorrelations
in a three-levelcascade.The limitations of semiclassicalradiationtheoriesthat aresuggestedby
the Kocher—Comminsexperimenthavebeendiscussedby Clauser[311. Theselimitations reflect
the inadequacyof classicaltheoriesin generalto accountfor certainquantum-mechanicalcorrela-
tion effects first discussedby Einstein,PodolskyandRosen[71. Theseeffectsareoftenconsidered
to representthe mostprofounddifferencesbetweenclassicalandquantumphysics,andit is re-
markablethat suchsubtleeffectsmustbe invokedto supportthe quantumtheoryof spontaneous
emission.

For the purposeof comparingsemiclassicalandquantum-electrodynamicaltheoriesof sponta-
neousemission,it is convenientto developthe quantum-electrodynamicaltheory in the Heisenberg
picture;this approachhasbeenusedfor problemsin quantumopticsby Senitzky [32—391,
RehierandEberly [91,andLehmberg[40], amongothers.The main objectiveof thissectionis
to underscorethe physicalmechanismresponsiblefor spontaneousemission,a taskfor which the
Heisenberg-pictureapproachis well suited [41].

Beforebeginninganycalculations,it is perhapsusefulto reviewthecontextin which the idea
of spontaneousemissionarises.Onenormallyapproachesthe problemin two steps.First the inter-
actionbetweenthe electronandthe electromagneticfield of the nucleusis considered;at this
stageoneignorescompletelythe couplingof the electronto thevacuumradiationfield. The result
of this analysisis thatthe atomhascertainstationarystatesof well-definedenergy.The second
stepis to refine this initial resultby introducingthe interactionbetweenthe electronandthe free
field as a perturbation.Thisrefinementrevealsthatonly the lowest-energystateis a true stationary
statewith a well-definedenergy.All the higher-energystateshavea certain(natural)width in
energyanddecay— spontaneously— by releasingenergyas electromagneticradiation.Moreover,
all energylevelsareslightly shiftedfrom the valuesobtainedin the initial calculation.

In discussingspontaneousemission,then, the problemof the interactionof the electronwith the
nucleusmaybe regardedas solved.Only the refinementsproducedby the electron’scouplingto
the radiationfield needto be consideredin detail. Sincethe interesthereis in a physicalinterpre-
tation andnot in accuratenumericalresultsfor the level shiftsandwidths, theapproachwill be
nonrelativistic.Furthermore,it sufficesfor this purposeto regardthe “atom” asa spinless,one-
electronsystem.
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2.2. TheHamiltonian

For the purposeof this section,theHamiltonian for a one-electronatom interactingwith the
electromagneticradiationfield maybe written as

H= ~(p — ~ A(r)) + V(r) + ifd3~E1(r)2 ÷B(r)2), (2.1)
2m\ c 87r

wherem ande (< 0) arethe electronmassand charge,respectively,p = m1 + (e/c)A is the
momentumconjugateto r, A is theCoulomb-gaugevectorpotentialat the electronicposition,
andE’ = —(l/c)aA/at.A(r, t) maybeexpandedin planewavesnormalizedin the Vas [42]

2 1/2A(r, t) = C_~ [akX(t) e~’èkX+ h.c.}, (2.2)k,X (?~kV~’

wherek . = 0, X = 1, 2 beingthepolarizationindex,~kX~ = ~~‘, and Wk kc; akX(t) and
a~~(t)are,respectively,the Heisenberg-picturephotonannihilationandcreationoperatorsfor
mode(k, X):

[akX(t), a~i~s(t)]= 6k,k’6XX’~ (2.3)

Thequantizationvolume V is takenat this point to be finite, but eventuallywill be allowedto
becomeinfinite in order to admitall radiationmodes.For definiteness,let V bea cubeof sideL,
so that(kr, k

3,, k5) = (27r/L)(n~,n~.ne), wheren~,n~andn~assumeall integralvalues.
The Hamiltonian(2.1) maybe written

H=HA+HF+HINT, (2.4)

where

V(r), HF~JIwka~XakX,

and

e e
2

HINT = — —A(0, t) ~p(t) + —i A2(0, t).
mc 2mc

The dipole approximationof evaluatingthefield at the positionof the nucleushasbeenadopted;
thisapproximationis expectedto beaccurateif the orbital “radius” of the electronis much
smallerthantherelevanttransitionwavelengths,a conditionwell satisfiedat optical frequencies.

The Schrodinger-picturestationarystatesof the atom will be labeledII), 2), 3), ..., where

HAIn(t)) E~ln(t)) E~exp(—iE~t/h}In(0)). (2.5)

The statesIn(t)> spanthe Hubertspaceof the atomicsystem.In this basisthe atomicHamiltonian
HA maybe written as
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HA= ~ E~In(t)Xn(t)l= ~ E,~a,~(t), (2.6)

whereUnm(t) = exp(iHt/h)anm(0) exp(—iHt/h). In theabsenceof anyperturbation,a~~(t)= fJnn(0).

In general,anyatomicoperatorA(t) hasthe representation

A(t) = ~ ~ (n(0)IA(0)Im(0)) Unm(t). (2.7)
m n

In particular,the linear momentumoperatorp(t)hastherepresentation

p(t) = ~ ~ (n(0)Ip(0)Im(0)) crnm(t) = — ~ ~~mnl~nm0nm(t), (2.8)

wherehWmn = Em — E~and~nm = (n(0)Ierlm(0)) is the electric-dipole-momenttransitionmatrix
elementbetweenstates n andm; ~iflm ~z 0 if thereis an allowed(electric-dipole)transitionbe-
tweenstatesn andm.

The operatorsOnm(t) will be referredto as theatomicoperators.Theyprovidethe multilevel
generalizationof Dicke’s [8] spinoperatorsfor two-level atoms.It is easilyseenthat the atomic
operatorsobeythe commutationrule

[a~~(t),Gkl(t)] = ~/kaI,(t) — ~IlUkf(t). (2.9)

With the representations(2.6) and(2.8) for HA andp, respecti~’ely,the Hamiltonian(2.4) may
be written,

H= ~EnUnn(t)+~ llwkt4,~(t)akX(t)+i/I ~ ~~Dkxflmoflm(t)[akx(t)+a~x(t)] + —~----~ A2(0, t),
n k,X k,?~m n 2mc

(2.10)

where

1 /27rh \1/2
DkXnm=•~jk, ~ ~~)mnPnmekX. (2.11)

n Wkr

We havetakenthe polarizationvectors~kX to be real.

2.3. Digressionon theform of theinteractionHamiltonian

In writing theHamiltonian,the “atom” hasbeentakento be an entity characterizedby the
two setsof quantities{Wnm } and {Pnm }, that is, by an infinite numberof point dipoles,each
oscillatingsinusoidally.Themagnitudesof the quantities~~mn andJLmn characterizethe particular
(one-electron)atomicspeciesunderconsideration.Thissimplemodelsufficesfor the treatment
of agreatmanyphenomenainvolving opticalelectricdipole transitions,andis easilyextendedto
treatothercases,suchas thevibrational—rotationaltransitionsof polyatomicmolecules.

The questionnaturallyariseswhetheronemaywrite the interactionHamiltonianin the form
appropriateto the interactionof an electromagneticfield with a collectionof oscillatingelectric
dipoles:
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HINT = ~ ~ ~E1(0,t) Unm(t) = —er(t) ~E’(0, t). (2.12)

The latter form follows immediatelyfrom the representationof the electronpositionoperator
r(t) prescribedby eq. (2.7),andindicatesthat, as in the Lorentzmodel,the electronandnucleus
togethercompriseasingleatomicdipole. This contractionof the completeatomicdipolesystem
to a singledipole will be discussedfurtherin a latersection,in connectionwith the quantum-
mechanicalapproachto the Lorentzmodel.

The form (2.12)of the interaction1-lamiltonianwas usedby Goppert-Mayer[43] for thestudy
of two-photontransitions.It hadbeenusedearlierby KramersandHeisenberg[3], but
Goppert-Mayerseemsto havebeenthe first to derivethe form (2.12) from the minimal coupling
form. Her approach,however,was semiclassical,as was the later treatmentby Richards[44].
PowerandZienau[45] found in the calculationof the retardedvander Waalsforcebetweentwo
neutralmolecules[46] that the —er~E1form was computationallyadvantageous,andtheyin-
vestigatedthe form of the interactionHamiltonianin greaterdetail in a laterpaper[47]. A note-
worthy featureof the work of PowerandZienauon this problemis that the radiation field is
quantized.

Considerthe Hamiltonianfor the casewherethe field is not quantized:
e

H ~— + V(r) — —A(0, t) fJ + 2 A(0, t)2. (2.13)
2m mc 2mc

In this (semiclassical)treatment,the Hilbert spaceof thesystemis spannedby acompletesetof
atomicstatevectors.The unitary operator

U(r, t) = exp[ier~A(0,t)/hc] (2.14)

transformstheHamiltonian (2.13) to the form

H” U~(r,t) H U(r, t)

I e e2
= — U~(r,t) p2 U(r, t) — A(0, t) . U~(r,t)p U(r, t) + V(r) + 2 A(0, t)2, (2.15)

2m mc 2mc

sinceU(r, t) commuteswith r andU~U= UU~= 1. Fromtheoperatoridentity

exp(A)Bexp(—A)=B+[A,B] +-~-[A, [A,B]] +..., (2.16)

it follows thatU~(r,t)p U(r, t) = p + (e/c)A(0,t), and thereforethat

If —p~/2m+V(r).

The SchrodingerequationHI ii’) = ih a I t~/at is transformedto

a a au
~ I~), (2.17)
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where NJ.’) = UI~t>.Now the operator

au . ie
U+— = exp[—ier-A(0, t)/llc] ——r~A(0,t)exp[ier~A(0,t)/hc]at hc

= -~- r A(0, t) = — r- E1(0, t), (2.18)
hc h

so that eq. (2.17)maybe written in the form

~ (2.19)
2m j at

which establishesthe equivalenceof the two formsof the interactionHamiltonian.Note thateq.
(2. 18) doesnot hold whenthe field is quantized,sincein that caseA andA arenoncommuting
operators.

In the quantized-fieldcase,the time evolutionof the (Schrodinger-picture)statevectoris
governedby the Hamiltonian(2.13)plus the field HamiltonianHF. Eq.(2.15) is replacedby

If = U4p2 U—~-A U~pU+V(r) + e2_2 A2+~fd3r1[U+(r)E1(r1)2 U(r)+(V’ x A(r’))21
2m mc 2mc 8ir

= + V(r) + ~ fd~r’[ V1 X A(r’)]2 + ±fd3r’[U~(r)E1(r’) U(r)]2 (2.20)

2m 87r 8ir

Fromthe (equal-time)canonicalcommutationrelation [48]

[A
1(r),Et(r’)] = —47rihc ~(r — r’), (2.21)

andthe generalidentity (2.16), it follows that

U~(r)E~’(r’)U(r) E~(r’)— 4irer1~(r’), (2.22)

usingthe usual(Cartesian-component)summationconvention.Then

fd3r’[U~(r)E’(r’) U(r)] 2 fd3r’ [E
1(r’) — 4irP1(r’)] 2 (2.23)

where(in the dipoleapproximation)

P(r’) = erö3(r’) (2.24)

is the polarizationdensity.Thus,

if = -L + V(r) + HF — er ~E1(0)÷2~fd3r’Pt(r’)2. (2.25)
2m

It remainsto investigatethe ket vectorU~a(UIt~))/atin the quantized-fieldcase.Sincethe
analysishereis in the Schrodingerpicture,it follows simply that
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a a a
(2.26)at at at

whereas,in the semiclassicalcase,thevectorpotentialhasa prescribedt-dependenceandau/at is
nonvanishing.

The quantized-fieldcounterpartof eq. (2.19) is then

1-2 -‘ a
—+ V(r)+HF—er~E1(0)+27rJ’d3r1P1(r’)2fI~)ih_ 10). (2.27)

L2m at

Thisestablishesthe equivalenceof the two formsof the interactionHamiltonianfor the quantized-
field case.Note, however,that,asidefrom the obviousdifferencethatE’(O) in eq.(2.27) is a
q-number,eq. (2.27)differs from eq.(2.19) by the presenceof the term

2irfd3r’ F1(r’)2

in the Hamiltonian.Thisterm owesits existenceto the commutationrule (2.21).
It is importantto rememberthat the Hamiltonians

e e2
H=HA+HF ———A(0)~p+ 2 A(0)2 (2.28)

mc 2mc

and

H’ = HA + HF — er ~E’(0) + 2irfd3r’ P[(r’)2 (2.29)

refer to differentbasisstates,I ,,t’) and I ~) = U~I tJi) respectively.Furthermore,theoperatorE’ (0)
in eq. (2.29)is the transverseelectricfield; in the treatmentof PowerandZienau[47] , theE1(0)
thatappearsin the transformedHamiltonianH’ is insteadthe transversepart of the displacement
vector

D=E+47rP. (2.30)

Davidovich [49] hasrecentlypresenteda detaileddiscussionof the two formsof the interaction
Hamiltonian,andhasemphasizedthe distinctionbetweenactiveandpassivepointsof view in the
transformationof H. In particular,he notesthat the treatmentof PowerandZienaucorresponds
to the passiveviewpoint.The treatmenthere,in commonwith thatof Woolley [50] ,corresponds
to the activeviewpoint, andin the transformedHamiltonianE’ is indeedthe transverseelectric
field operator.The readeris referredto the work of Davidovich [49] for a discussionof previous
work andthe variousmisconceptionsthat havepersistedregardingthe two formsH andH’ of the
Hamiltonian.In this articlevariousparentheticalremarksconcerningthe two formswill bemade
at appropriatepoints,althoughit will be convenientto usethe form H’ throughout.Thus the
Hamiltonianfor the interactionof the atomwith the radiationfield is given by (2.29).

It should beemphasizedthat a fully classical,canonicaltransformationof theHamiltonian
(2.1) alsoleadsto the form (2.25).Theterm 27rfd3r1PL(rl)2 differentiatesthe semiclassicalform
(2.19)of Schrodinger’sequationfrom the fully quantum-mechanicalform (2.27).

It remainsthereforeto obtain,for the final term on the right-handsideof eq. (2.29), the re-
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presentationprescribedby eq. (2.7). Since

= P(r’) . P1~(r’)

= P
1(r’) (~—)fd3r”fd3k(~~1 — k~)exp{ik - (r’ — r”) }~(r”)

= e
2r

1r1(~~_)3~3(r’)fd3k(~,1— £~k~)exp(ik . r’), (2.31)

it follows that

2,rfd3r’PL(rl)2 = e2rji~(~—)fd3k(6jj — k/c1)= j_~fd3k[r2 — (k ~r)
21

= ~ r2fdk k2 ~-~- fdk k2 ~ ~ (n(0)1r2Im(0)) Gnm(t). (2.32)
3ir 3ir m

ThusthetransformedHamiltoniantakesthe form

H = ~ E,~o~~(t)+ ~ ~1~’~ka~~(t)akX(t) — i/I ~ ~ ~ CkXlm Gim(t) (akX(t) — a~~(t))
n k,X k,X I m

+ ~— fdk k2 ~ ~(r2),m a,m(t), (2.33)

3ir irn

where

1 /27rhwk\”2

CkxIm=:~t,~ v ) MImek’,., (2.34)

andthe identification

2irhw 1/2

E1(0, t) = i ~ ( v k) (akX(t) — a~X(t))èkx (2.35)

hasbeenmade.The polarizationvectors~kX aretakento be real, i.e.,a linear polarizationbasishas

beenusedin the plane-waveexpansionof the field.

2.4. Heisenbergequationsofmotion

Mathematicallythe problemof the interactionof the atomwith the field is definedby the
Heisenbergequationsof motion basedon the Hamiltonian(2.33), the commutationrule (2.3) for
thefield operators,andthe commutationrule (2.9) for the atomicoperators.Onefurthercommu-
tationrule is requiredto definethe problemunambiguously,namely,that involving theatomic
andfield operators.It will be assumedthat the interactionis “switchedon” at sometime in the
distantpast,whenthe atomandfield arecompletelyindependentsystems.Beforethe interaction,
therefore,the atomicoperatorscommutewith the field operators,andsincethe time evolution
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of theseoperatorsis unitary, it follows that equal-timecommutatorsof atomicoperatorswith
field operatorsidentically vanish.This factrendersthe orderingof atomicandfield operatorsin
the interactionHamiltonianirrelevant;regardlessof the orderingchosen,the final “answers”
mustbe the same.

Choosinga normalordering,in whichphotonannihilation(creation)operatorsappearto the
extremeright (left) in any operatorproduct,we maywrite the Heisenbergequationsof motion
for thesystemin the form

akX(t)= —k~.kakX(t)+ ~�I~ CftXIm Gim(t), (2.36)

= —iw11 a.1(t) — ~ C~~,,/~SziUim(t) — ~im a,1(t))akX(t)+ (2.37)

+ ~ ~ ~ a~~(t)(~1,Gim(t) — ~im a,1(t)) — 2ie
2 fdkk2 ~ E (r2),m(6

1, Gim(t) — ~im a,1(t)),

where = E1 — E1.
Formallyintegratingthe field equation(2.36),one finds

akX(t) = akX(O)exp(—iwkt)+ E CkXIm I dt1 Gim(ti) exp{iwk(tl — t) }. (2.38)

Assumingthe atom—field interactionto be weak,the atomicoperatorsshouldevolvevery nearly
accordingto their freeevolution = —iw11 ui,. Henceonemayusein eq.(2.38) theapproxima-
tion [25, 40]

(71m(ti) ~‘im0’) exp{—iwm,(ti — t) }. (2.39)

Thiswill be referredto as theadiabaticapproximation,andmaybe shownto beequivalentto
whatis usuallycalledtheWeisskopf—Wignerapproximation[291.

Using this approximationin the field equation(2.38),andusingthe result in eq. (2.37), it is
found that

= —1w1,a~(t)— ~ ~ Uim(t) — ~im a,1(t))akX(O)exp(—iwkt)
1,m k,X

+ ~ C,~,,~a~X(O)exp(iwftt)(fS,,aim(t)— ~im a,,(t))

— E ~ Fimnp( ~‘~pn~ t)(~11~J,m(t) c~~(t)— ~im c,1(t)u~~(t))

+ ~ ~ t)(~,,a~~(t)Oim(t) — ~
5ima~~(t)a,

1(t))

— ?~.~~~fdkk2Z (r
2)jm(~j,c7jm(t) — 6im a,,(t)), (2.40)
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where

1~~mnp(°~pn,t) ~ ~(21Thwk\
h k,X V )(~‘lm CkXX~np ekX)fdtl exp{i(wk — w~~)(t

1— t)}. (2.41)
0Note that

1’:mnp(0~.~pn~ t) = 0 for 1 mor n = p.
With the multiplication rule Uim(t) a~~(t)= ~mn cr

1~(t),eq. (2.40)reads

c~11(t)= —iw11 u,1(t) — X,1(t) — �~~ t)[~Sjil5mnUip(t) — ~im ~ cJ,~(t)] (2.42)
I,m n,p

2ie
2

+ �~I’* (w t)[6
1, ~in Upm(t) — öim ~~1cr~1(t)1— — fdkk2 �.~(r

2),m(~j, tJim(t) — ~imUij(t1),
mlnp pn’

3irh’1 l,m
l,m n,p

where

X,
1(t) = ~ ~ CkXlm(~IiUim(t) — ~

l,m k,X

— �I~~ Ckxlma~j~(O)exp(iwkt)(fSj,Gim(t)— ~.mcr,j(t)). (2.43)
l,m k,

Note that the adiabaticapproximation(2.39)simplifies the atomicoperatorequationto the
extentthat the vacuumor source-freepart of the field operatoris explicitly containedentirely
in the term X~(t).This is veryconvenient,especiallywhenexpectationvaluesare takenin a state
for which the field stateis thevacuum,for then<X11(t)) = 0.

It is convenientto write eq. (2.42) in the form

a,1(t) = —iw1, o11(t) — X,1(t)

2ie
2

— rdkk2)(r/~— r~~)]a~,(t)— (~jmmj(’~ t)+F* (w~,t))+([ jm’ immi

—~ ~ ~ t) cr
1~(t)+ ~~Fmiip( w~1,t) 1:Jmp(t) + ~ t)Upm(t)

m

2ie
2

-~ ~I7*

m p ~ immp(”pm’ t) a~
1(t) — ____fdkk2[ ~ ~m (3,m(t) — ~ r~iumj(t)] . (2.44)3irh Lm~j m*iLetting V-÷°°, it is easilyshownthat

2Plrnl~n t
Fimnp(Wpn, t) 3h3 ‘~fdw w3 fdt

1 exp{i(w — w~~)(t1— t)}. (2.45)
0

For timest long comparedwith anyof the Iw~~N,the well-knownapproximation[48]
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fdtiexp{i(w — Wpn)(ti — t)} ir~(w — w~~)— iP( —‘cs~ ) (2.46)
0 pn

leadsto

Fimnp(Wpn~t) 2w~ 2i w3dw
3hc3 ~m ~ U(w~~)— 37rhc3TMlm Imp w —

= imnp — rtlmnp, (2.47)

whereUis theunit stepfunction.Theneq. (2.44)becomes

2e2
= —i [w

1~— ~(~ffmm/ — 7jmmi) + ~dw w
2(r2 — r2)] a

11(t)
m 3irhc

3 ~-‘ “ U

2ie2
— �~(!3jmmj + I3immi) a~,(t)— X~~(t)— 3irhc3fdw w2[~I~~m Gjm(t) — ~II~r~(Jm/(t)]

m*i

— �~(I3jimmp — “Yimmp) o,~(t)— ~ (!3’mmp + ~72nmp) a~
1(t)

mp*j mp*i

+ ~ [(J.3~~ — iymjjp)Ump(t) + (I3~,+ i~’f7njip)Upm(t)]. (2.48)
,n p

2.5. Thelevelshift andwidth

For i ~ / it is seenthatthe term

2e
2

~ji — ~ ~7immj — 7immi) + 3~hc3fdc&~w2(r/
1 — r~) (2.49)

representsa frequencyshift for the/ -÷ i transition.Writing

= ~E, — ~ (2.50)

onemayidentify

2e
2

= 7jmmj + ~—j r,2jfclw w2 (2.51)

asthe level shift of state 1/). Thesecondterm on theright-handside of eq.(2.51)may be written

as

2e2 2
fdw w2 ~ (jIrIm) (mIrIf) = —i fdw w2E Ill/rn 2 (2.51’)

3irc3
3irc

from which it follows that
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~ 1P1m12[Pf w
3dw _fdww2]

3irc m W~Wjm

= — ~ Wjp,~lPfmI~Pf_~~dW (2.52)
3irc m

The divergencein ~.E
1maybe reducedby subtractingoff the expectationvalue in state1/) of the

(unobservable)transverseself-energyof the free electronarisingfrom theA
2 term [47],

E/0)= 2 (/; {0} 1A2(0, t)Ij; {0}), (2.53)

2mc

where{0} is the vacuumfield state.It is easilyshownthat

e2h
E~0)

3fdww. (2.54)
irmc

Using theThomas—Reiche—Kuhnsumrule in the form

e
2h

123 jm Wjm~m in

oneobtains

E~0) = — ~ Il~i 12 WimfdW w, (2.56)

andthereforethe “observable”part of the level shift,

= — ~ Wj~IImjp~I2~ _fdw w]

wdw (2.57)
3irc m

Thisfinal expressionis just theone to whichBethe[51] appliedhis famousrenormalizationin
estimatingthe Lambshift; the morefamiliar form is obtainedby noting that

e2
I 12=_ I” 12 258jm rIm m2 ~/m ,

so that

~‘ 37rrn2c3 ~ Ip,mI
2Pf w~=_(~_)(~_)~ IPjmI2Pf .E~ , (2.59)

wherethe integrationis over“photon” energy.
As notedin the introductionto this section,the problemof spontaneousemissionmaybe

approachedby first solving the problemfor the electronin the Coulombfield of the nucleus,and
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thenincluding the refinementsintroducedby the electron’sinteractionwith the vacuumradiation
field. It mayhappenthat the solutionto the first problemshowsthat two particularlevelsare
degenerate,while the solutionto the secondproblemrevealsthat the two levelsare non-degenerate.
The classicexperimentalconfirmationof this circumstanceis, of course,the Lambshift. It is well
knownthat the solutionof the Dirac equationfor the hydrogenatomproblemshowsthat states
with the samequantumnumbersn and/ aredegenerate;thus,for example,the 2s1~and 2p1,,2
statesin hydrogenarepredictedto be degenerateaccordingto the Dirac theoryfor the interaction
of the electronwith the Coulombfield of theproton.While the possiblenondegeneracyof these
stateshadbeena ratherlong-standingconjecture[521, experimentalevidencewas lackingprior to
thework of LambandRetherford[53]. Using microwavetechnologydevelopedduring the second
world war, theyshowedthat the 251,2 stateis higherin energythanthe 2p1,2 state,the frequency
separationbeingabout1060 Mc.

Althoughthe Lambshift mustresultfrom the electron’sinteractionwith the radiation field —

the “secondpart” of the spontaneousemissionproblem— the solution(eq.(2.59)) is divergent.
To extracta meaningfulnumberfrom eq. (2.59),Bethe[51] invokedKramer’sconceptof mass
renormalization.While this approachis well knownin thecontextof Bethe’sLambshift calcula-
tion, it will be usefulfor the purposesof laterdiscussionsto reviewit briefly here.

Note first that the expectationvalueoverstateI/) of thefree electronenergy,~~F) is ob-
tainedby takingE1— Em = 0 for all m in the denominatorof (2.59):

= — (2)(e2)(1)2 E
1Pjrn I2fdE. (2.60)

37r hc mc

Thus the observablepart of the level shift of state1/> is

— ~j~(F)= (2)(e2)(1)2 ~(E
1 _Em)IpjmI2I’ E1 (2.61)

where the “cut-off energy”Emnx is introducedon the groundsthat the nonrelativistictheory is
only applicable for photon energies E smallcomparedwith theelectronrestenergymc

2 this
meansthat theLambshift is assumeda priori to be essentiallya nonrelativisticeffect.Then

2 e2 1 2 E,~~(obs)= ~ (~_)(—~~)~ (Em — Ej)Ipj~I2log E’~”E (2.62)

sinceEmax ~ Em — E, I. Replacingthelogarithmin the summationby its averagevalue, andusing

~ 1PjmI2(Ej ~Em) = _~h2j’d3rIlJ.,,(r)I2V2V(r),

oneobtainsfinally, for V(r) = —e2/r, the result

~~obs) = (j~)~ 2 log~EE ~1~2e2II/,J(0)12, (2.63)

wherefor hydrogenI ~i~(0)I2= 1/irn3a~for s statesandzerootherwise,a
0 beingthe Bohr radius.
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UsingEmax = mc2, Bethefound the expression(2.63) for ~EJ~Ob~)to beabout 1040Mc for the
2sstate,in excellentagreementwith the experimentalresultof LambandRetherford.It should
be noted,however,that the expression(2.62) for ~&E(oI~s)dependson the choiceof the rather
arbitrarycut-off energyEmax.The fully relativistic treatmentyields a cut-off-independentresult
which is remarkablycloseto theexperimentallyobservedLamb shift.

To seethat Bethe’sapproachdoesindeedcorrespondto massrenormalization,oneneedsonly
to write eq. (2.60) in the form

2 e2 1 2 Emax~j~(F) = — __(~.~_)(_) (jIp~Ij>f dE = C(/Ip2Ij>, (2.64)

3irhc mc 0

andnotethatin the atomicHamiltonianthe massthatappearsin the kinetic energyterm is an
“observable”mass,which mustthereforebe consideredas alreadycontainingthemasscorrespond-
ing to kinetic energy as well as a “bare” mass.Thatis,

= P + ~ = (2 1 + C)P2 p , (2.65)
2m 2mbare mbare 2mbare(l 2mbareC)

or,

4e2
m (1 — 2mbareC’)mbare mbare + ith3 Emax. (2.66)

Whenthe renormalizedmassm is usedin theatomic Hamiltonian,therefore,the energy
= Cp2 is alreadyaccountedfor, andsinceit arisesagainin the “secondpart” of the spon-

taneousemissionproblem,this spuriousadditionmustbe subtractedaway; if this subtractionis
not performed,the “electromagneticmass”m — mbarewill havebeenaddedto mbare twice. This is
equivalentto sayingthat the interactionof the electronwith the radiationfield canneverbe
“switched off”, but in computingthe radiativecorrectionswe switch it on “again”.

Returningagainto eq. (2.48) it is seenthat the linewidth, or the imaginarypart of the level
shift for the/ -÷i transition,is

= E (I~jmmj+ f3jmmj) = -_~(~~ Il1/~I2w~+ ~ Illt~I2~ (2.67)

It is a simplematterto showexplicitly that and do indeedcorrespondto the line shift
andwidth respectivelyof the/ -÷ i transition.This will not bedonehere,sincelineshapequestions
are discussedin a latersection.The resultsobtainedaboveimply that theadiabaticapproximation
is the equivalentof second-orderperturbationtheory.

The last four termson the right-handsideof eq. (2.48)oscillateat frequenciesdifferent from
that of a~

1(t),andtheir effect is analogousto thatof the counter-rotatingterm in the
Bloch—Siegertproblem.Denegeracyhasbeenignored,althoughit will beadmittedfor a special
problemin a latersubsection.The emphasisin this section,andthroughoutthis article, is on
physicalinterpretationratherthanon detailedderivations.
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2.6.Radiationreactionas the mechanismresponsiblefor spontaneousemission

The useof the term “massrenormalization”abovesuggeststhat the conceptof radiationreac-
tion maybe appliedto the theoryof spontaneousemission.This ideawas in factalluded to by
Slater[24] in 1924:

The part of the field originatingfrom the given atom itself is supposedto induce aprobability
that thatatom loseenergyspontaneously,while radiationfrom externalsourcesis regardedas
inducingadditionalprobabilitiesthat it gainor loseenergy,muchasEinsteinhassuggested

Slater’sdiscussionwas in thecontextof a “virtual radiation”theory,but the idea thatradiation
reactionis the mechanismresponsiblefor spontaneousemissionis neverthelessunmistakable.
While this interpretationcanhardly be inferredfrom the Weisskopf—Wigner-typeapproachfound
in the literature,its viability is easilydemonstrated.

Ackerhalt,Knight andEberly [25] havemadethe following observation:If expectationvalues
are takenon bothsidesof eq. [2.48] over a statefor which the field stateis thevacuum,
(X,1(t)) = 0, andthe vacuumfluctuationsapparentlydo not play anyexplicit role in the damping
of the atomicdipoleandenergyexpectationvalues.Only the secondterm on theright-handside
of the field equation(2.38) thereforeplaysan explicit role,andthis term representsthe solution
of the inhomogeneousMaxwell equationwith the atomicpolarizationas the source,evaluatedat
the atom;that is, this term is the radiationreactionterm. Using it in eq. (2.35), it follows that

E~R(t) = ~ CkxImfdtlclm(tl)exp{iwk(tl — t)} — h.c.~ekX

= ,~ (~im(t) + ::~t) ~ f dkk~ ~im(t) ~ / dk) Imim

= l,m (~Uim(t) + —~-~-a1~(t)— ~ ai~(t)) Imim~ (2.68)

whereK = Emax/hC = mc/h for Bethe’schoiceof cut-off energy.The representation(2.7) for the
electroncoordinater showsthat eq. (2.68) is equivalentto

2e... 4eK.. 4K
3e

E~R(t)= —~r(t) — — r(t) +—r(t). (2.69)
3c 37rc 97r

Eq. (2.69) differs from whatonewould expecton the basisof the classicallyfamiliar form of
theradiation reactionfield, wherethereis no counterpartof the third termon theright-handside:

E+dR(t) = ~t) ~ ~(t) (2.70)

But asemphasizedby Davidovich[49], the transformation of the Hamiltonian (2.1) to the form
(2.29)mustbe accompaniedby a changein basisstates.The electric field (2.69), althoughit is
indeedthe transverseelectricfield operatorin the activeview of the transformationeffectedby
U(r, t), refers to a setof basisstatestransformedfrom that associatedwith the original
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Hamiltonian(2.1); if eq. (2.70)refersto the set ~I ~ji)}, theneq. (2.69)mustbe referredto the
set {u~I iJ.i) }. Suppose, for example, that we areinterestedin the expectationvalueof the radia-
tion reactionelectricfield operatorin the state

0) = I{0}) ® I0~), (2.71)

whereI{0}) is the vacuumstateof the radiationfield and IOA) is someatomicstate.Thenwhat
mustequal(0IE~R(t)I0)is not (OI4R(t)I0) but rather

(1J.IIUE~R(t)U~Il/1), whereNJ/)UI0).

Fromeq. (2.22) it is seenthat this meansthat

(E~R(t))= (E~j~(t))÷47r(F1(0)), (2.72)

so thatwhenthe transformationin basisstatesis accountedfor, it is clearthat we arein fact
dealing with just the usual radiation reaction field.

The Heisenberg equation of motion for the electron coordinate r(t) is simply

mObSr(t) = —VV(r) + eE~(0,t) + (2e2/3c3)~t), (2.73)

where E
0 is the homogeneoussolutionof the(operator)Maxwell equation.Despitethe formal

resemblance which eq. (2.73) bears to the corresponding classical equation,it is not of much
immediate use for calculational purposes, since it tells us nothing about individual atomiclevels.
For this purpose, the representation (2.7) for r(t) mustbe used,andthenthe equations(2.48),
which give information about the shifts andwidths of individual levels,follow. Whenthis isdone,
however, it is seen that the field no longerentersby itself,but only as onefactorin a product
with an atomic operator. This in turn forcesusto paycloseattentionto theorder in which the
creationandannihilationpartsof the field appear.If vacuumexpectationvaluesareto be taken,
the normalorderingis of obviousconvenience,sincetheterm X~1(t)in eq. (2.48)hasvanishing
vacuumexpectationvalue.The only termspertainingto thefield which survivethe quantum-
mechanicalensembleaveragingarethereforethe positive-andnegative-frequencypartsof the
radiationreactionfield. The dampingof the atomicenergyanddipolemomentexpectationvalues,
and the accompanyingradiativefrequencyshifts, therefore,aredueentirelyto theradiation reac-
tion of the electronupon itself.This extensionof the classicalconceptof radiationreactionto
the quantum-electrodynamicalregimeis theessentialcontributionof Ackerhalt,Knight and
Eberly [25].

While the interpretationof spontaneousdecayandthe Lambshift as radiationreactioneffects
satisfiesone’sdesirefor a classical-likeexplanation,it mustbe rememberedthat the subjectof
radiationreactionhasbeenadifficult one. Theclassicalequationfor a point chargesubjected
only to thefield it createsis

mObSr(t) = (2e2/3c3)~t) (2.74)

anequationwhich admitsa “runaway” solution.A discussionof attemptsto eliminatedivergent
masstermsandto explainawaythe runawaysolution is quite beyondthe scopeof this work;
theseattemptsarelegion, but in somerespectsa satisfactoryunderstandingof radiationreaction
is still lacking. An excellentintroductionto the subjectmaybe found in the textbookby
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PanofskyandPhillips [54]. The readeris alsoreferredto therecentquantum-mechanicalapproach
of SharpandMoniz [55], who give thepoint chargea spreadof the orderof the Comptonradius
andarguethat,quantummechanically,thereis no divergentmassterm or runawaysolution.The
approachusedherefollows theusual massrenormalizationprescription;furthermore,the
adiabaticapproximationis equivalentto replacingthe r~term on the right-handsideof eq. (2.70)
by an r term,which is the usualapproachfor an oscillatingcharge,andavoidsthe runawaydif-
ficulty.

2.7. Theroleofvacuumfluctuationsin spontaneousemission

Thesuggestion[25] that spontaneousemissionbe attributedto radiationreactionis in marked
contrastto -the usualheuristicpicturein which the atom is forced to radiateby the vacuumfield
fluctuations.Regardingthe Lambshift, the usualpictureis strikingly supportedby Welton’s
simplederivation [23]. It is of interestthento showhow the two pointsof view maybe reconciled
[27—29]. For this purpose,it is convenientto considerthe simpletwo-statemodelof the atom.
The main pointsof this sectionareequally demonstrablein the multistateformalismdeveloped
above.

Let II> and 12) be respectivelythe lower andupperstatesof the two-stateatom,with (real)
transitiondipolemoment ~= (lIerI2> connectingthem.Furthermore,let co~= (E

2 — E1)/h,and
supposethat I 1) is a (nonradiative)groundstate.The Heisenbergequationsof motion for the
two-stateatomare,from eqs.(2.36) and(2.37),

akX(t)= —iwkakX(t)+ Ckx(a(t) + u~(t)), (2.75)

6(t) = —iw0cr(t) + Z~CkXaZ(t)(aftX(t)— a~~(t)), (2.76)

65(t) = 2 ECkX(a(t) — a~(t))(akA(t)— a~~(t)), (2.77)

wherea(t) = a12(t),u5(t) = a22(t) — a11(t),andCkx = Ckx12. In writing eq. (2.76),we have
omitteda term

— 3 11 3fdw w
2(r~

2— r~1)a(t)

on theright-handside.This term is strictly zeroin the two-statemodel,sincer~2= r21r12 = r~1.
Furthermore,the energyscalehasbeenchangedsothat the atomicHamiltonianis simply

HA = 4#k~.,0a~(t), (2.78)

thatis, the statesII) and 12) areof energies —~-1lw0and ~lw0, respectively. The operators a5,

= a + a~,and a,, = i(a — a~)obeythe Pauli spin —~ algebra,in the usualnotation.With the

expression(2.35) forE
1, eqs.(2.76) and(2.77) takethe form

6(t) = —iwoo(t)— ~t. E1(0, t) a
5(t), (2.79)
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2i

a5(t) = — — . E
1(0, t) (a(t) — t(t)), (2.80)

or

= —w
0a~(t), (2.81)

= w~a~(t) + p~E’(O, t) a5(t), (2.82)

2

a5(t) = — p E
1(0, t) a~(t), (2.83)

where

E1(0, t) = E-~(0,t)÷E~R(t). (2.84)

E~(r, t) is thesolutionof the homogeneousoperatorMaxwell equation

V2E1(r, t) —~ E1(r, t) = 0, (2.85)

while from eq. (2.68) we have

~ p. (2.86)

In a semiclassicalapproachto thetwo-stateatom,the electricfield is a c-number,a prescribed
functionof time. Theatomicvariablesa~,a,,, anda~maythenbe regardedas expectationvalues,
andeqs. (2.81) to (2.83)havethe well-knowngeometricalinterpretation[56] correspondingto
theirequivalentvectorial form,

R(t) = R(t) x n(t), (2.87)

whereR(t) = (a~(t),a~(t),a
5(t)) andfl(t) = ((2/h)p-E(t), 0, —w0). Thispoint is discussedin detail

in section3.
Sinceatomicandfield operatorscommute,eqs. (2.82)and(2.83) maybe written in the

equivalent forms

= woa~(t)+~ p [E~(0, t)a5(t) + a2(t)E~~~(0,t)], (2.88)

and

= — p [E~(0, t) a~(t)+ a~(t)E~~~(0,t)], (2.89)

where~ and~ arerespectivelythe positive-andnegative-frequencypartsof the total
quantized(transverse)electricfield (2.84).Thus,
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E~~(0,t) = ~ (0, t) + E~(t), (2.90)

where

27rhwk 1/2

E~(0,t) = i ~ ( v ) akX(O) exp(—iwkt)ekX, (2.91)

andE~(0,t) = E~(0,t)~. Whenwe solve for E~(t)in the adiabaticapproximation,and take

vacuumexpectationvalues,we obtain,of course,the two-stateversionsof eqs. (2.48):

(a(t)> = —i(w
0 — — iJ3)(a(t)) — i(~— i,6)(a~(t)), (2.92)

(a5(t)) —2~(1+ (a5(t))), (2.93)

where

3= 2Ip12I
2w~/3hc3

and

/ 0) 0) \
4PfdwI — I . (2.94)

3irhc3 \w—w
0 w+w~!

Actually, the calculationresultsin afrequencyshift termgiven by

= 2Ip~I
2 Pfdw( “s — w3 ), (2.95)

3irhc3 w w
0 w+w0

which thenleadsto eq. (2.94) in the sameway that eq. (2.49) leadsto (2.57).Thereis a slight
problemin this step,resultingfrom the fact thatthe term involving r~2— r~1vanishesfor a
two-stateatom;but this difficulty is simplya defectof the two-statemodelandneednot concern
us.

The normalorderingonceagainleadsto equationsfor the atomicenergyanddipolemoment
expectationvaluesin which thevacuumfield seemsto playno explicit role, the radiationreaction
electricfield apparentlybeingresponsiblefor the line shift andwidth. It mustbe emphasized,of
course,that greaterprominenceis impartedto theeffect of radiationreactiononly aftervacuum
expectationvaluesare taken.The vacuumfield, i.e., thesolutionof the homogeneousoperator
waveequation,certainlyplaysa crucialrole,evenif it is hiddenby takingvacuumexpectation
values.That role is to assurethe preservationof equal-timecommutators,without which the
equationsof motion aremeaningless.For example,if the vacuumfield is deletedfrom eq. (2.48)
by settingtheterm X,1(t) equalto zero,the operatorsa11(t) with i �‘ / would decayto zero,so
thatthe electroncoordinateoperator

r(t) = ~ (iIrIj) a,1(t)

would decayto zero— the electronspiralsinto the nucleus!The importanceof retainingoperators
with vanishingexpectationvaluesin operatorequationsof motion hasbeenemphasizedvery
clearlyby Senitzky [33].
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But thevacuumfield canbe assignedamoreexplicit role in spontaneousemission.Obviously
thevacuumfield did not contributeto theexpectationvaluesabovebecauseof theuseof normal
ordering.This circumstancesuggeststhat in adifferentorderingonemay find an explicit contri-
bution of thevacuumfield to vacuumexpectationvalues,andthis is indeedthe case[27—29].
Naturally, the final resultmustbe the sameas thatobtainedusingthe moreconvenientnormal
ordering, sinceequal-timeatomicandfield operatorscommute.Thus the problembecomesone
of interpretation.

Supposewe considerthe two-state-atomHeisenbergequationsof motion in “anti-normal”
order:

akX(t) —iwkakX(t)+ Ckx(a(t)÷a~(t)), (2.96)

6(t) = —iw0o(t)— ~ GkX(aZ(t)a~X(t)— akX(t)a5(t)), (2.97)

65(t)= —2 E CkXakX(t)(a~(t)— a(t)) + 2 ~ CkX(a~(t)— a(t))a~~(t). (2.98)

Formally integratingeqs.(2.96) and(2.98),andusingthe adiabaticapproximation,

akX(tl) f(t1) akX(t)a~(t)exp~—i(wk— w0)(t1 — t) }, etc., (2.99)

we find uponsubstitutioninto eq. (2.97) that

6(t) = —iw0 a(t) — ~ Gkx(aZ(O)a~~(t)— akX(t)a5(0))

+ 2 ~ ~Gkx çP [akxt)aMV(t) a(t)f dt1exp{—i(w~ + w0)(ti — t)}
k,X~i,v 0

— akX(t)a~~(t)o(t)fdti exp{i(w~— w0)(t1 — t) } — a~~(t)a~~(t)a(t)f dt1 exp~—i(w~— w0)(t1 — t) }

+ a~~(t)a~~(t)a(t)fdti exp{i(w~— w0)(t1 — t) (2.100)

where“counter-rotating”terms,i.e., termscontaininga~(t),havebeenneglected.Thisapproxima-
tion isjustified on the groundsthata(t) anda~(t)oscillate principally as exp(—iwot)and
exp(io.,ot),respectively.

To remainin secondorder in thecouplingconstant,the field operatorsin the last term on the
right-handsideof eq. (2.100)shouldbe replacedby their free-fieldparts.When this is done,and
vacuumexpectationvaluesaretaken,we find that,within the adiabaticapproximation,
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((t))= —iw0(a(t)) — ~ CkX((aZ(O)a~X(t))— (akX(t)aZ(O))) (2.101)

— 2~C~x(a(t)XakX(0) a~x(0))[fdtlexp{i(wk— w0)(t1 — t)} ÷Jdtlexp{_i(wk + w0)(t1

where,of course,(akX(O)a~X(O))= 1.
In secondorderthe secondterm on the right-handsideof eq. (2.101)is

— ~ CkX((aZ(O)a~X(t))— (akX(t)aZ(O))) (2.102)

— �~c~[ago a(t))fdti exp{—i(wk + wo)(t1 — t) } — (a(t) a5(0))fdti exp{i(wk — w0)(t1— t)

where,again,“counter-rotating”termshavebeenomitted.Using (2.102)in (2.101),we have

(6(t)) = —iw0(a(t)) — ~ c~~a~(o)0(t))] dti exp{—i(wk + w0)(t1 — t) }

— (a(t) a~(0))fdt1 exp{i(wk — wo)(t1 — t) } + 2(a(t) XaftX(O)a~~(0))fdt1exp{i(wk — w0)(t1— t) }

+ 2(a(t))(akx(0)a~x(0))fdtlexp{i(wk+ wo)(ti — t)}]

—iw~(o(t))_(o(t))�~C,~x[(2(akx(0)4x(0))—1)

x (Idtlexp{_i(wk + w0)(t1 — t)} + Jdtiex (~k — wo)(t1 — t)})] , (2.103)

since0(t) a~(0) a(t) anda~(0)0(t) —a(t), to zerothorderin the couplingconstant.Using the

approximation(2.46),andletting V-~°°, we obtainfrom eq.(2.103) the result,

<6(t)> = —i(w0 — — i13)(a(t)), (2.104)

which,in the approximationof neglectingcounter-rotatingterms,isjust eq. (2.92).However,

looking backto eq. (2.103),we maynowinterpret ~ (andsimilarly 13) as
~

2~vF — ~RR’ (2.105)

where~VF = ~ is thecontributionfrom thevacuumfield fluctuationsand~RR = i~is thecontri-
butionfrom the radiationreactionof the electronbackon itself.
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Thusit hasbeenfound thatwhennormalorderingis used,the entirecontributionto the
radiativefrequencyshift comesfrom the radiationreaction,whereaswhenantinormalordering
is used,2~comesfrom thevacuumfield fluctuations,with another—~ from theradiationreac-
tion [27, 28]. If we haduseda symmetricordering(half normalandhalf anti-normal)we would
havefound the entirecontributionto theshift andwidth of thespectralline stemmingfrom
vacuumfield fluctuations[28]. For otherpossiblechoicesof ordering,neithertheradiation reac-
tion norvacuumfluctuationsterm producesthe entireshift; rather,eachcontributesa portion
complementaryto the other.

We haveshownthatvacuumfluctuationscan beconsidereda physicalbasis for the radiative
frequencyshift, as Welton [23] hassuggested;it hasalsobeenshownthat radiationreactionis an
equallyvalid basis.Thus the two interpretationsof the width andshift of the emittedline are
equivalent,the interpretationdependingas it doeson the particularorderingchosenfor
commuting atomicandfield operators.The two interpretations“aremerely two sidesof thesame
quantum-mechanicalcoin,with each... beingan oversimplificationmotivatedby the ordering
schemeadopted”[27].

With regardto the decayof(a5(t)> (cf. eq.(2.93)),it was statedin ref. [28] that “there is no
orderingwhich would attributethe entiredecayentirely to a vacuumfluctuationeffect”. This
contradictsthe analysisof ref. [27], whereit is arguedthat boththe (a(t)> and(a5(t)) equations
can be interpretedentirelyon thebasis of vacuumfield fluctuations.In order to seehow thedif-
ferencearises,theanalysisof ref. [27] relevantto the(u~(t))equationwill be briefly discussed
here,usingthenotation of this work.

Sinceit doesnot affect ourresults,we takethe rotating-wave-approximationversionof the
equationsof motion,

= —2 ~CkX(akX(t)a~(t) ÷a(t)a~~(t)), (2.106)

ci(t) = —iw0a(t)+ ~ C,~a,~(t) a5(t), (2.107)

and

akX(t)= —iwkaftX(t)+ Ckxa(t), (2.108)

in anti-normalorderas in ref. [27]. Fromeq. (2.107),

a(t) = a(0)exp(—iw0t) + ~CkXf dtlakX(tl) a5(t1)exp{iw0(t1 — t)}

a(0)exp(—iw0t)÷~Ckxakx(t)az(t)fdt1exp{—i(wk — wo)(t1 — t)} (2.109)

in the adiabaticapproximation

akX(tl)aZ(tl) a,(?,.(t)a5(t)exp{—iwk(tl — t)}.



P.W. Milonni, Semiclassicalandquantum-electrodynamicalapproachesin nonrelativisticradiation theory 27

Substitutingeq. (2.109) into (2.106),oneobtains

65(t) —2 �~CkX(akX(t) a~(0)exp(iw0t) + a(0)a~~(t)exp(—iw0t))

—2 ~ ~ CkxCMvaz(t)akx(t)a~p(t)fdt1exp{i(wk — wo)(t1 — t)}
k,X~,v

—2 ~ ~CkXCMVaZ(t)a~V(t)a~X(t)fdtIexp{—i(wk — w0)(t1 — t)}. (2.110)
k,X~,v

To stayin secondorder,the field operatorsin thelast two termsshouldbe replacedby their
free-fieldparts.Making this replacementandtakingvacuumexpectationvalues,we have

(65(t)) = —2 �I~Ck~((akX(t)a~(0))exp(iw0t) ÷(a(0)a~~(t))exp(—iw0t)) (2.111)

_2~C~x(az(t)Xakx(0)4x(0)>(fdtlexP{i(wk— wo)(t1 — t)} ÷fdtlexp{—i(wk — wo)(t1 —

whereagainwe havewritten (akX(O)a~~(0))ratherthanunity to showexplicitly the effect of the
vacuumfield. Thenthe secondterm in eq. (2.111),dueto vacuumfield fluctuations,maybe
written as —4f3(a5(t)) if weusethe approximation(2.46),

(65(t)) = —2 ~ICkX((akX(t)a~(0)>exp(iw0t) + (a(0)a~~(t))exp(—iw0t)) — 413(o5(t)). (2.112)

Senitzky [27] now considersthe initial atomicstate1+), the upperenergystate,andconsiders
theshort-timelimit

(a5(t)>~—413(o5(0))—4f3, (2.113)

consistentwith theperturbationexpansion.Thisgivesthe correctEinsteinA-coefficient for the
decayrateof the excitedatomic state,resultingentirely from vacuumfield fluctuations.

In ref. [281, however,the stepfrom eq. (2.112)to (2.113)hasnot beenconsideredentirely
justified, simply becausefor the casein which the initial atomicstateis the lower energystate
I—), we would have

~ —413(a~(0)) 413, (2.114)

correspondingto spontaneousabsorptionfrom thevacuum!To rectify this situationwe must

considerin moredetail the first term on the right-handsideof eq. (2.112). Using

akX(t) akX(O) exp(—iwkt) + Ckxa(t)fdtl exp{i(wk — o.~0)(t1— t)},
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we have

2 ~I~CkX((aftX(t)a~(0))exp(iw0t) + (a(0)a~~(t)) exp(—iwot))

2 ~ C~~((a(t) a~(0)> exp(iwot)fdt1 exp{i(wk — w0)(t1 — t) }

+ (a(0)a~(t))exp(—iwot)fdt1 exp-[—i(wk — w0)(ti — t) ID

2 ~ C~~(a(t)a+(t))(fdti exp{i(wk — wo)(t1 — t) } + Idtl exp{—i(wk — w0)(t1 — t)

4j3(a(t)a~(t)) —213(—l +(u5(t))) (2.115)

whentheapproximation(2.46) is againused.
Note that this term is dueto radiationreaction.Using the result(2.115)in eq. (2.112),we have

finally,

(65(t)) = —213(1 + (05(t))), (2.116)

whichisjust eq. (2.93). Sincethe term (2.115)stemsfrom the radiationreactionpart of the field,
the decayof (a5(t)) in the anti-normallyorderedcalculationis attributableto bothvacuumfield
fluctuationsandradiationreaction.

We haveshown,therefore,that for the decayof (a~(t))we needboth the vacuumfield andthe
sourcefield. It maybe shownthat this statementremainsvalid regardlessof the orderingscheme
used.The fact thatatomicfluctuationsarenecessaryfor spontaneousemissionhasbeen
emphasizedby Fain [57]. He pointsout that a ground-stateatomdoesnot undergospontaneous
absorptiondueto the vacuumfield fluctuationsbecausein this statetheyareexactlycancelled
by the atomicfluctuations.This factshowsthe importanceof havingboth typesof fluctuations
contributingto the overall physicalprocess.

2.8. Discussion

The unorthodoxapproachto spontaneousemissionusedin this sectionis well suited for a com-
parisonof the quantum-electrodynamicalandsemiclassicaltheories.TheHeisenberg-picture
methodprovidesinsight into the dynamicsof spontaneousemission,andit is unlikely that the
problemof the interpretationof the radiativecorrectionscanbe resolvedas neatlyby anyother
approach.For the purposeof comparingquantum-electrodynamicalandsemiclassicaltheories,
theproblemof interpretationis of paramountimportance.The Heisenbergequationsof motion
aresuperficiallysosimilar to the semiclassicalequationsof thenextsectionthat the questfor the
rangeofvalidity of semiclassicalradiationtheoriesmustproceedquite beyondthe calculationof
variousnumericalmagnitudes.In this context,Einstein’sremarkthat “every theory is true,pro-
vided you suitablyassociateits symbolswith observedquantities” [58], doesnot seementirely
facetious.
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Whereasradiationreactionandvacuumfluctuationsin spontaneousemissionare,accordingto
Senitzky [271, two sidesof the samequantum-mechanicalcoin, it is evident that thecorrespond-
ing semiclassicalcoin canonly be one-sided:Therecanbeno vacuumfluctuationsin a purely
semiclassicaltreatment.Quantummechanically,the vacuumfield appears,naturally,simply as the
homogeneoussolutionof the Maxwell equation.In a classicaltreatmentof the field, however,it
is customaryto takeas zerothehomogeneoussolutionof the correspondingequation:If there
areno sources,thereareno fields.Thehomogeneoussolutionof the quantum-mechanicalopera-
tor Maxwell equationcannotbe sodispensed,as it is requiredfor the preservationof commuta-
tion relationsandthereforetheHeisenberguncertaintyrelations.We haveseen,for example,
thatwithout the fluctuatinginfluenceof thevacuumfield, an atomicelectronwould apparently
collapseinto the nucleus.The replacementof the usual(vanishing)classicalhomogeneoussolution
with a fluctuatingzero-pointfield of energydensity~hw associatedwith eachplane-wavemode
leadsto an interestingstochastictheoryof the radiationfield. This theory,which is suggestedby
thequantum-electrodynamicaltheorybut seemsto havean independentraison d’être, is dis-
cussedin section4.

For furtherdiscussionof recentwork on the theoryof spontaneousemissionthereaderis re-
ferredespeciallyto the monographby Agarwal [59]. The role of the radiationreactionfield in
spontaneousemissionhasalsobeendiscussedby Bullough [601 andAgarwal [61], who hasalso
notedthe intimate connectionbetweenradiationreactionandvacuumfluctuations.

The recentinterestin theoriesof spontaneousemissionmaybe tracedto the successof the
semiclassicalapproachin Lamb’s lasertheory [62]. This triumphof the semiclassicalapproach
raisesquestionsas to its preciselimits of applicability. It is naturalto studythe problemof spon-
taneousemissionas well as otherproblemswhich playedan importantrole in the historical
developmentof the quantized-fieldtheory.Bohr seemsto havebeenthe first personto recognize
in the phenomenonof spontaneousemissiona renunciationof classicalnotions.WhereasEinstein
[21 referredto transitions“without excitationby an externalcause”,Bohr consideredthemto
be purely spontaneous,i.e., acausal[631. Indeed,it is now recognizedthat thestudyof the
phenomenonresponsiblefor mostof thelight aroundusrequiresconsiderationof the mostsubtle
differencesbetweentheclassicalandquantumtheories.

3. Semiclassicalapproachto spontaneousemission

3.1. Schrödinger‘s radiation theory

In classicalelectrodynamicsthe electricandmagneticfieldsareprescribedfunctionsof time
andspace.The fields areuniquelydeterminedat anyspace-timepoint by the specificationof
their sources.Realisticallythereis, of course,someuncertaintyin the fields, sincethe sources
cannotbe specifiedpreciselyin everydetail. In the usualsense,however,this uncertaintyis not
regardedas “fundamentaP’,for shouldit happenthat the sourcesarepreciselyspecifiedat an
initial space-timepoint, theirequationsof motion in principle uniquelydeterminethem,and
thereforethe fields theygenerate,at all other space-timepoints.Quantummechanically,thereis
a fundamentaluncertaintyin the specificationof the sources,i.e., the Heisenberguncertainty
principle is operative;thustheremustbe a fundamentaluncertaintyin the fields generatedby
thesources.The fields thereforemust alsobe treatedaccordingto the dictatesof quantum
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mechanics.In otherwords,the field variablesmustbe regardedas operatorsin a Hilbert space:
The field is “quantized”.

It is well knownthat theHamiltonianfor thefree electromagneticfield correspondsto that for
an assemblyof uncoupledsimpleharmonicoscillators,eachmoderepresentinga singleoscillator.
In analogyto theatomic operatorsof theprecedingsection,we maydefinethe field operators

u~~(t)= U~(t) amn(0) U(t) = ImXnIexp-l—-i(E~— E~)t/h} (3.1)

for eachmode,where

HFIn) nhwln), (3.2)

U(t) = exp(—(i/h)HFt),andw is the mode(circular) frequency.Sincethe integern specifyingthe
stateof themodein this(Fock-state)representationmayassumeanypositiveintegralvalue,it
provesconvenientto definetheoperatorsum

a(t) = ~ ~Thu~_1,~(t). (3.3)

Fromthe commutationrule

[Gnm,Oij]
6im0ni~/n0im, (3.4)

which hasthe sameform as the correspondingrule (2.9) for the atomicoperators,it follows that

[a(t),a~(t)1 = 1, (3.5)

that is, a anda~arejust the usual“photon” annihilationandcreationoperators.The important
point is that,while the field andatomicu-operatorsobeythe samecommutationrules,the field
a-operatorsaremoreconvenientlycollectedin themannerof eq. (3.3).

The equationsfor a anda~havethe sameformal structureas the equationsfor c-numbers~
anda* in classicalelectrodynamics.Thus we mayregardclassicalelectrodynamicsas a theory in
which the field a-operatorsarec-numbers.But classicalelectrodynamicsis avery successful
theory,so the c-numbertreatmentof the field u-operatorsmustreflect some“elementof truth”.
The reasonfor this circumstanceis well knownfrom an intimately relatedpoint of view: An
arbitrarily largenumbern of “photons” mayoccupythe samestate,andwhenthis situationob-
tains, it is accurateto regardthephotonwavefunctionas defininga classicalfield distribution.

The treatmentof the atomicu-operatorsas c-numberscorresponds,of course,to the original
Schrödingerinterpretationof the wavefunction.When Schrodingercalculatedthe wavefunction
~i(r,t) for an electronin the Coulombfield of thenucleus,he did no supposeit to haveany
probabilisticconnotations;I i4,12 representedthe spatialdistributionof a “smeared-out”
electron.The electricdipolemomentfor the electron-nucleussystemtakesthe form

p(t) = efd3rr I ~i(r,t)12 = e(~i(r,t)lrI ~(r, t)) (36)

in the Dirac notation,with analogousresultsfor highermultipole terms. In thenotation of the
previoussection,we maywrite eq. (3.6) in the form
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p(t) = ~ er~~(a~~(t)). (3.7)

Schrödingerhadcreatedthe first semiclassicaltheoryof the interactionof light with atoms.Given
thewave function,chargedistributionscould be calculated,andthesechargedistributionsthen
fell into the domainof classicalelectrodynamics.

Aside from its conceptualappeal,the Schrodingersemiclassicaltheoryhadthe advantageof
providinga simpleexplanationfor the absenceof spontaneousemissionfrom the groundstate.
Thus for thegroundstate l~10(r)exp(—iE0t/h)the chargedensity I ~,L’12 is a constantin time andthe
systemis nonradiative;a seriousproblemthathadconfrontedthe old Bohr modelhadbeengiven,
accordingto Schrödinger[64], “A surprisinglysimplesolution”. Unfortunately,the solution may
be appliedto anystationaryatomicstate,so that Schrodinger’ssemiclassicaltheorydid not predict
spontaneousradiationfrom an atomexcitedto a pureexcitedstate.Obviously Schrodingermust
haverecognizedthis, but did not regard it in anyway as a defectof his theory. In fact, the notion
of “quantumjumps” was,throughouthis career,completelyforeign to Schrodinger.Thevery
notionof discreteenergylevels was consideredby Schradingerto be superfluous;term differences
werewhatmattered.“Partialoscillations”of the wavelikeelectron,which correspond,loosely,to
the quantities(a~~(t))in eq. (3.7),heldmorephysicalsignificancethanthe ideaof quantum
jumps,andasSchrodingerwrote in a letter to Planckin 1926, “The energeticpropertyof the
individual partial oscillationis its frequency”[651.

Despiteits conceptualadvantages,theSchrödingerinterpretationof the wave function — and
the radiationtheory it implies — is not entirely satisfactory.Of theunsatisfactoryaspectsof his
theory,Schrodingerwas fully aware.On theotherhand,he never fully acceptedanyprobabilistic
interpretationof the wavefunction.The difficulties besettingthe Schrodingerinterpretationare
reviewedin thenextsection.Thissectionis devotedto a theoryof spontaneousemissionwhich
proceedsfrom the Schrodingerinterpretationof the wavefunction.Thistheory,advancedby
Jaynesandhis collaborators[4—6], hasbeenaptly called the “neoclassical”theoryof spontaneous
emission[6]. The following remarkby an historianof the quantumtheorysuggestsoneimportant
reasonfor the needto carefully delineatetherangeof validity of the neoclassicaltheory: “Should
Jaynes’neoclassicalapproach,which so far seemsto be only in an initial stageof its development,
prove to beviableon future evidence,Schrodinger’ssemiclassicalinterpretationof quantum
mechanicsmaywell be destinedto commandmuchhigher respectthanit doestoday” [66].

The proponentsof the neoclassicaltheorysuggestthat the semiclassicalapproachmight not
be merelyan accurateapproximationschemein certaininstanceswherethe Schrodingerand
probabilisticinterpretationsof the wavefunctionyield practicallyequivalentresults.They suggest
that the semiclassicalapproachmight be valid evenin the limit of vanishingexternalfields, or in
effect that radiationfields might in everyinstancebe amenableto c-numbertreatments.In dis-
cussingthe neoclassicaltheoryvis-à-visthe quantum-electrodynamical,caremustbe takento
avoid the logical inconsistencyof attackingthe formerwith conceptsappropriateonly to the
latter. Thus it is quite irrelevant,for example,to arguethat the neoclassicaltheoryviolatesthe
Heisenberguncertaintyprinciple [67], sinceneoclassicaltheory is essentiallybasedpreciselyon
the abrogation of suchquantum-mechanicalnotions.In this sectionit is convenientto employa
certainterminologywhich mayin someinstancesbe strictly appropriateonly to thequantum
theory.The readeris urgedto bearin mind that certaintermsmayhaveradicallydifferentconno-
tationsin the two theories.It is hopedthat the essenceof neoclassicaltheorywill be sufficiently
clearthat the problemof semanticswill not be aseriousone.
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3.2. Theneoclassicalequationsfor spontaneousemission

In the neoclassicaltheorytheexpectationvaluesof atomictransitiondipolemomentsaretaken
to be actual, classicallyradiatingdipole moments.Theradiationreactionof sucha dipoleon it-
selfleadsto dampingof its oscillation or “spontaneousemission”of radiation.TheHilbert space
for the systemof radiationandmatteris definedentirelyby the Hubertspaceof the free atom,
andin this Hilbert spacethe field is a scalar.Thus theterm “expectationvalue” canonly referto
the atomicstate ‘OA), the field havingno quantum-mechanicalstate-description.The dipole
sourceis given by eq. (3.7).

It is importantto notethat in theneoclassicaltheoryall electromagneticfields arec-numbers,
including the field generatedby the quantum-mechanicalatom.Now in the previoussection,ex-
pectationvaluesof certainoperatorproductsarose;thesewere productsof atomicoperatorswith
field operators.The field operatorswereeacha sumof two parts,onecorrespondingto the free
field and the otherto the radiationreactionfield of the electronbackon itself. It is clearthen
thata simple decorrelationof theseoperator-productexpectationvaluesmustresult in the corre-
spondingequationsof the neoclassicaltheory.Startingwith the atomicoperatorequations,one
replacesall operatorswith their expectationvalues;expectationvaluesof operatorstakenwith
respectto the atomicHilbert spacearethe only quantitiesthat can be sensiblycomparedwith
correspondingquantitiesof the neoclassicaltheory.The termscontainingthefree or vacuum
field contributionin particularmustbereplacedby c-numberscharacterizingtheprescribed
(classical)appliedfield. For the problemof purespontaneousemissionin the vacuum,thereare
no appliedfields and thesetermsaretakento bezero.Thereareno “vacuum” fields in the neo-
classicaltheoryas it hasbeenenunciatedto date;the vanishingsolutionof thehomogeneous
Maxwell equationis chosen.

The neoclassicalandquantum-electrodynamicaltheoriesaremostconvenientlycomparedby
consideringthe two-state model of theatom. Fromthe discussionabove,it follows that thede-
correlatedversionsof eqs.(2.81)—(2.83)mustyield theequationsof the neoclassicalmodelof a
two-stateatom interactingwith radiation.The resultingequationshavethe form

= —w0y(t), (3.8)

= w0x(t) + (2/h) p~E
1(0,t)z(t), (3.9)

i(t) = —(2/h)p ~E1(0,t)y(t), (3.10)

whereE1(0, t) is now takento bea classical(c-number)field andx(t), y(t), z(t) havebeenwritten
in place of (a~(t)>,(u~(t)>, and(a

5(t)). Theseequationsareeffectively the startingequationsof
JaynesandStroud [5].

As in the quantum-electrodynamical approach, the field E’(O, t) is the sumof the radiation
reactionfield andanexternalfield. Sincethereareno “vacuum” fields in neoclassicaltheory,the
only field that canenterinto the aboveequationsfor theproblemof spontaneousemissioninto
free spaceis the radiationreactionfield E~R(t)of the electron:

E’(t)=E~R(t)=[~-~~t) 31rc2 ~t)]’~ (3.11)
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JaynesandStroud[5] now follow theusualapproximationof replacingi(t) by —w~(t):

E’RR(t) [_-~°~(t) ÷~“°~“ x(t)~p. (3.12)
3c 37rc

This replacementeliminatesthe possibilityof run-awaysolutionsandis closelyakinto the adiabatic
approximationof the precedingsection.It mayberegardedas thesemiclassicalequivalentof the
Weisskopf—Wignerapproximation.Substitutionof theresult (3.12) into eqs.(3.9) and(3.10)
yields the equations

4w3j.~2 8Kw~,p2
y(t) = w

0x(t)÷ - y(t) z(t) + x(t) z(t), (3.13)
3hc

3 3irhc2

42 3 8 2K
~(t) = — ~ y2(t) — x(t) z(t). (3.14)

For moreimmediatecomparisonwith thequantum-electrodynamicalresultsof thepreceding
sectionit is convenientto definethe quantityS(t)= ~(x(t) — iy(t)), the equationof motion for
which is

S(t)= —iw
0 S(t)+ 13(S(t)— S*(t)) z(t) — 4~2~° (S(t)+ S*(t)) z(t), (3.15)

3irhc
2

where again 13 = 2,.i2 c$/3hc3.S(t) correspondsto theexpectationvalue(a(t)) usedin the
quantum-electrodynamicalapproach.To comparewith the equationsof Jaynesand Stroud [5],
we define5(t) = u(t)exp(—iw

0t),obtain theequationof motion for u(t), and thenmakethe
“counter-rotating”approximation.The equationsof motion for the real andimaginarypartsof
u(t), denotedagainby x(t) and —y(t), respectively,arethen

~(t) 3x(t) z(t) — 7y(t) z(t), (3.16)

and

y(t) 13y(t)z(t)+ 7x(t) z(t), (3.17)

wherey = 4Kp
2w~/37rhc2.In the sameapproximationwe obtainthe equationfor z(t):

~(t) = —13(1 — z2(t)), (3.18)

whereusehasbeenmadeof the fact thatx2+y2 + z2 = 1. Equations(3.16)—(3.l8)aretheneo-
classicalequationsof JaynesandStroud [5].

Thedecorrelationof atomic andfield operatorsin the fully quantum-mechanicaltheoryyields
the neoclassical equationsbut does not define the neoclassical theory. The neoclassical theory is
based on the Schrodinger interpretation of the wave function. This interpretation leads to equa-
tions of motion which can be obtained by decorrelating expectation values of products of atomic
and field operators in the quantum-electrodynamical equations. But the fact that the neoclassical
equations can be obtained by invalid manipulations of the quantum-electrodynamical equations
does not imply that neoclassical electrodynamics is invalid — unless, of course, the validity of
quantumelectrodynamicsis presupposed.
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3.3.Implications of the neoclassical equations

In contrast to the equations derived by quantizing the radiationfield, the neoclassicalequations
for the atomicdipolemomentandenergyarenonlinear.Oneconsequenceof this nonlinearityis
thatthe theorypredictsa spontaneousgenerationof harmonicsof the fundamentalfrequency~o-

This is seenfrom an approximateintegrationof the neoclassicalequations(3.8), (3.13) and(3.14).
In addition to thecomponentof the dipolemomentwhich oscillateswith frequency~ one
finds componentsalso at3w~,5w~,etc.;thatonly oddharmonicsaregeneratedfollows from the
dipole selectionrule. Theseadditionalcomponentsarevery weak — of secondand higherorder in
13/wo — but theirexistencesupportsa statementmadeby Heisenbergin his objectionto
Schrodinger’ssemiclassicaltheory.Heisenbergarguedthat,accordingto the Schrodingertheory,
“the radiationemittedby an atomcould be expandedinto a Fourierseriesin which the frequencies
of the overtonesareintegralmultiplesof a fundamentalfrequency.The frequenciesof the atomic
spectrallines,however,accordingto quantummechanics,areneversuchintegralmultiplesof a
fundamentalfrequency...“ [68].

Another prediction of the neoclassical theory is that an atom excited to a pure stationary state
cannotradiate.For anatomwhich hasbeenpumpedinto the upperenergystate,z(0) = 1 and
x(0) = y(O) = 0, so that~(0) = 0. Exactlyas in the Schrodingertheory,the neoclassicaltheory
accountsfor the absenceof radiation from thegroundstate,but predictsin addition that every
atomicstationarystateis nonradiative.Theseresultsareto be expected,sincethe neoclassical
theory,in its physicalcontent,is identicalto the Schrodingersemiclassicaltheory.The formalism
haschanged,but the theoryremainsthesame.

The quantumandneoclassicalradiationtheoriesalsodiffer in their predictionsof the emission
lineshape.The quantumtheorypredictsthat the emissionlineshapeis approximatelyLorentzian,
with half-width 13. The approximationlies in the derivationof the exponentialdecaylaw. The
problem of theinteractionof an atomwith an infinite numberof field modescannotbe handled
exactly;theadiabaticapproximation,which is essentiallya Markovianor “Weisskopf—Wigner”
approximation,is invoked for tractability. The “ladder” aspectof theWeisskopf—Wignerapproxi-
mationhasbeenelucidatedin diagrammaticlanguageby Knight andAllen [69]. Fermi [70] pro-
vided a simplecoupled-oscillatormodelwhich capturesthe physicalessenceof theWeisskopf—
Wigner approximation.Two linearly coupledoscillatorssinusoidallyexchangetheenergythat
initially is assumed to be containedentirely in oneof the oscillators.As moreoscillatorsare
allowedto be coupledinto the system,the periodwith which the initially excitedoscillatorre-
possessesits initial energymonotonicallyincreasesuntil finally, as thenumberof oscillators
tends to infinity, the energyis lost foreverto the initially excitedoscillator; its “emission”process
becomesirreversible.Analogously,if we allow atwo-state,excitedatom to be coupledto but a
single field mode, the excitation energy is exchangedsinusoidallyin time betweenthe atomand
the field [711; whenall the modesof the radiation field are admitted, the emissionbecomesirre-
versible.This irreversibility doesnot requirethe decayto be exponential.In fact, onecanimprove
uponwhatis usuallyreferredto as the Weisskopf—Wignerapproximationandobtainsmallcorrec-
tionsto the exponentialdecaylaw [72, 731.

It may be useful to digress still furtheron the (approximate)lineshapepredictedby quantum
electrodynamics. One can easily derive, using the adiabatic approximation to the atomic operator
equations,the spectrum
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13w~~
2 2’ (3.19)

(WWo) +j3

wheren = 2, m = 1 or n = 0, m = 3 accordingto whethertheA ~por r ~E form of the interaction
Hamiltonianis used.As was the casewith the derivationof the radiativefrequencyshift in section
2, the two different resultsagreeonly on the energyshellw = ~ Fromhis experimentalwork on
the radiativefrequencyshift in hydrogen,Lamb [53] concludedthat the spectrum(3.19)with
n = 0, m = 3 is the correctone. Davidovich [49], emphasizingthat the transformationfrom the
oneform of the Hamiltonianto theothermustbe accompaniedby a transformationof basisstates,
showsthat this spectrumcanalsobe obtainedfrom theA ~pHamiltonianif this basistransforma-
tion is accountedfor. Specifically,if in deriving the spectrumfrom ther ~EHamiltonian,the ex-
pectationvaluesrefer to the initial state

10) = 1+) ® I{0}), (3.20)

whereI{0}) is the field statein which thereareno transversephotons,thenthe samespectrum
canbe obtainedfrom theA ~pHamiltonianif oneusesinsteadthe initial state

h~i>=U(r,t)I0), (3.21)

whereU(r, t) is definedby eq. (2.14).Physically,the state I iji> definesthe situationin which the
total field energydensityoutsidethe atom vanishes,not justthe energydensityof the transverse
field.

The transformationof the minimal couplingform of the Hamiltonianto ther E form is easily
accomplishedin the semiclassicaltheory; thistransformationwas reviewedin section2. The form
of the interactionHamiltonianusedin this sectionis the r E form, andsothe lineshapepredicted
by the neoclassicaltheorymustbe comparedwith the quantum-electrodynamicallineshape

13w~/7rw~
= 2 2 (3.22)

(W0)o) +f3

with the understanding,of course,thatboth lineshapesareapproximate.
The quantity7 thatappearsin the neoclassicalequations(3.16)and(3.17)will beshownbelow

to representa radiativefrequencyshift. For thepurposeof obtainingtheneoclassicalemission
lineshapeit is convenientto temporarilytake‘y~0. In this casethe equations(3.16)—(3.l8)have
the solutions[5]

x(t) = cosOsech13(t— t
0), (3.23)

y(t) = sinO sech13(t— t0), (3.24)

and

z(t) = —tanh13(t— t0), (3.25)

where0 andt0 definethe assumedinitial values.The dipole termshavea hyperbolic secantde-
pendenceon t, andthereforetheir Fouriertransformsareagainhyperbolicsecants.Thus the
neoclassicaltheorypredictsa hyperbolicsecantsquaredlineshape,as opposedto the Lorentzian
lineshapeof the quantumtheory.We shallnot discussthe detailedaspectsof the two spectra
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here;the interestedreadershouldconsultthepaperby JaynesandStroud [5] or the reviewby
Jaynes[6].

It is worthwhile,however,to studyin detail theimplicationsof theneoclassicaltheory for the
radiativefrequencyshift, especiallysincetheexplanationof theLambshift is usuallyregardedas
a crowningachievementof quantumelectrodynamics.We shallnot actuallydiscussthe implica-
tionsof the neoclassicaltheory for the Lambshift: Enoughof a contrastwith thequantum-elec-
trodynamicaltheoryarisesin the simpletwo-statemodel. Thuswe shalldiscussin detail thepre-
dictionsof the two theoriesfor the radiativefrequencyshift of a two-stateatom.

Fromthe “counter-rotating”approximationversionof eq. (3.15),

S(t)= —iw0S(t)— i’yS(t) z(t)+ 13S(t)z(t), (3.26)

we seethat the transitionfrequency~o undergoesa time-dependentshift. The radiativefrequency
shift is

(3.27)

Nearthe upperstate,the transitionfrequencyis approximatelywo+ 7, whereasnearthelower
stateit is approximatelyw~— ~y.This is in markedcontrastto the unchirpedradiativefrequency
shift predictedby quantumelectrodynamics.In that case,the left-handsideandthe first two
termson the right-handsideof eq. (3.26) arereplacedby

6(t) = —iw0a(t)— ii.~~o5(t)0(t) — i~~o(t)a5(t) + ... (3.28)

where

= 2~w~ wdw (3.29)

3irflc

Sinceo5(t)0(t) = —0(t) and0(t) o5(t) = 0(t), it follows that

6(t) .—iw0o(t) + i(i~ — z~~)a(t)+ ... = —i(wo — ,.~)o(t) + ..., (3.30)

where~ = — ~ is given by eq. (2.94). If, on the otherhand,0(t) ando5(t) aremanipulated
asc-numbers,we find insteadthat

S(t)= —iw0S(t) — i(~+ ~~S(t)z(t) + ..., (3.31)

wherewe havewritten S andz in place of a and u~to emphasizethe relationof the decorrelated

quantum-mechanicalequationsto the neoclassicalequations.In fact,

+ ~ = 2~w~ KC1__~~ + ~ ~dw 4p
2w~K= ~, (3.32)

3irhc3 ~‘ ‘WW~ w-~-w~J 3irhc2

sinceKc ~ w~.Onceagain,impropermanipulationof the quantum-mechanicalequationsleadsto
theneoclassicalequations.

In the quantum-electrodynamical approach, —~A~and ~ representthe levelshiftsof the
upperandlower states,respectively.Accordingto thisview, the neoclassicaltheorytakesas the
frequencyshift of the transitionfrom the upperto the lower statethe sumratherthanthe differ-
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enceof the upperandlower statelevel shifts (dividedby /1). Onceagaina featureof the
Schrodingersemiclassicaltheoryappears:Evidentlytransitionfrequencies,andnot (superfluous)
energylevels,arethe essential“energeticproperties”of the neoclassicalatom.

But thereis somethingmoresubtlecontainedin the identificationof y with the magnitudeof
theradiativefrequencyshift. Considerthe Betherenormalizationappliedto the two-stateatom;
theprocedureis not directly applicableto the two-statemodel, sincethe Thomas—Reiche—Kuhn
sumrule doesnot apply,but as longas thisis bornein mind, it doesnot destroytheargument
madehere.The level shift of the upperstateis —hi~~.Recognizingthat the “electromagnetic
mass”is alreadycontainedin the expr.essionfor theenergyof thislevel, and thatswitchingon
theradiationreactionfield addsits contributionagain,we must subtractits contributionto
~ Thus the observable level shift is, from eq. (2.64),

—h~~= —/l~~~— C(p2), (3.33)

the expectationvaluereferringto the upperstate.In the two-statemodel,(p2) is

(+1p2I+) (+IpI—)(—IpI+) ~ ~ (3.34)

wherem is the observablemass.Fromeq. (2.64)we have

2 /e2\ / 1 \2 2e2K
— —k--—)~-—) hKc = — 2 2’ (3.35)

3m hc mc 3mmc

so that

= —h~~+ 2e2w2
0m

2p~K
3mm e c

2 2 2K ~ 2 3
,-~ o .~./2Wo c

= —ha’’ + 2 = ~ +41~7 — log — , (3.36)3mrc 3mrc3 — E..

which is just the two-stateanalogueof Bethe’sexpression(2.62).
Two importantpointsemergefrom this simpleanalysis.First, it appearsthatwhatis subtracted

off in the quantum-electrodynamicalapproachis takento bephysically meaningfulin theneo-
classicaltheory.Namely,the quantitythat is associatedwith an electromagneticmassin Bethe’s
approachis associatedinsteadwith aradiativefrequencyshift in the neoclassicaltheory — there
is no massrenormalizationin neoclassicaltheory.To elaboratesomewhaton this point, consider
the equations(3.8) and(3.9) for the casewherethe atom is neartheground state,z —1. Then
for the atomicdipolepx(t), we havethe equation

x(t) + w~x(t) = p E(0, t), (3.37)

or

2 4wop2 ... 8w
0p

2K..x(t)+w
0x(t)~ — x(t)— x(t), (3.38)

3/Ic
3 3m/Ic2
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whenuseis madeof eq. (3.11).Making theapproximation(3.12),we have

i~(t)+ W~[I — x(t) = — 4~3~2 x(t). (3.39)

Neoclassicaltheorywould associatetheterm

~ 8w0,L2K1L/
2 4ji2w~K

W~ 1 — 2 I — wo — 2 = (3.40)
L 3m/Ic j 3m/Ic

with a radiativefrequencyshift; in fact, as mentionedearlier,—‘y is indeedthe radiativefrequency
shift for an atomnearits groundstate,accordingto neoclassicaltheory.Accordingto the approach
of Bethe,however,the secondterm on the right-handsideof eq. (3.38) is to be associatedwith an
electromagneticmass.Since theenergylevels(given,for example,by the Bohr formula) werede-
rivedusingan aiready-renormalizedmass,the energy

“212m —“212m _~(F)_i h “341t’ obs t’ bare 2 1

mustbe subtractedaway.The“extra” factorof two in the eq. (3.40) merelyrepresentsthe fact
thatthe radiativefrequencyshift in the neoclassicaltheory is the sumof the level shiftsof the
lower andupperstates.

The secondpoint to be madein this connectionis that the term subtractedaway in Bethe’s
approachis an expectationvalueoverthe level in question:Quantummechanicallythe electron,
in a loosesense,is in only onestateat a time, andnot associatedsimultaneouslywith many
“partialoscillations”. The interpretationof the stationarystatesof the atom in the neoclassical
theory remindsoneof the normalmodesof vibrationof a classicaloscillatingsystem.If the state
of motion of this systemis representedin termsof its normalmodes,eachnormalmodecontribu-
tion (say, to the transverseoscillationof a pluckedstring) is containedin the motion of thesys-
temat anyinstantof time, and therelativeweightsof the differentmodesin the normal-mode
expansiondeterminethe stateof oscillationat this instant.The correspondingquantum-mechani-
cal expansionof the wavefunction in termsof the stationarystatesis interpretedin a verydif-
ferentway. Therethe relativeweightsof the different “normal modes”determinetheprobability
of the systemto be foundin eachmode;a measurementcanonly revealthat thesystemis in one
particularstationarystate— the measurementindeedpreparesthat state.

The fact that an expectationvalueof AE~’~~is subtractedaway in Bethe’scalculationseemsto
bearon a problemwhich long concernedSchrodinger[581, namely,whetherin the microscopic
realm the conceptof energyshouldbe consideredto be a statisticalone.

3.4. Discussion

The semiclassical equations (3.8)—(3. 10) are useful for a description of many phenomena in
quantumopticsandelectronics[74]. They areapplicablewhenonly two atomicor molecular
statesaresufficient to characterizethe systemin its interactionwith an appliedfield, i.e., when
the appliedfield is tunedto a single transition.To accountfor the relaxationof the two-state
systemonenormally introducesphenomenologicaldampingtermsinto theseequations.The re-
suItingequationsaresometimestermed“phenomenologicalBloch equations”,sinceBloch [75]
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usedequationsof the sameform in the theoryof (spin —~) nuclear magnetic resonance. The
utility of theseequationsfor problemsin maserphysicswas emphasizedby Feynman,Vernon
andHellwarth [561 in 1957,althoughtheir usein suchproblemswas not entirelyunknown
earlier [6] . Indeed,with the wisdomof hindsight,it is surprisingthat theseequationswerenot
well known evenmuchearlier. As early as 1927, Landau [76] had studied spontaneous emission
with a density-matrixapproachand field quantization;his approachwas similar in spirit to that
usedhere in section 2. The inclusionof a classicalappliedfield might haveled to the Bloch
equations.

The neoclassicaltheoryof spontaneousemissionproceedsfrom the idea of allowing theatom
to reactbackon theappliedfield. This is accomplishedby usingfor theelectric field in eqs. (3.9)
and(3.10) the sum of the transitiondipole’s radiationreactionfield andthe appliedfield. It
shouldbe notedthat the “phenomenological”Bloch equationscanbe simply derivedfrom the
quantum-mechanical operator approachwhenthe only relaxationmechanismis radiativedecay
andwhenthe initially excitedfield is describedby a Glaubercoherentstate[77]. The derivation
in this casefollows easilyfrom eqs.(2.88)—(2.90).The radiationreactionfield leadsto the
radiativedamping,while expectationvaluesof productsof normally-orderedfield operators~
with atomicoperatorsyield c-numbersmultiplying atomic-operatorexpectationvalues.Thus, for
example,if we takeexpectationvalueson bothsidesof eq. (2.88)we obtain

= wo(a~(t)>+ ~ [(E~(t) a5(t)) + (a5(t)E~(t))] ÷~p• [(E~(t) o5(t)) ÷(a5(t)E~kt))].

(3.42)

The termsinvolving the radiationreactionfield lead to the radiativedampingand frequencyshift
in the now familiar way. The assumptionof aninitially coherentstateof the field implies that

(E~~(t)o5(t))+ (a5(t)E~~~(t)) = (E~)(t) + ‘~kt))(a5(t))= E0(t) (a5(t)>, (3.43)

where4±)arec-numbersdefinedby

E~~(0,t)Iinitial field state) E~’~(0,t)Iinitial field state> (3.44)

andtheconjugaterelation.Thus theBloch equationswith radiativedampingfollow from expec-
tationvalueswhenthe applied field, or morepreciselythe initial field state,is coherent.Other
dampingmechanismscanbe includedin thesameway by including their contributionsto the in-
teractionHamiltonian.

Bloch equations are also adequate for the treatment of the interaction of resonant light with a
system of many atoms or molecules.In the semiclassicaltheory of the laser, for example, the
electricfield usedin the Blochequationsis takento be the solutionof the Maxwell equation

(3.45)

the polarization density P being just the sum of all the individual atomic polarizations; the atomic
polarizations in turn are determined by using the field satisfying eq. (3.45) in the Bloch equations.
From a quantum-mechanical viewpoint, the coupled Maxwell—Bloch equations may be regarded
as equations for expectation values, the field being assumed to be fully coherent in the Glauber
sense. Equivalently these equations are based on the assumption that each atom bears no correla-



40 P.W. Milonni, Semiclassicalandquantum-electrodynamicalapproachesin nonrelativisticradiation theory

tion with the fields from the remaining atoms of the laser medium. Shirley [781 has shown that
this approximation is valid to order 1/N, whereN is the numberof atoms(confined so that all
the atomsareexposedto the samefield amplitude);i.e., the termsthataccountfor anycorrela-
tions arenegligiblewhenthe numberof atomsis large.Neoclassicaltheorycarriesthe assumption
one step further: It is assumed that the atom is not even correlated with its own radiation reaction
field. Here the term “correlation” definesthe situationin which the expectationvalueof a product
of two operatorsis not factorableinto theproductof the expectationvaluesof theseoperators.
The lack of correlationin this sensedoesnot precludein anyway thepossibility of havingthe
fields from differentatomsbearingdefinitephaserelationships,so that thedifferent atomsmay
interact“coherently” throughtheir fields. This point hasbeenemphasizedby Senitzky [321.

The wavefunctiondescribingthe entiresystemof atomsof thelasermediumis thusinter-
pretedin the Schrodingersense;the approximationis a goodonebecauseit is possiblefor many
atomsof the mediumto occupythe samestate.But theassumptionthatthe Schrodingerinter-
pretationappliesto asingle atomis a radicalone,andrepresents,not an approximationto the
quantum theory, but rather the creation of a new theory. For the case of a single atom, there is
no “safety in large numbers!”. On the other hand, the assumption is certainly not unreasonable,
andin manyinstanceswouldappearto bequite reasonableindeed.Thus, for example,theequa-
tion of continuity satisfiedby I i~iI2would stronglysuggesta “hydrodynamic” interpretationof
the wavefunction;only whenthe statisticalinterpretationis accepteddoesthe equationof con-
tinuity presentitself as an obviousstatementof the “conservationof probability”. To cite
another-example,the forcesactingon eachnucleusin a moleculecanbe calculatedby classical
electrostatics,given the chargesandpositionsof all other nucleiandelectronsof the molecule,
by usingthe Schrödingerinterpretationof theelectronicwave function.This is theHellmann—
Feynmantheorem[79].

The mostimmediatelyobviousdifferencesbetweenthe quantum-electrodynamicalandneo-
classicaltheoriesare foundin their predictionsof the dynamicsof the radiativedecayand fre-
quencyshift. The rateat which spontaneousemissionproceedsin the neoclassicaltheorydepends
on the probability amplitudes of both the upper and lower states of the transition. Thus if the
atom is initially describedby the state

I~1i)c
1I—>+c2l+), (3.46)

thesquareof its transitiondipolemoment is proportionalto Ic1 12 Ic2 12, andthe transitionrate,in
the senseof short-timeperturbationtheory,is Ic1I

2 Ic
2 12 timesthe EinsteinA-coefficient.The

emission rate according to quantum electrodynamics, on the other hand, is Ic2 1
2A. To discuss this

differencein moredetail, it is usefulto considerthe simplemodelof a two-stateatomcoupledto
asinglemodeof the radiationfield. In the rotating-wave(or “counter-rotating”)approximation,
theHeisenbergequationsof motion for theproblemare

6(t) = —iw
0o(t) +go5(t)a(t), (3.47)

= —2g(a~(t)0(t) + o~(t)a(t)), (3.48)

and

à(t) = —iwa(t) +go(t), (3.49)
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where w is the circular frequency of the field mode and the coupling constant g is real. Consider
the time evolution of the field operator a(t) in Heisenberg-picture short-time (gt ~ 1) perturba-
tion theory:

a(t) a(0)e_~wt+ gt a(0)e_~t÷~g2t2 o~(0)a(0) ~ (3.50)

From this equation it follows that

(a~(t)a(t)> (a~(0)a(0))+gt(a~(0)a(0)) +gt(a~(0)a(0)) +g2t2(a
5(0)a~(0)a(0)>+g

2t2(o~(0)o(0)>.

(3.51)

The initial atomic state is given by eq. (3.46); for simplicity we assume that the initial field state
is the coherent state Ia):

a(0)Ia) ala), (3.52)

so that eq. (3.51)maybe written as

(a~(t)a(t)>~IaI2+gt(a*c~c
2+ac1c~)+g

2t2IaI2(Ic
2I

2_1c
11

2)+g2t2 Ic
2 2. (3.53)

The first term on the right-hand side of eq. (3.53)corresponds to the initial field energy. The
second term represents the interaction of the field with the initial atomic dipole expectation
valueandvanishesunlessthe atom is initially in a coherentsuperpositionof its two states.The
third term correspondsto stimulatedemissionor absorption,while the fourthterm clearlyre-
presentsspontaneousemission.Similarly we find

(a~(t)>(a(t)>~~ 1c11
2)+g2t21c

11
21c

21
2, (3.54)

from which we obtain

(a~(t)a(t)>— (a~(t)>(a(t)>~g2t2Ic
2I

4, (3.55)

to second order in gt. Senitzky [32] points out that the nonvanishing of the right-hand side of
eq. (3.55), i.e., the incoherence which has been imparted to the field, is due to the addition of
energyto the field by spontaneousemission.Senitzky [32] defines

5coh g2t21c
11

21c
21

2 (3.56)

to be the “coherent” part of the spontaneous emission. From eq. (3.54) it is seen that 5coh is the
short-time contribution to the field energy from spontaneous emission that would be predicted
by the neoclassical theory. The “incoherent” part of the spontaneous emission is

SIflCOh g2t21c
21

4, (3.57)

the “total” spontaneous emission corresponding to

SSCOh +SjflCoh g2t2 Ic
2 2. (3.58)

Senitzky [35] has pointed out that semiclassical theories can predict only “coherent” spontaneous
emission. The “incoherent” part of the spontaneous emission requires the quantization of the
radiation field; the semiclassical approach cannot account for the nonvanishing of
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(a~(t)a(t))— (a~(t))(a(t)>. JaynesandCummings[71] havefound the exactsolutionof these
equationsfor (a~(t)a(t)),andthe short-timelimit of their solutioncorrespondsto the resultspre-
sentedhere.

Heisenberg[801 alsonotedthat a semiclassicaltreatmentof spontaneousemissionleadsto
the resultthat the emissiondependson the probability amplitudesof both the initial andfinal
states.He pointedout that this featuremaybe eliminatedby a simpleerasurewhich would appear
to correspond closely to the addition of Senitzky’sincoherentpart to the expressionobtained
semiclassically.

The neoclassicaltheoryof the radiativefrequencyshift for a two-stateatom hasalreadybeen
discussed in detail. As opposed to the quantum-electrodynamical result, the neoclassical theory
predictsa “dynamic” or chirpedfrequencyshift. Moreover,the neoclassicaltreatmentof theshift
is completelyat oddswith the usualnotion of massrenormalization.The term that is treatedas an
electromagneticmassin the equationfor a free point chargeis takento representa radiativefre-
quencyshift for a boundelectron,ratherthanbeingsubtractedawayas a spurious“extra” electro-
magneticmass.Sucha subtractionwould in fact eliminateradiativefrequencyshifts in theneo-
classicaltheory.No very decisiveconclusionscanbe drawnfrom a simpletwo-stateatomicmodel,
however.All the virtual transitionsmustbe includedin a realistictreatmentof the radiativefre-
quencyshift. A neoclassicaltheoryof the Lambshift is complicatedby the nonlinearity of the
equations and is not available at this time.

4. Evidencefor thevalidity of the quantum-electrodynamicaltheoryof spontaneousemission

4. 1. Historicalperspective

The first unified theoryof the interactionof light with atomicmatterwas advancedby
Lorentz [81]. CombiningMaxwell’s equationsfor the electromagneticfield with Newton’s laws
of motion for bound electrons, Lorentz created an impressive theoretical edifice which accounted
for avastarrayof electromagneticphenomenaknownin his time. Becauseit could accountfor
neitherthe blackbodyspectrumnorthe existenceof discreteatomicenergylevels,however,the
edificecollapsedin part.Today it stands,with someinterpretativemodifications,as an accurate
approximationto the semiclassicaltheoryof nonresonancephenomena.

The Lorentzmodel,beingessentiallya theoryof chargedharmonicoscillatorsinteractingwith
light, cannot account for stimulated emission. The existence of the phenomenon of stimulated
emissionwas inferredby Einstein [2] in his derivationof Planck’sblackbodylaw; if the term
correspondingto stimulatedemissionis omittedin Einstein’srate-equationapproachWien’s law,
not Planck’s,results.The conceptof stimulatedemissionlaterplayeda centralrole in what was
perhapsa moresignificantdevelopment,the derivationby Kramers[82] andHeisenberg[3, 831
of the dispersionlaw.Their work took into accountEinstein’s“negativeabsorption”,andKuhn’s
considerations[84] on the classicallimit of the dispersionlaw led to the famousf-sum rule. This
sumrule, the first sumrule in physics,is essentiallya statementof the commutationrelation
[x, ~o~]= i/I. In fact, the dispersionlaw playedadecisiverole in the work of Born andJordan[85]
in which the concept of noncommutativity made its debut into physics. On the experimental side,
LadenburgandKopfermann[86] madethe first direct observationof stimulatedemission.They
studiedthe refractiveindex neara spectralline of araregascontainedin a dischargetube.By mea-
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suringthe refractiveindex as a functionof currentthroughthe discharge— or equivalentlyas a
functionof the degreeof atomicexcitation— they were able to infer that therewas indeeda con-
tributionto the index from “negative absorption”or stimulatedemission.Furtherwork could
conceivablyhaveled to the first light amplifier.

The ratesof spontaneousandstimulatedemissionwereconnectedby Einstein’swell-knownre-
lation [2]. The expressionfor theA-coefficientitself was knownthroughreasoningbasedon the
CorrespondencePrinciple [3], but an actualderivationfoundedon a rigorousformalismwas
lackinguntil Dirac [1] appliedthe Born—Jordancommutationrulesto the radiationfield. Thus
we havesomehistorical“evidence” for thenecessityof field quantizationfor a rigoroustreat-
mentof spontaneousemission:In spiteof intensework on the theoryof the interactionof light
with atomic matter,no suchtreatmentwasgiven prior to the creationof Dirac’s radiationtheory.

It is well known thatquantumtheory at its inceptionwas basicallya theoryof the interaction
betweenlight andatomic matter.The formalismof quantumelectrodynamics,as theabovere-
markssuggest,hadits origins in attemptsto understandon an atomistic foundationtheubiquitous
phenomenonof refraction.Theseorigins,humbleby today’sstandards,shouldbe consideredas
representativeof the beautiful inductive reasoning which characterized the work of the founders
of quantum theory. But theyalsosuggesta startingpoint for anexaminationof the foundations
of the quantumtheoryof radiation: Fromanhistoricalpointof view, at least,the examination
should begin with an investigation into the nonrelativistic theory of the interaction of light with
atoms.Theabsenceof anyadequatetreatmentof spontaneousemissionprior to Dirac’s theory
suggests,morespecifically,that the investigationshouldbeginwith the theoryof spontaneous
emission.This is preciselythe startingpoint of theneoclassicaltheory.Clearly, it is essentialto
understandfully the limits of applicability, if any,of the neoclassicaltheory.The fact that the
theorypredictsspontaneousemissionis itself a significantaccomplishment.Thatthis theorydoes
not invoke field quantizationdoesnot necessarilysuggestthat it might point the way to a resolu-
tion of the conceptualdifficulties besettingsomeaspectsof quantumelectrodynamics,for these
difficulties in largepart areinherited from classicalelectrodynamics.Nevertheless,it canat the
very least sharpenour insightsinto thosephenomenawhich mayrequirefield quantizationfor a
satisfactoryexplanation.

Certainly some readers will feel that any attempts to compare semiclassical and quantum-elec-
trodynamicaltheoriesshouldbeginwith more “profound” problems.For this reasonwe emphasize
again that quantumelectrodynamicsdevelopedinductively from “simple” problemsinvolving the
interaction of light with atoms. Conceptually, little change in the theory established by 1 927 has
been necessary. Born’s remark at the Fifth SolvayConference,heldin 1927,is remarkablein both
its boldnessandaccuracy:“We considerthatquantummechanicsis a completetheory,andthat
its fundamentalhypotheses,bothphysicalandmathematical,arenot susceptibleto further
modification” [87].

The neoclassical theory represents the first serious attempt to critically examine Dirac’s applica-
tion of the Born—Jordan commutation rules to the radiation field. Planck’s work on the blackbody
spectrum obviously suggested a need for a quantumelectrodynamics,just as the later work of
Bohr on the hydrogenspectrumpointedto aquantummechanics.Historically, then,field quantiza-
tion actuallyprecededthe quantizationof anyatomicattributes.But a quantummechanics
developedas a working formalismbeforea quantumelectrodynamicsdid. The marriageof field
and atomic quantization ideas began with Einstein’sderivation [2] of the Plancklaw; Einstein
dealt simultaneously with both field quanta and discrete atomic energy levels. Implicit in Einstein’s
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derivation is the assumptionthat an atom in an excited“stationary” statewill drop to a lower
stateby spontaneousemission.In the very first paper“On the QuantumTheoryof Radiation”
interactingwith quantizedmatter,therefore,we find aconflict with the predictionsof theneo-
classicaltheoryof spontaneousemission.The taskbeforeus is to critically examineconflicts of
this kind. The taskis twofold. First, we mustfind wherethe predictionsof thequantum-electro-
dynamicalandneoclassicaltheoriesdiffer. But given the fact that the neoclassicaltheory is per-
hapssusceptibleto alteration,we mustalsoseekto determinewhetheranynecessaryalterations
can be madewithout destroyingthe logical contentof the theory.Regardingthe blackbodyspec-
trum, for example,Nesbet[881 hasnoteda differencebetweenthepredictionsof the two theo-
ries,andhassuggesteda modificationof the descriptionof the classicalradiationfield which
rendersthe neoclassicalpredictionson the blackbodyspectrumin agreement,at leastsuperficially,
with Planck’slaw.

4.2. TheBorn probabilistic interpretationof the wavefunction

Differencesin thepredictionsof quantum-electrodynamicalandsemiclassicalradiationtheories
stemultimately from the differentwaysin which the theoriesinterpretthe atomicwave function.
Beforeexamininganyexperimentalevidencefor the quantum-electrodynamicaltheoryof spon-
taneousemission,it is appropriateto reviewthe line of reasoningwhich led Born to the probabilistic
interpretationof the wavefunction. The feeling hasbeenexpressed[5] that the actualbasis for
the abandonmentof Schrodinger’sinterpretationin favor of Born’s is not entirelycleartoday.
Thisfeeling mayresultfrom the fact that thereis no single,classicexperimentalor theoreticalre-
sult which standsas the definitive counter-exampleto the Schrodingerhypothesis.Remarkably,
theearly quantumtheorywas successfullyappliedto manyproblemsbeforethe significanceof
the wavefunctionwas established.

Born, of course,played animportantrole in the developmentof Heisenberg’smatrix mechanics.
The leitmotiv of Heisenberg’searlywork was the acceptanceof discreteatomicenergystates
without attemptingto explaintheir origin; the enumerationof thesestatesled to the ideaof co-
efficients(matrix elements)connectingthem.It was Born who recognizedin thesetablesof num-
bersthe representationof dynamicalvariablesas matrices.While Heisenberg,Born andJordan
werelaying the foundationsof matrix mechanics,Schrodinger’swavemechanicsappeared.For
thestudyof scattering,Born actuallypreferredSchrodinger’sformalismoverHeisenberg’s.But
he did not acceptSchrodinger’ssemiclassicalinterpretationof the wavefunction:

Onthis point I could not follow him.This was connectedwith the fact that my Institute and
thatof JamesFranckwerehousedin the samebuilding of theGottingenUniversity.Every ex-
perimentby Franckandhis assistantson electroncollisions(of the first andsecondkind) ap-
pearedto me as a new proof of the corpuscularnatureof the electron[89].

The origin of the probabilisticinterpretationof thewave function is clear.In the first of a series
of paperson the quantum-mechanicaltheoryof scattering[90] , Born studiedthescatteringof
an electronby a sphericallysymmetricpotential,andreachedthe conclusionthat I ~/i(x)I2d3x
mustrepresentthe probability of finding the (corpuscular)electronin thevolumeelementd3x.
In this way he reconciledthew~veequationwith the experimentalresultsof Franck.

Born’s interpretationeliminatedcertaindifficulties which confrontedthe Schrodingerinter-
pretation.Thesedifficulties arewell known, andneednot be discussedin detail here;the reader
unfamiliarwith all of thesedifficulties is referredto thediscussionin Jammer’srecenttreatise[91].
Threeof thesedifficulties bearingon the problemof spontaneousemissionwill be mentioned.
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First, thereis the apparentinconsistency,in Schrodinger’sapproachto the hydrogen-atom
problem,of usingtheCoulombinteractionbetweenpoint charges,while at the sametime inter-
preting I ~i(r) 2 as a continuouschargedistribution.Born’s interpretationovercomesthis difficulty
by adheringto thenotion of a particulateelectronfrom the outset.Secondly,a measurement
implies a discontinuouschangein iji; in Born’s interpretationthis discontinuityis ascribedto a
changein our knowledgeaboutthe systembrought aboutby the measurement.This “reduction
of the wavepacket” issueis by no meansa closedone. It is still controversial,with quite profound
implicationsfor the interpretationof theformalism of quantummechanics.

Finally,we mentiontheambiguityin interpretingthe wave functionin the Schrodingersense
for the caseof a multielectronatom.Schrödingerhimselfrecognizedthis problemin his paperon
theequivalenceof waveandmatrix mechanics[921: “The difficulty encounteredin thepoly-
electronproblem,in which ~Jiis actuallya functionin configurationspaceandnot in the real
space,shouldnot remainunmentioned”.JaynesandStroud [5] havesuggestedthatthis apparent
drawbackof the Schrodingersemiclassicalinterpretationmaybe overcomeby properly interpreting
the chargedensityof amultielectronsystem.If i~Li(r1,r2, ... rN, t) is the wavefunction for an
N-electronsystem,the chargedensitydueto electron 1, for example,maybe takento be [51

p1(r, t) = efI ~/i(r,r2, ... rN, t)1
2 d3r

2 ... d
3rN (4.1)

with analogousexpressionsfor the contributionsto the chargedensityfrom electrons2, 3, ... N.
The total chargedensityof theN-electronsystemis thenthesumof the chargedensitiesof the
individualelectrons:

p(r, t) = p~(r,t). (4.2)

While this appearsat first glanceto bea plausibleextensionof the Schrödingerinterpretationto
anN-electronsystem,it is not without probabilisticconnotationssuggestedby the integration
over the coordinatesof N — 1 other electrons. In other words, it doesnot seemto be entirelycon-
sistentwith the Schrodingersemiclassicalinterpretationof thesingle-electronwave function.

Bohr viewedtheBorn probabilisticinterpretationof the wavefunctionin termsof singlesys-
tems.Accordingto this “Copenhageninterpretation”,quantummechanicsprovidesa description
of theindividual system.Einstein,at the Fifth SolvayCongress,advanceda “statistical interpre-
tation”. Accordingto thisinterpretation,the probabilitiescalculatedin quantummechanicsrefer
to ensemblesof identicalexperiments.The probabilitiesrepresentrelativefrequenciesover this
ensemble,in the usual sense of probability theory. Jammer [93] notes that

Although it does not lead to experimentalconsequences— for in bothcasesthe confirmation
of predictionsrequiresthe performanceof an ensembleof identicalexperiments— it doeslead
to interpretativeconsequences:TheEinsteinfrequencyinterpretationopensthe way to a
hidden-parametertheory,which reducesquantummechanicsto a branchof statisticalmech-
anics;the Bohr—Born probabilisticinterpretationprecludesthis possibility.

It doesnot seementirely appropriateto associateBorn with theCopenhageninterpretationof
quantummechanics.Commentingon a letterfrom Einstein,Born proclaimedhis agreementwith
thestatisticalinterpretation[94]:
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Einsteinadmitsthatonecanregardthe “probabilistic” quantum theory as final if one
assumesthat the iJ.i-function relatesto the ensembleandnot to anindividual case.Thishasal-
waysbeenmy assumptionas well, andI considerthe frequentrepetitionof an experimentas
the realizationof the ensemble.This coincidesexactlywith the actualprocedureof theexperi-
mentalphysicists,who obtaintheir datain the atomicandsub-atomicareaby accumulating
datafrom similar measurements.
Among the physicistswho havevoiced supportof Einstein’sstatistical(i.e., ensemble)inter-

pretationareKemble,Slater,Langevin,andmorerecently,Ballentine [95]. Manyphysicistsdo
not recognizea needfor a distinctionbetweenstatisticalandCopenhageninterpretations,since
sucha distinctionhasno immediateconsequencesfor the comparisonof theoryandexperiment.
Becausethe problemof interpretationis socrucial to an understandingof the differencesin the
semiclassicalandquantum-electrodynamicaltheories,however,we shallbriefly reviewEinstein’s
argumentsin favorof the statisticalinterpretation.

At theFifth SolvayCongress,Einsteinconsideredthe following “thought” experiment.Let a
beamof electronsimpingeon a screencontainingan aperturesosmall that the de Brogue—
Schrödingerwavessuffersizeablediffractive effects.Behindthe apertureis a largehemisphere
which recordselectronimpacts.Considereachelementaryprocessof an electronpassingthrough
the apertureandbeingdetectedsomewhereon the hemisphere.If quantummechanics“has the
pretentionto bea completetheoryof individual processes”,accordingto Einstein,IiJi(r)!2 must
be the probability of finding the electronatr; thatelectronmustbe regardedas potentiallyde-
tectableat manypoints on thehemisphere,until ameasurementis performed,at which point
somepeculiaraction-at-a-distancemust preventit from having an effect on morethanonepoint
on the hemisphere.In the statisticalinterpretation,however,I ~1i(r)12 representstheprobability
densitythat somememberof anensemblebe foundatr. 111(r) doesnot describethe individual
electron,andno peculiar “reductionof thewavepacket” is required.Einstein’s misgivingsin this
regardapply also to the Schrödingerinterpretationof I ili(r)12. Indeed,it seemsthat his argument
was aimedat Schrodinger.

In fact,oneof Einstein’sarguments[96] is directly applicableto the neoclassicaltheory.We
may phraseit simply in termsof thetwo-state-atom model. Suppose the atom is initially in the
lower energy state, so that (as> = —1, andlet a “small disturbing force” acton the atom.Then
—l < (as> < 1. If we havea theoryof an individual system, we mustconcludethatafter thedis-
turbancethe systemis characterizedby an energyintermediatebetweenthoseof the upperand
lower states,aconclusionat variancewith the Franck—Hertzexperiment.Therefore,only a statis-
tical interpretationseemstenable:“The 11i functiondoesnot in anyway describea condition
which couldbe thatof asinglesystem;it relatesratherto manysystems,to an ensembleof sys-
temsin the senseof statisticalmechanics”[96]. Theneoclassicaltheory,being — at leastat the
present— a theory of theindividual system,cannotmeetthis objection.In the neoclassicaltheory
(a

5(t)) (or ratherz(t)) is adirect measureof the atomicenergy,andnot an “expectationvalue”
in the sense of the fully quantum-mechanical theory.

WhetherthedistinctionbetweenCopenhagenandstatisticalinterpretationsis a “legitimate”
oneis a questionthat lies quite beyondthe scopeof this article. PrecedingBallentine’srecent
article [95] on the subjectwas an editorial commentwhich beganwith the sentence,“Thesub-
ject of the following paperlies in the borderareabetweenphysics,semanticsandotherhumanities”.
In anycase,it is clear thatthe philosophyof the neoclassicaltheory is morecloselyallied to a
“Copenhagenphilosophy”: It is a theoryof the individual system,andits predictionsmustbe ap-
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plied to individual systems.In comparingthesepredictionsto thoseof the quantumtheory,how-
ever,we neednot distinguishbetweenCopenhagenandstatisticalinterpretationsof the latter.

4.3. Photonpolarizationcorrelationsin a cascadedecay:TheKocher—Comminsexperiment

Undoubtedlythe mostseriousobjectionto semiclassicalradiationtheorieshasbeenraisedby
Clauser[3 1]. He showedthat semiclassicalandquantum-electrodynamicaltheoriespredictdif-
ferentresultsfor the polarizationcorrelationswhenphotonsareemittedsuccessivelyin an atomic
cascade.Such correlationsweremeasuredby Kocher andCommins[30], and the experimental
resultagreeswith thepredictionsof quantumelectrodynamics,“but excludessemiclassical
theoriesin general” [3 1].

We considerherethe following idealizationof the Kocher—Comminsexperiment.Our one-elec-
tronatom is initially in the statecharacterizedby the quantumnumbersn = 3, 1 = 0. It decaysto
oneof thestateswith n = 2, l = 1, andthento the groundstaten = 1, 1 = 0. ObserverA is
equippedwith a narrow-bandwidthfilter that passesonly photonsof frequency0)A = (E

3 —

andobserverB’s filter passesonly photonsof frequency
0)B = (E

2 — E1)/h. A andB arealso
equippedwith perfect-efficiencylinear polarizersandaresituateddiametricallyopposedto one
anotheralongthez-axis. If A setshis linear polarizerat angleØA with respectto somearbitrary
axisnormal to theline joining A and B, and B setshis polarizerat angle013 with respectto the
sameaxis, what is the probability as a functionof IOA — OBI that A and B both observe a photon
passingthroughtheir respectivefilters andpolarizerswhenthe atom cascadesspontaneouslyfrom
In = 3,1=0) to In = 2,1= 1) to In = 1,1=0>?This is thequantity to be consideredin our
idealizedKocher—Comminsexperiment.We now calculatethis quantity,first usingquantumelec-
trodynamicsandthenusingneoclassicaltheory.

To find thecoincidencerate of finding a photon(GA’ ~,X) (frequency
0)A’ propagating in the

z direction,polarizationindex X) anda photon(we, —~,j.i), we considerthe quantity [77]

(a~~(t)a~
13~~(t)a13,~(t)aAX(t)),

theexpectationvaluetakenin thestate

Ii(0)>In3,l0) ® I{0}). (4.3)

ThesubscriptAX refers to the mode(CA’ ~,X), andthesubscriptBp to the mode(0)13, —~ ‘~
Labeling the atomicstatesas follows:

Il>= In= l,10,m 0), I4>= In=3,l=0,m=0),

12)=In=2,l=l,m=l>, 15)=1n2,l=l,m=0),

13)In2,l l,m—1>,

we have from eq. (2.38),

akX(t) = akX(O)exp(—iwkt)+ ~ ~ C~11fdt1 a~1(ti)exp{iwk(tl — t) }, (4.4)
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for our “five-state” atom.The state 15> maybe excludedfrom considerationwith the z-axisas
the axisof quantization,sincethe cascade 4> -+ 15) —* Ii) would correspondto longitudinal
polarization.In the rotating-waveapproximationwe droptermsin eq. (4.4) with / < i. Then we
have

aAX(t) = aAXexp(—iwAt) + CAX12J dt1 a12(t1) exp{iwA(tl—t) } + C~3fdt1a13(t1)exp{iwA(tl—t) }

+ CAx24fdt1 a24(t1)exp{iwA(tl—t) } + C~~fdt~a34(t1)exp{iwA(tl—t) }

a~(0)exp(—iwAt) + (CAX12O12(O)÷CAX13O13(O))exp(—iwAt)f dt1 exp{i(WA — w13)t1 }

+ (CAx24024(0)+ CAx34034(O))t exp(—iw~t), (4.5)

in theapproximationa12(t1) 012(0)exp(—iw21t1),etc.,equivalentto standardshort-timepertur-
bationtheory. We havedefined

1 /2lrhwA\”
2

CAXI/ = ~ ~ ) (n.. ~ (4.6)

wherekA = (wAIc)~and = .~cos0~+y ~‘~0A~ (~~J’~~) defininga right-handedtriad.For times
~ Iw~— 0)BI ,eq. (4.5)yields

aAX(t) aAX(O) exp(—iwAt) ÷(CAx
24024(O)+ CAX34034(O))texp(—iwAt). (4.7)

In a similar fashionwe obtain

a13~(t) a13~(O)exp(—iwBt) + (CBM12012(O)+ CBP13O13(O))texp(—iwBt), (4.8)

where

1 /2irhw13\
112

~ ) (pï
1~ê,~), k13=——-—-i, and ekB,2 z~cos013+i’sin0a. (4.9)

Using eqs.(4.7) and(4.8) with the initial state(4.3),we obtain

(a~~(t)a~(t)aB~(t)aAX(t)> (
1CA

2412 IC 12 (o4a~2o12o24)+ C~24CA34C~t2CBl3<o4o~2al3a34)

+ C~l3C~34CA24CBj2(a~4o~3al2o24)+ ICA34I
2lCBl

3I
2(a~o~

3al3o34i- ...)t
2, (4.10)

where we have only indicatedexplicitly thecontributingterms.All operatorsareto be evaluated
at t = 0 andit is easilyseenthat all expectationvaluesaboveareequalto one. For simplicity the
unnecessarylabelsX, ,i havenowbeendropped.
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Thecoincidencerateis therefore

Roz ICA24CB12+CA~CB13l
2. (4.11)

Using P12 = (x — i~’)p
12/V2~etc.,we have

CA24C1312 exp{i(Ø8 — OA)} and CA34CB13 exp{—i(OB —

sothat

Rcs cos
2(OA—0B). (4.12)

Thisresult indicatesthat Rmjn = 0: WhenA and B have their linear polarizers orthogonal they will
neverrecord a coincidence.

The result(4.11)hasthe following significance:
(a) C

1312 is the probability amplitude for the process 12> -÷ I 1> with the emissionof a B photon.
(b) CA24 is the probability amplitude for the process4> -÷ 12) with the emissionof an A photon.
(c) ThusCA24C1312is the probabilityamplitude for theprocess14> -÷ 12> -÷ I 1> with the emission

of A and B photons.
(d) C1313is the probability amplitude for the process 3> -~ I 1> with the emissionof a B photon.
(e) CA34 is the probability amplitude for the process14> -~ 13> with theemissionof anA photon.
(f) ThusCA~CBl3is the probability amplitudefor the process14> -* 13> -* II> with the emission

of A andB photons.
(g) CA24C1312+ CA~CBl3is thetotal probability amplitude for the process14> -+ I 1> with the

emissionof A andB photons,whenwe cannotdistinguishwhethertheprocesscorrespondingto
CA24C1312or theprocesscorrespondingto CA34C1313has occurred. In our casetheprocessesarein-
distinguishablebecausea measurementof linear polarizationdoesnot distinguishbetweenleft-
andright-handedcircularpolarization.

Hencea moreelegantway to derivethecoincidencerateis to usetherules [97]
I. “The probability amplitudefor two successivepossibilitiesis theproductof the amplitudes

for the individual possibilities”,
II. “The amplitudefor a processthat can takeplacein oneof severalindistinguishablewaysis

thesumof the amplitudesfor eachof theindividual possibilities”.
Before discussing the result (4.12) further, we shall calculate the coincidence rate predicted by

theneoclassicaltheory.Theneoclassicalcoincidenceratemustbe proportionalto

(a~~(t))(a~(t)>(a131~(t)>(aAX(t)>,

ratherthan(4.10).We haveinsteadof eq. (4.10),

(a~~(t)>(a~~(t)>(a131~(t)><aAX(t)> (ICA24I
2 IC

131212(o4)(012> (012) (024> (4.13)

÷,._‘* I__’ r’* ç~ / + +
A24 A34 B12’-’B13’ 24’ \012F \013/ \034

+ C~13C~34CA24CBl2(o~>(0~3)(012) (024> + ICA34 12 IC 2 (ok) (0~3) (0~3> (034) + ...)t.

The above expression is in principle zero, since an atom in an energyeigenstatehasvanishing
dipole moment (expectation value). In order to have spontaneous radiation in the neoclassical
model,we assumethat the dipolemomentsarenonvanishing.Defining
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= rim exp(iOim), (4.14)

andaveragingover 0A and0~with 0A — 0~fixed (in accordancewith the experimentalprocedure
of KocherandCommins),we obtainfrom eq. (4.13) the coincidencerate

R r~
4r~2+ r~r~4+ r~2r~4+ r~3r~4+ 2r24r34r12r13cos

2(OA — O~)~ (4.15)

Fromthis result it is seenthat

Rmin/Rmax ~ (4.16)

dependingon the rim. Thus the neoclassicalresult is different from the quantum-electrodynamical.
In particular,the neoclassicaltheory doesnot give the noncoincidencepredictedby quantum
electrodynamicswhenobserversA andB havetheir polarizersaligned orthogonally.Clauser[311
showsthatwhenthepolarizerefficienciesandfinite anglessubtendedby thephotodetectorsare
accountedfor in the Kocher—Comminsexperiment,the quantum-electrodynamicalresultbe-
comes

Rmin/Rmax~ 0.15, (4.17)

ratherthanzero.Theneoclassicalresult(4. 1 6) is replacedby

RminlRmax~ 0.45. (4.18)

The experimentalresultof KocherandComminsis

Rmin/Rmax = 0.15±0.02, (4.19)

in striking agreementwith (4.17)ratherthan(4.18).
To understandbetterthe neoclassicalprediction,supposethe four transitiondipolemoments

involvedarein phase.The“A photon” is a pulseof radiationwhich is the superpositionof the
fields from two dipole moments of equal magnitude oscillating in phase with opposite circular
polarizations.Therefore,it is linearly polarized.A similar resultholdsfor the “B photon”.If we
assumeequalphases,the A andB pulsesarelinearly polarizedin the samedirection.If it happens
thatthe polarizerof observerA is alignedalongthe directionof the “A photon’s”polarization,
andif B’s polarizeris at angle0B — 0A with respectto A’s, then the law of Malus givesthe fraction
of electromagneticenergythat will passthroughB’s polarizeras cos2(0

13— OA)~Thisappearsto
give the quantumelectrodynamicalresult.But notethat the fact that A observeda pulsedoesnot
meanclassicallythat the “A photon” was linearly polarizedalongthe A polarizerdirection; if it
did, thentherewould indeedbe a noncoincidenceeffect for IOA — = mr/2. The key effect
is thatquantummechanicallywhenA observesa photonhe can concludethat the “entire” photon
is now polarized along the direction at which he set his polarizer. Classically, some fraction of
energycamethroughin accordancewith Malus’ law, anda noncoincidencewould be essentially
impossible.The noncoincidenceeffect thereforehingeson this “all or nothing” natureof photon
polarizationdiscussedin the first chapterof Dirac’s treatise[98].

Einstein,PodolskyandRosen[7] first notedthat quantum theory predicts correlation effects
of thistype,andtheyarguedthat suchcorrelations imply that quantum mechanics does not pro-
vide a completedescriptionof an individual system.In our idealizedKocher—Comminsexperi-
ment,observerA canpredictwith certitudethe linear or circularpolarizationof thephotonde-
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tectedby B, dependingon whetherhe choosesto measurecircular or linear polarizationof the
photonhe detects.Thus thetypeof measurementperformedby A determineswhatpolarization
canbe predictedfor photonB—A hasthe choiceof predictingwith certaintyeither the linear or
circularpolarizationof photonB. The EPR “paradox” in this context is that this circumstance
obtainsin spiteof the obviousfact that the B photoncannotbe simultaneouslyendowedwith
definitevaluesof the two typesof polarization.

The EPRproblemhasbeenasubjectof intensedebateamongphysicistsinterestedin thecon-
ceptualfoundationsof quantummechanics. There is not even a consensus of agreement on
whetherEPR-typecorrelationeffectsshouldbe regardedas subtleandintriguing. Feynman[99]
hasremarkedthat “we canall agree”that “[the correlation] isnot a ‘paradox”, but “still very
peculiar”. But anotherNobellaureatefeelsthatthe EPRproblemis “aboutas subtleas saying
thatif acoin is cut in half andthe two piecesare thrown in oppositedirections,thenan observer
who finds onehalf can saywith certaintythat a diametricallyopposedobserverwill find the
other half”. It is not usuallyrecognized[see,however,ref. 95] that Einsteinsawno “paradox”
if oneadoptsthestatisticalinterpretation.His positionwas clearlystatedin 1936:

Considera mechanicalsystemconstitutedof two partial systemsA andB which haveinter-
actionwith eachotheronly during limited time.ThentheSchrödingerequationwill furnish
the 11’ functionafter theinteractionhastakenplace.Letusnowdeterminethe physicalcondi-
tion of the partial systemA as completelyas possibleby measurements.Then thequantum
mechanicsallowsusto determinethe 1,11 functionof thepartial systemB from the measurements
made,andfrom the 11’ functionof the total system.This determination,however,givesa result
which depends uponwhich of the determiningmagnitudesspecifyingthe conditionof A has
beenmeasured(for instancecoordinatesor momenta). Since there can be only one physical
condition of B after the interactionandwhich canreasonablynot be consideredas dependent
on the particular measurement we perform on the system A separatedfrom B it maybe con-
cludedthat the 11’ functionis not unambiguouslycoordinatedwith thephysicalcondition. This
coordinationof several11’ functionswith the samephysicalconditionof systemB showsagain
that the ~i functioncannotbeinterpretedas a (complete)descriptionof a physicalcondition
of a unit system.Here alsothe coordinationof the 11i function to an ensembleof systemselim-
inateseverydifficulty [961.

In a footnotehe addsthat “The operationof measuringA, for example,thusinvolvesa transition
to a narrowerensembleof systems.The latter(hencealsoits 11’ function) dependsupon thepoint
of view accordingto which this narrowingof the ensembleof systemsis made”.

Feynman[100] hasexpressedthe opinion thatnoncommutativitywasnot the fundamentally
new innovationof quantummechanics,that “far morefundamentalwas the discoverythat in
naturethe laws of combiningprobabilitieswerenot thoseof the classicalprobability theoryof
Laplace”.Accordingto this view, the most “nonclassical”aspectof quantummechanicsis the
existenceof a probability amplitudemanipulatedaccordingto the rules I andII. Dirac [1011 now
shares the same view. The experimental result of Kocher and Commins is a striking demonstration
of the failure of classicalprobabilisticnotions.Accordingto suchnotions,oncea photonpasses
throughA’s filter, it hasa probability cos2OA of passingthroughhis polarizer(given that its
polarizationis orientedat an angle0A with respectto thatpolarizer).Similarly thereis a probability
cos2~ that a photonpassingthroughB’s filter will be passedthroughhis polarizer.But, as op-
posedto the quantum-mechanicaltreatment,a classicalprobabilisticapproachwould associate
the quantitycos20A cos20~with the probability of coincidence— a simplemultiplicationof prob-
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abilities with no reference to probability amplitudes. Whencos2 0A cos2~ is averagedover ØA

and 013~keeping OA~OB fixed, we find the coincidence rate

R 4 ÷cos2(OA — OB)’ (4.20)

so that

Rmin/Rmax=4, (4.21)

which is just thepredictionof theneoclassicaltheory.
Photon polarization correlation phenomena have been important in other contexts, as is well

known. Wheeler [102] proposed such an experiment as a test of the theory that in the annihila-
tion of singlet positronium the emitted photons should have orthogonal linear polarizations. This
predictionresultsfrom the useof rulesI andII, but by subtractingratherthanaddingthecorre-
spondingprobabilityamplitudes;thesubtractionis requiredbecauseof the odd parity of singlet
positronium.Yang[103] consideredboth typesof parity in suggestingthat the differentpolariza-
tion correlationsin the two casescould providea meansfor decidingthe symmetrypropertiesof
mesonswhich decayinto two photons.

Differencesin the predictionsof quantum-electrodynamicalandsemiclassicaltheoriesaremost
significantwhentheyresultfrom the differentwaysin which the two theoriestreatprobability
amplitudes.This is certainlythe casein the examplediscussedin this section.The neoclassicalap-
proachfails because it does not treat properly the sequentialaspectof the multichannelprocess
involvedin the cascadedecay.All possibletransitionprobability amplitudes(dipole moments)
in the neoclassicalapproachweretreatedadditively,andtheyall contributedto the resultant
probability. In the quantum-electrodynamicalapproach,only thosetermsin the total probability
amplitudeareincludedwhich areconsistentwith the orthogonalityof states.Considerfor example
theterm (0~40~2013034>in the quantum-electrodynamicalexpression(4.10).In a loosesense,we
maysaythatthis termtakesusfrom the state14) to 3> to Ii) to 12> andfinally backto 14>, as
illustrated in fig. la. Similarly the term (~~40~2012024>may be representedas in fig. lb. The re-
maining contributions to the quantum-electrodynamical expression for the coincidence rate are
represented in figs. Ic and ld. Only “round-trip” diagrams contribute. The neoclassical expression
(4.13),on theotherhand,containstermssuchas(a

4>(a~2>(o13>(o24),which is representedin fig.
2. This termis not includedin the quantum-electrodynamicalexpressionbecauseof theortho-
gonality of 12> and 13). This featureis absentfrom the neoclassicalapproach,wheredipolemo-
mentsratherthanstatesarethe essentialentitiescharacterizingtheatom.
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Fig. 2.

4.4. Quantumbeatsin spontaneousemission

With regardto the importanceof probability amplitudes,it is of interestto havea difference
in neoclassicalandquantum-electrodynamicalpredictionsfor a multichannelprocessin which
thereareno sequentialaspectsrequiringrule I. Such a situationhas in effect beendiscussed
recently by two groups of authors [104, 105] . The rule for treatingprobability amplitudeswhich
is violatedby the neoclassicalapproachin this caseis a corollaryof rule II: probability amplitudes
mustneverbeaddedfor differentanddistinct final states[106]. Beforediscussingthis example,
it maybe usefulto reviewbriefly the correspondencebetweenan electromagneticfield amplitude
in a semiclassicaltheoryanda probability amplitudein the quantum-electrodynamicaltheory.

The most familiar exampleof this correspondenceis probablytheYoungtwo-slit experiment.
A monochromaticwaveimpinging on aplatewith two narrowslits producesan interference
patternon a screenbehindthe plate.Classically,the interferencepatternresultsfrom thesuper-
positionof the fields reachinga point on the screenfrom the individual slits.Quantummechanically,
theinterferencepatternresultsfrom the additionof probability amplitudesfor the (indistinguish-
able)routesavailableto thephotonfor reachinga given point on the screen.In eachcasea quan-
tity is calculatedandthensquaredto yield a quantitydirectly relatedto experiment.In theclassi-
cal descriptionof the Youngexperimentthe electromagneticfield amplitudeis found,andits
squareis relatedto the observedintensitydistribution.In the quantum-mechanicaldescriptiona
probability amplitudemustbe foundandthensquaredto obtainthe observedphotonprobability
distributionat the screen.Thisdistributionis obtainedby repeatingthe “one-photon”experiment
manytimesandrecordingthe resultingspotson the screen.The resultingdistributionrepresents
thephotonprobability distributionin the senseof the quantum-mechanicalensemble,andis
identicalto the classicalintensitydistribution.

Anothersuchexamplehasbeengiven recently,involving the spontaneousradiationfrom an
atombetweentwo parallelmirrors. Milonni andKnight [14] obtainedthe emissionratefrom the
point of view of quantum-mechanicalprobability amplitudes,while Chanceet al. [107] found the
sameresult from a classicalviewpoint dealingdirectly with the electromagneticfield and the
boundaryconditionsimposedby the mirrors. It is interestingto notethat suchmodification of
radiativelifetimesby the presenceof mirrors canbe studiedexperimentally[13].

As anotherexample,considera systemof two identical two-stateatoms,oneof which is initially
excitedandtheotherin the groundstate.If thereis completeuncertaintyas to whichatom is ex-
cited, the initial atomicstatevectormaybe written
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I ~i~> = ~[ I+>~ —>2 ±H>1 I+>2]. (4.22)

Supposethe atomsarelocatedwithin a transitionwavelengthof eachotherandthat the excitation
hasbeeneffectedby meansof a resonantplane-wavefield. Thenonly the state I 1/1÷)requirescon-
sideration [1081 . When thesystememitsradiation,the final stateis I —)~I ~)2, with onephotonin
the field. Thereis no way to determinein principle which atomemitted;the two probability am-
plitudesfor single-atomemissionarethereforeadded.It is found thereforethat the process

-÷ I—)~ ~>2 hasa transitionprobability which is twice that for the single-atomprocess
1+> -÷ I—), i.e., the systemradiatescooperatively,or “superradiantly”.The classicalexplanation
of this cooperationis simply that thestate I iji) correspondsclassicallyto a systemof two dipoles
oscillatingin phase(the absolutephasebeingrandom),andthe fields from thesedipolesaddco-
herentlyto producethe interferenceeffect. Suchinterferenceeffectsareof courseof prime impor-
tancein antennatheory.

Chow etal. [104] andHermanet al. [105] havenotedthe differing predictionsof neoclassical
theory andquantumelectrodynamicsfor certainresonancefluorescenceexperiments.Theessen-
tial featuresof their argumentscanbe discussedwith referenceto the two three-stateschemes
illustratedin figs. 3 and4. In caseA, representedin fig. 3, an atom is supposedto be excitedto a
coherentsuperpositionof states2 and3, bothof which areoptically connectedto a groundstate
1. In caseB, representedin fig. 4, the atom is supposedto be excitedto state3, which is optically
connectedto the lower states1 and 2. Neoclassicaltheory predictsquantumbeatsin thespon-
taneousemissionfor bothcasesA andB, whereasquantumelectrodynamicspredictsbeatsonly
for caseA. Ratherthanperformingthecalculationsin detail for the two cases,we shallmerelyin-
dicatehowthe differentpredictionsarise.

A simpleshort-timeperturbation-theoryapproachyields the resultthat in caseA thequantum-
electrodynamicalpositive-frequencypart of the electricfield operatoris 012 + G~3,omitting un-
essentialmultiplicative vectorconstants.Thus the correlationfunction~ relatingto the
intensityof the spontaneousradiationis

+ 013)(012 + 013)) = (022) + (033) + (023) + (023>*, (4.23)

theexpectationvaluetakenover the initial statec212> + c313>.The last two termscorrespondto
the radiation atthe beat frequency(E3 — E2)/n. The correspondingneoclassicalintensityfunction
wouldbe effectively

(0~2+ 013)(012 + 013>,

theterm (0~3>(U12>+ (0~2>(013>correspondingto the beatingradiation.The neoclassicalapproach

Fig. 3. Fig. 4.
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gives thebeateffect as a resultof the interferencein the radiationfrom the two transitiondipoles
oscillatingatthe different frequencies(E3 — E1)/Il and(E2 — E1)/h. Thequantum-electrodynami-
cal resultmay beinterpretedformally in the sameway, rememberingof coursethat the fieldsare
Hilbert-spaceoperators.Alternatively,the quantum-electrodynamicalresultmaybe interpreted
in termsof theaddition of probability amplitudes:The amplitudesfor the processes13) -~ I 1)
and 12> -+ I 1> mustbeaddedbecausethe final statedoesnot provideanyinformationas to which
of the two processesoccurred.This typeof interferenceeffect is well known: For the special
casewherethe states12> and 13) aredegenerateZeemanstatesof an excitedlevel, for example,
the zero-field crossingleadsto a Hanleeffect.

For the caseB, the correspondingquantum-electrodynamicalcorrelationfunction(E~E~>
maybe takenfor the purposeof this discussionto be

((c43+ U~3)(023+ 013)> = (033> + (033> + (03j 023) ÷(032053> = 2(033). (4.24)

The term (03k c723) = (313>( I I2)(3I3> = (112>= 0 because of the orthogonality of Il> and 2>;
similarly (cr32 U~3)= 0. Eq. (4.24) correspondsto the additionof probabilities.The corresponding
probability amplitudesdo not enteradditively becausethe final state(12) or II)) providesthe in-
formationnecessaryto determinewhich process(13> -+ 12) or 13) -÷ Il>) took place.Probability
amplitudesarenot addedfor distinct final states.The neoclassicalapproach,however,dealswith
an intensityfunction relatedto

(03 + 03) (023 + 013) = (03) (023) + (0~3)(013) + (03)(023) + (032) (U~3) (4.25)

ratherthan(4.24).The orthogonalityof I 1) and 2> is not accountedfor (or equivalentlythe
probability amplitudesareaddedevenfor distinct final states)andso abeatingatfrequency
(F2 — E1)/h is predictedwhich is not predictedby thequantum-electrodynamicalapproach.

Interferenceeffectsin the resonancefluorescenceof crossedexcitedatomic stateswereob-
servedexperimentallyby Colegroveetal. [1091 anddiscussedfurtherby Franken[110]. The
effect was discussedalso by Breit [111] muchearlier;Breit notedtheabsenceof interference
effectsfor the caseB. Chow et al. [104] havesuggestedanexperimentto determinewhether
suchinterferenceeffectsareactuallyabsentin caseB. Suchanexperimentalverificationwould
show,as doesClauser’sanalysisof the Kocher—Comminsexperiment,that the neoclassicaltheory
fails to treat properly the quantum-mechanicalprobabilityamplitude,i.e., it would provide
another example where the differencebetweenan electromagneticfield amplitudein theclassical
senseanda quantum-mechanicalprobability amplitudeis of direct experimentalconsequence.

4.5. Neoclassicaltheoryand theblackbodyspectrum

Nesbet [88] has studied the implications of the neoclassical theory of spontaneous emission
for the blackbody spectrum, using a neoclassical version of Einstein’s original rate-equation ap-
proach.For simplicity, weconsiderherean ensembleof two-stateatomsandignore the possibility
of degeneracy. The condition for thermal equilibrium is that the rate at which atoms are removed
from the lower state due to absorption of radiation be equal to the rate at which they are removed
from the upper statebecauseof spontaneousandstimulatedemissionof radiation.Thus,in
thermalequilibrium,
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Ic1I
2Bp(wo) Ic

2I
2Bp(w

0)+AIc1I
2Ic

2I
2. (4.26)

The notationis standard.BandA arethe Einsteincoefficients,with A/B = hw~/~r2c3, andp(w
0) is

theradiationdensityat frequency~ Eq.(4.26) differsfrom the Einsteinrateequationonly in
thesecondterm on the right-handside: Einsteinassumedthe rateof spontaneousemissionto be
proportionalto the upper-stateprobability Ic2 12. In the neoclassicaltheorythe corresponding
spontaneousemissionrateis insteadproportionalto Ic1 12 Ic2 12, theproductof lower- andupper-
stateprobabilities.ThusA Ic1 12 Ic2 12 replacesthe usualA Ic2 12.

Equation(4.26) maynot seementirely in accordwith the neoclassicaldescriptionof an atomic
transition.Thestimulatedemissionandabsorptiontermsin this equationdependrespectivelyon
upper-andlower-stateprobabilities.In the neoclassicaltheorythe energylevelsaresuperfluous
andit is the transitiondipolemoment — treatedas a classicallyradiatingdipole — that really
matters.This conceptualdifficulty maybe overcomeby assumingthat the statepopulationsare
alteredpredominantlyby collisional ratherthanradiativeprocesses.In this casethe neoclassical
equationsfor a two-stateatom yield predictionsidentical to thosebasedon the optical Bloch
equationsinsofaras stimulatedemissionandabsorptionareconcerned.Thisassumptionincidently
justifiesthe useof the Boltzmanndistribution Ic2 1

2/1c
11

2= exp(—11w
0/kT)below [112].

But a seriousimplication for the thermaldistributionof atomicenergiesarisesowingto the
fact that the neoclassicaltheorydescribesthe individual atom.Thequantityz(t) defining the
atomicinversiondoesnot havethe probabilisticinterpretationin the neoclassicaltheory that it
doesin the opticalBloch equations.The individualatom is thereforecharacterizedby the energy
-~ho.,0z(t),andthis of courseneednot be either±~hw0.The neoclassicalatom interactingwith an
electromagneticfield mustbe consideredto havea continuousdistributionof energiesif this in-
terpretationis adheredto. We havealreadynotedEinstein’sobjectionthat sucha theoryof the
individual systemis inconsistentwith the resultsof the Franck—Hertzexperiment.It will alsobe
notedthat sucha theorydoesnot accountproperly for the specificheatsof diatomicgases.
Barringunforeseendevelopments,thesetwo observationsaloneseemto requirea modification
— or re-interpretation— of the neoclassical theory along the lines of an approachwhich doesnot
describethe individual system.We shall suppose,nevertheless,thatNesbet’srateequation(4.26) is
relevantto the neoclassicaltheory,or a modification thereof.

The assumptionof the Boltzmanndistribution

Ic21
2/1c

11
2= exp(—hw

0/kT) (4.27)

at thermal equilibrium defines the radiation density

P(wo) (A/B)1c11 p0(w0)Ic1I
2, (4.28)Ic

1I /Ic21 — 1

wherepo(wo) is the Planckspectraldensityfor the assumedblackbodytemperatureT. The neo-
classicalapproachthereforedoesnot yield the Planckspectrum,but rathera spectrumwhich de-
pendsupon the populationof the lower stateof eachtransition,i.e., with eachlevel i is associated
a spectral density

= po(w)Ic~I
2. (4.29)
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Nesbet[88] hasnotedthat the Planckspectrumcanbe obtainedfrom the neoclassicalapproach
if it is hypothesized that the “total” equilibrium radiation density is

PT(~)= Ep,(w), (4.30)

i.e., the incoherentsumof the “partial” densitiesp~(~)~The Planckspectrumthenresultsfrom
thefact that

~ Ic~I2=1. (4.31)

It is difficult to imagine a test of this hypothesis, since only PT(~)= po(0)), andnot p~(~)for
anylevel i, would be measurable.Thiscircumstance,togetherwith the conceptualdifficulties
noted above, forces us to conclude that a full understanding of the implications of the neoclassical
theoryfor the blackbodyspectrumrequiresfurtherstudy.No very conclusiveevidencefor or
againstthe validity of a neoclassicaltheoryof blackbodyradiationis availableat this time.

4.6. Furtherevidenceandconcludingremarks

The most immediately obvious feature of the neoclassical theory is the prediction that an atom
in a pureexcitedstatewill not radiatespontaneously.The experimentaltestof this predictionis
complicatedby the neoclassicalinterpretationof theatomicinversion.In the neoclassicalmodel
of the two-stateatom,for example,the individualatom is characterizedby an inversionz(t). The
statement,for example,thatz(t) is zerois not interpretedas meaningthat the atom is with equal
probability either in the upper or lower state; it can only be interpreted to meanthatduringa
transitionthe atommust becharacterizedby an energyintermediatebetweenthoseof the two
statesinvolved.

The experimentaltestof theneoclassicalpredictionof decreasingspontaneousemissionrates
as zapproaches1 requires,therefore,a highly effectivepumpingscheme.Fora sampleof atoms
characterized by z close to —1, the quantum-mechanical interpretation is that eachatom is either
in the upperstateor thelower state,with the majority of atomsin the lower state.Neoclassically,
eachatom is characterized by an energy close to that of the ground state. A measurementof the
rateof radiationfrom sucha samplecannottestour interpretation;the two theoriespredictvery
similar results.Only whenz is verycloseto 1 canameasurementof the radiationrateunequiv-
ocallydecidebetweenthe two theories,for in this casetheybothdescribeeffectively everyatom
of thesampleas occupyingtheupperstate.Jaynes[113] hassuggestedthat the testmightbe
accomplishedby pumpingwith air-pulseandobservingthe resultingspontaneousemission.The
resultsof suchan experimenthavebeendescribedby Gibbs[114] andlendsupportto the
quantum-electrodynamicaltheory.Jaynes[6] hasquestionedthe relevanceof the experimenton
thegroundsthatatomswerenot pumpedfar enoughfrom the groundstateto makethediffer-
encesbetweenthe two theoriesreadily observable.A differentexperimentto test the neoclassical
predictionof excited-statemetastabilityhasbeenperformedby Wessneret al. [1151. Againre-
sultscontraryto neoclassicalpredictionswerereported.

Nesbet[1161 hasnotedthe apparentfailure of the neoclassicaltheoryto explainthe differing
intensitiesof Stokesandanti-Stokeslinesin Ramanscattering.The neoclassicaltheorypredicts
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equalcrosssectionsfor Stokesandanti~Stokesprocesses,andthereforedoesnot accountfor the
higher intensityof the Stokesline. The neoclassicalpredictioncanbe understoodin termsof the
correspondingprediction for spontaneousemission;therethe emissionratedependssymmetric-
ally on the probabilitiesof the initial andfinal states,andthis is basicallythe reasonfor theneo-
classicalpredictionof equalintensitiesfor the Stokesandanti-Stokeslines in Ramanscattering.

The mostseriousobjectionto neoclassicaltheory,andsemiclassicaltheoriesin general,re-
mainsthatof Clauser[3 1]. It seemsunlikely thatany theorydescribingthe electromagneticfield
classicallywithin the frameworkof the Maxwell equationscanaccountfor the polarizationcor-
relationsdiscussedby Clauser.For this reasonClauser’sargument,andthoseof Chow et al. [104]
andHermanet al. [105],which areof similar generality,havebeendiscussedin somedetail.
Theseobjectionscanbe understoodin termsof the differing predictionsof calculationsbasedon
quantum-mechanicalprobability amplitudeson the onehand,andclassicalelectromagneticfield
amplitudeson the other.Moreover,theycanbe unequivocallytestedexperimentally.

Aside from the failure to explainthe polarizationcorrelationsobservedby Kocherand
Commins,the mostseriousshortcomingof the neoclassicaltheory is probablyconceptual.As a
theory of the individual systemit suffersfrom the conceptualdifficulties bestillustratedby
Schrodinger’s“cat experiment”.Indeed,it would seemto grantto Schrodinger’scatduring the
radioactivedecayof the “trigger” astatusintermediatebetweenlife anddeath! It is perhaps
worthwhile hereto quoteoneof Einstein’s objectionsto the interpretationof the wavefunction
asa descriptionof theindividual system.The objectionwas briefly mentionedearlier.

I askfirst: How far doesthe 111 functiondescribea real conditionof a mechanicalsystem?Let
usassumethe sji,. to be the periodic solutions(put in the orderof increasingenergyvalues)of
the Schrodingerequation.I shall leaveopen, for the time being,the questionas to how far the
individual ~Li,.arecompletedescriptionsof physicalconditions.A systemis first in the condition
11’l of lowest energyE1. Then duringa finite timea small-disturbingforceactsupon the system.
At a laterinstant oneobtainsthenfrom the Schrodingerequationa 11i functionof the form

= ~ Cr 111r,

wherethe Cr are(complex)constants.If the 11i,. are“normalized”, then IC1 I is nearlyequal
to 1, 1C21 etc. is smallcomparedwith 1. Onemaynow ask: Does ~‘ describea real condition
of the system?If the answeris yes,thenwe canhardly do otherwisethanascribeto this condi-
tion a definiteenergyE, and,in particular,suchan energyas exceedsE1 by a smallamount(in
anycaseF1 < E < F2). Suchan assumptionis, however,at variancewith the experimentson
electronimpactsuch ashavebeenmadeby J. FranckandG. Hertz ... the 111 functiondoesnot,
in anysense,describethe conditionof onesinglesystem[961.

While it is true that Einstein’sargumentwas madeto refutethe Copenhageninterpretationof
quantummechanics,it is clearthat the argumentis evenstrongerwhenappliedagainsttheneo-
classicaltheory.Here, it seems,therecanbe no escapeinto “reduction-of-thewave-packet”
defenses.

Another inconsistencyof the neoclassicaltheory is the interpretationof the wavefunction in
the Schrodingersensewhile at the sametime acceptingthe energylevelscalculatedfrom a
Schradingerequationforpoint particles.This inconsistencywas recognizedby Schrädingerhim-
self. Weemphasize again that, physically, the neoclassical theory is identical to Schrädinger’s
semiclassicaltheory. It was abandoned,not by fiat, but on solid physicalgrounds,by quantum
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theoristsof nearlyhalf a centuryago.An examinationof the plethoraof publishedpapersper-
taining to the neoclassicaltheoryrevealsthat this fact goespracticallyunnoticed,or at leastun-
mentioned.

We mustconcludethatthe neoclassicaltheory in its presentform is not a viableone.It has,
however,servedonevery laudablepurpose:It hasencouragedresearchersin quantumopticsand
electronicsto examinemorecritically the foundationsof their subjectinsofaras it involvesthe
interactionbetweenlight andatomic matter.The resulthasundeniablybeena deeperappreciation
for semiclassicalapproaches.

For a detailedanalysisof the neoclassicaltheory,the readeris referredto the reviewby Jaynes
[6] ; thatarticlegives the “othersideof the story”. Ourdiscussionhascenteredpredominantly
on the neoclassicalapproachto spontaneousemission.Spatiallimitations would haverendereda
discussionof broaderscopeessentiallybibliographical.

5. The vacuum field in nonrelativistic radiation theory

5.1.Introduction

The conceptof a fluctuatingradiationfield existingevenin the absenceof anyradiatingmatter,
briefly referredto as the “vacuumfield”, hasplayedan importantheuristicrole in the theoryof
the interactionof light with boundcharges.Formally, this field appearsas the homogeneous
solutionof theoperatorMaxwell equationsfor the electromagneticfield. In the modelof the one-
electronatom in the absenceof anyexternallyapplied fields, the vacuumfield preventstheelec-
tron from spiralling into the nucleusunder thedissipativeinfluenceof the radiationreactionfield;
formally, it preventsthecollapseof unitarity. But in the Lamb-shiftproblem,the vacuumfield is
of moredirect significance,andfrom onepoint of view, is responsiblefor the Lambshift. The
vacuumfield alsoappearsdirectlyresponsiblefor sucheffectsas the vander Waalsforcesbe-
tweenneutralpolarizableparticles [117] and theforcesbetweenconductingparallelplates[118]

The vacuumfield hasthe zero-pointenergydensity}Iiw per normalmode.The consequent
divergencesin the field Hamiltonian canbeavoidedby normallyorderingandsubtractingaway
theinfinite zero-pointenergyof the field on the groundsthatit is a constantandtherefore
makesno contributionto theHeisenbergequationsof motion. But the vacuumfield nevertheless
reappearsasthe homogeneoussolutionof theMaxwell equations.In someproblemsthis is incon-
sequential,sinceit can be arguedthatonly normallyorderedexpectationvaluesof field operators
areof anyphysicalsignificance.Thiscircumstanceusuallyobtains,for example,whenfield cor-
relationfunctionsmeasuredwith photodetectorsareto be calculated.The argumentthatonly
normallyorderedfield correlationfunctionsarephysicallysignificant is in generalunfounded,
however,andwe haveseenfor examplethat the calculationof the nonrelativisticpart of the
Lamb shift can be cast into a form where non-normallyorderedvacuumfield correlationfunc-
tions arephysicallysignificant.

The questionarisesthenwhetherthe vacuumfield is of morethanformal significance.Is there
really a physicalsignificanceto thevacuumfield, or is it merelyan artifactresultingfrom the
quantizationof the field, allowingus, if we choose,to interpretsomeof the morepeculiar(non-
classical) predictions of quantum electrodynamics in the languageof classicalphysics?If thereis
a “physical” vacuumfield, canweperhapsconstructa theoryof classicalfluctuationswhich
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might incorporatein a classicalway the successfulpredictionsof quantumelectrodynamics?This
is evidently fertile groundfor speculation;but little is gainedunlessthe speculationis founded
uponactualcalculations.In this section is reviewedsomeof therecentwork on a classicaltheory
of the “vacuum field”. As will be seen, there is some calculational support for such a theory.
There are only a few problems which have been treated in detail in this area, but the results of
thesecalculationsareratherremarkable.

5.2.Randomelectrodynamics

The solutionof theoperatorMaxwell equationsof quantumelectrodynamicsis asin classical
electrodynamicsthesumof the solutionsof the homogeneousandinhomogeneousequations.
Whenthereareno externallyappliedfields the solutionof the homogeneousequationplaysthe
role, in the sense of expectation values, of the vacuum field. We have already examined a theory
in which the sourcefield is describedclassically.It is naturalnow to focusour attentionon a
classicaltheoryof thevacuumfield. But we mustapproachsucha theory in a ratherdifferent
spirit. Our examinationof the classicaltreatmentof the sourcefield was restrictedto the source
field at the source— the field of radiationreaction;few physicists would doubt that classical
physicsprovidesfor a field of radiationreaction.On the contrary,it is not immediatelyobvious
that a theoryof thevacuumfield canremainwithin the boundsof classicalphysics.This field
vanishes,after all, in the “classicallimit” h -÷ 0.

As a first steptowarda classicaltheory of the vacuum field, we might simply invent a random
classical field to simulate the quantum-electrodynamical vacuum field. The individual Fourier
componentsin the plane-waveexpansionof the field might be given randomphases,with their
amplitudesadjustedto give anenergy~hw per normalmode.Althoughsucha theory leadsto
someinterestingresults,as will be evidentfrom the discussionbelow, it canhardly be saidto have
an independentraison d’etre; it is at bestan interestingsubterfuge.

Suppose,however,thata fluctuatingvacuumfield canbe shownto be entirelyconsistentwith
classicalelectrodynamics,andthat it neednot be introducedon anad hocbasis.Supposefurther
that eventhe form of the zero-pointenergydensitycanbe inferredwithout invoking anyquantum-
mechanicalconcepts,andthatPlanck’sconstantappearsnaturallyas a requiredfundamentalcon-
stant.Then theclassicaltheory of the vacuumfield would clearlydeservemorecareful investiga-
tion — if only to deepenourunderstandingof the quantum-electrodynamicaltheory.It is precisely
sucha classicaltheoryof thevacuumfield which hasbeenexaminedin recentyearsby Boyer
[15—21] andothers.

Nernst [119] tookup the ideaof a finite zero-pointradiationenergydensityin 1916,but it has
only beenin recentyears,especiallyin thework of Marshall [120, 121] and Boyer [15—21], that
the notion hasbeenincorporatedinto a consistentclassicaltheory.Marshallderivedthe form of
the zero-pointradiationenergydensityby requiring the mean-squaredisplacementof a classical
chargedharmonicoscillatorlocatedanywherein spaceto be thatpredictedby quantummechanics;
the fluctuatingvacuumfield was viewedas thecauseof this mean-squaredisplacement.Marshall
furthershowedthat the zero-pointradiationspectrum is Lorentz-invariant.Boyer [15] indepen-
dently demonstratedthe Lorentzinvarianceof thespectrum,andhasviewed this Lorentzin-
varianceas a basicstartingpoint from which a classicaltheoryof the vacuumfield derives.
Lorentz invariance requiresa spectraldensityproportionalto frequency;comparisonof theory
andexperimentrequirestheconstantof proportionalityto be Planck’sconstant.Planck’sconstant
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thus arises in a way no less “basic” thanthe way it was introducedby Planck.In fact thederiva-
tion of the blackbodyspectrumgiven by Boyer [15] on the basisof this newclassicaltheory
would probablyhaveseemedmorereasonableto physicistsin 1900 thanPlanck’s.

Boyer [122] hasrecentlydiscussedthe currentstatusof this classicaltheory of thevacuum
field. Becauseit is a classicaltheory,theatomic matterwith which the field interactshasbeen
describedaccordingto the Lorentzmodel.The resultingtheoryof interactingzero-pointradiation
andmatterhasbeennamed“randomelectrodynamics”.We shall nowreviewbriefly Boyer’sargu-
mentsfor the constructionof the theoryof randomelectrodynamicsfrom classicalelectrody-
namics.

In Coulomb-gauge electrodynamics the transverse fields may be obtained by first solving the
waveequationfor the (transverse)vectorpotential:

v2A —-~-A= —~-J’, (5.1)

whereJ is the currentdensityof the sourceof radiation.The solutionof eq.(5.1) is of the form

A(r, t) = A
0(r, t) + A~(r,t), (5.2)

where A~(r,t) is a solutionof the inhomogeneouswaveequationandA0(r, t) is a transversesolu-
tion of thehomogeneousequation

V
2A—-jAO. (5.3)

The solutionA
5(r, t) maybe written formally in termsof a Greenfunction for the scalarwave

equation.Theobvious,or rathertraditional,approachis to usethe retardedGreenfunctionand
takeA0 to be identically zero.This is the approachusedin the first theoryof interactingradiation
andmatter,advancedby Lorentz [811. The useof the retardedGreenfunctionsatisfiesour in-
tuitive notion of causality,while the choiceA0 0 is reasonablesincewe expectno field when
thereis no source.But we canchooseany(transverse)solutionof the homogeneouswaveequa-
tion for A0 andstill satisfythe waveequationfor the total vectorpotential.The choiceA0 0
defines“traditional electrodynamics”.The choiceof a randomfield definesrandomelectrody-
namics.At this stagewe neednot inquire into the origin of this randomfield, but weemphasize
thatits inclusionclearlykeepsuswithin the frameworkof classicalelectrodynamics.

Now the randomelectricandmagneticfields maybe expandedin transverseplanewavesas

Eo(r,t)=i~(CkXêkXexp{i(k.r—wkt+Okx)} —C~Xë~Xexp{—i(k~r—wkt+OkX)}),(5.4)

withB0 obtainedfrom the equation

VX E0(r,t). (5.5)

The~kX areunit polarizationvectors,with k~ekA = 0. The “randomness”of the field is contained
in the phases°kX~The °kXare assumedto be uniformly andindependentlydistributedover
[0, 27r]. Similar randomclassicalfields wereusedby Planck[123] andby EinsteinandHopf [124]
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to representfields of thermal radiation.EinsteinandHopf took the amplitudesof thedifferent
planewavesin the expansionto be independentrandomvariablesnormallydistributedabout
zeromean.A long controversyensuedbetweenEinsteinandvon Laue[1251 over theassump-
tion of independence.Many yearspassedbeforethe theory of randomprocesseswas approached
with sufficientmathematicalrigor tojustify the assumptionof EinsteinandHopf.

The meanenergydensityof the randomfield is
(E~(r, t) + B~))0

8ir

where( )~denotesan averagewith respectto the randomvariables~°kX }. It is easilyfound that

,I72.±.D2~ — “5~’ r’ 2
“-~0 ‘~0/~— — ~ ‘~kX’8ir 2irk,x

Now if the field is to be isotropicwe musthaveCkx dependonk only throughits magnitudek;
therefore,we have

1(E~+B~)
0=~~~~1)ICkI2. (5.7)

8ir irk

To be consistentwith our earlierconventionwehaverepresentedthe randomfield as a discrete
sumover plane-wavemodes.If we usea continuous,integralsummationfrom thestartwe obtain

—(E~+B~)0= f do.,— h
2(w) (5.8)

8ir c3
0

in Boyer”s notation [15] in which

E
0(r, t)= Re ~ fd3ke(k,X)h(wk)exp{i(kct— k~r— O(k, X))} (5.9)

insteadof(5.4). ICk 12 is relatedto Boyer’sh
2(wk) by

lCkI2=(2ir3/V)h2(wk), (5.10)

whereV is the normalizationvolume implicit in (5.4).
The functionh2(w) maybe determinedfrom therequirementthat thespectraldensitybe

isotropicin all inertial frames.The radiationenergydensityin the frequencyinterval [a, b] mea-
suredby an observershouldbe the sameas that measuredwhenhe is movingwith a constant
velocity with respectto the original frame of measurement.Carrying out the Lorentztransforma-
tions on the electric and magnetic fields, andtakinginto accounttheDoppler shift in frequencies,
it is found that to satisfythe aboverequirementwemust have[151

h2(w) const.X w. (5.11)

Thisresultcanbe equivalentlyobtainedby requiring thatthe zero-pointfield doesnot give rise
to anyvelocity-dependentforces(seeeq. (5.31)).Thus the zero-pointenergy~-hwper normal
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modefollows by a suitablechoiceof a constantof proportionality.The constantmaybe left un-
determinedatthis point, but from the considerationof differentexamples,suchas the blackbody
problem, it is foundnecessaryto take

h2(w)(h/2ir2)w. (5.12)

Fromeqs.(5.7) and(5.10), it is seenthat this choiceof constantscorrespondsto

~F1Wk. (5.13)
Vk,x

This is of coursea familiar resultof quantumelectrodynamics,if E
0 andB0 arereplacedby the

correspondingfree-fieldoperatorsand( >~is replacedby the quantum-mechanicalensemble
average (expectation value). But in random electrodynamics there are no operatorsactingin a
Hilbert space of state vectors; it is a purely classical electrodynamical theory of the “vacuum
field”.

One might questionthevalidity of assigninga zero-pointradiationenergydensityto the classi-
calvacuumfield; the apparentfailure to measuresuchtemperature-independentradiationseems
reasonenoughfor Lorentz’schoiceA0 0. But randomelectrodynamicsis intendedto be a
theory of microscopic, atomicmatter.Justas in quantumelectrodynamicsthe influenceof
the fluctuatingvacuumfield canbe consideredto maintainthe stability of theatom,so too in
randomelectrodynamicsit is hopedthat a similar resultcanbe established.We must not expect
to be ableto detectthe zero-pointradiationwhich maintainsthestability of the moleculesof a
detector,neitherin the quantum-electrodynamicalnorthe random-electrodynamicaldescription
of the zero-pointradiation.Only the radiationabovethezero-pointbackgroundis measurable.
[122]. Observationof changes in the densityof randomradiationatdifferent pointsin spaceis
precluded,or atleastcomplicated,by its homogeneity,isotropy,andLorentzinvariance[122].

Randomelectrodynamicsseemsto be only in aninitial stageof its development.Much of what
hasbeendonetowarda classicaltheoryof thevacuumfield is in therealm of speculativephysics
andas suchwill not be discussedin detailhere.A very interestingderivationof the blackbody
spectrumhasbeengiven by Boyer [15], however,andthe calculationis reviewedin thenextsub-
section.The subsectionfollowing thenext is devotedto Boyer’srandom-electrodynamicalcon-
siderationson the vander Waalsforces.ThecorrespondingHeisenberg-picturequantum-electro-
dynamicalcalculationsareshownto suggesta possiblecorrespondencebetweenrandomand
quantumelectrodynamics.

5.3. Randomelectrodynamicsand theblackbodyspectrum

Einstein’srate-equationderivationof the blackbodyspectrum[2] was quantum-mechanical
in that it dealtwith discreteatomicenergylevels.The fundamentallynew innovationin thederiva-
tion was the introductionof the conceptof stimulatedemission.Without the stimulated-emission
term,the rate-equationapproachyields Wien’s law. Moreover,all attemptsto derivethe Planck
spectrumon the basis of Lorentz-modeloscillatorsin equilibrium with radiation failed,andled in-
evitably to the Rayleigh—Jeanslaw. The classicaloscillatorabsorbsenergyfrom the field at a rate
proportionalto the radiation energydensityat the oscillatorfrequency;it radiatesenergyback
into the field at a rateproportionalto its energy,which accordingto classicalstatisticalmechanics
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is proportionalto the (equilibrium) temperatureT. The equilibrium conditionis that thesetwo
rates be equal, andthereforethat the radiationspectraldensitybeproportionalto T Classical
physicsthus predictsthe Rayleigh—Jeansspectrum

p(w) = o.,2kT/ir2c3. (5.14)

Einstein and Hopf [1241 presenteda detailedanalysisof sucha classicalmodelof theblack-
body problemin 1910,andobtainedthe Rayleigh—Jeansspectrum.Boyer [15] hasanalyzedthe
Einstein—Hopfmodel from the viewpoint of randomelectrodynamics.Theanalysisdiffers from
thatof EinsteinandHopf by the inclusionof thezero-point field anda consequentneedto con-
sidermorecarefully the effect of the containerwalls. It seemsquiteremarkablethat Boyer’s
analysis should lead to thePlanckradiationlaw. Randomelectrodynamics,aclassicalelectrody-
namical theory, explains the phenomenon often regarded as the paradigmfor thefailure of classi-
calphysics.Thereareno discreteatomicenergylevelsin Boyer’sanalysis,andthe conceptof
stimulatedemissiondoesnot enter.

Einsteinregardedhis rate-equationderivationof the Planckradiationlaw as “astonishingly
simple”, andindeedthe derivationis familiar to everystudentof elementarymodernphysics.But
it is not sowell knownthatEinsteinconsideredmoreimportantthe part of hispaperdealingwith
the changein momentumof the atomsdueto the absorptionandemissionof radiation.In the
last sentenceof his paper,he remarksthat “a theory [of thermalradiation] canonly be regarded
as justified when it is ableto showthat the impulsestransmittedby the radiationfield to matter
leadto motionsthat arein accordancewith the theoryof heat”.Einsteinshowedthat themo-
mentumtransfersareconsistentwith classicalstatisticalmechanicsif the thermalradiationsatis-
fiesPlanck’slaw. It was with suchan approach,basedon considerationsof particlemomentum
changesdueto radiation,thatEinsteinandHopf [1241 had.earlierobtainedthe Rayleigh—Jeans
law. The considerationof discreteatomicprocesses,suggestedby the Bohr model,was the key
to the successof Einstein’ssecondattempt.Becauseit is apparently not so well known,we shall
reviewherethe secondpart of Einstein’sfamous1917 paper,andshowthat the Plancklaw fol-
lows from the considerationof momentumtransfers.Thenwe shalldiscussthe Einstein—Hopf
approach,andwhy it failed to yield the Plancklaw. Finally we discussthe modificationsof the
Einstein—Hopfapproachsuggestedby randomelectrodynamics,andhow Boyer [15] thusderives
the blackbodyspectrum.

Einstein [2] consideredthe changesin momentumof a gasmoleculedueto the interaction
with thermalradiation.At equilibrium the correspondingchangesin kinetic energymust balance,
the meankinetic energybeingstationaryin time. If the modelonly allows the moleculesto move
in onedimension,this meankinetic energymustbe

~mV~~kT. (5.15)

It is assumed that each molecule is a two-level system, with energylevelsF
1 andF2> E1.The

moleculesinteractwith radiationby spontaneousandstimulatedemissionandby absorption.
Molecularcollisionsareassumedto be perfectlyelastic.

We first considera moleculeinitially at restin the laboratoryframe, andconsiderits interaction
with radiationduringsometime intervalr. After this time the moleculehasacquiredsomelinear
momentumi~.dueto emissionandabsorptionof radiation.Eachemissionor absorptionprocess
contributes a linear momentum ~ to the molecule; A, mayof coursebe positiveor negative.If n
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emissionandabsorptionprocessesoccur during the time r, we have

t~=~DA1. (5.16)

The A, maybe takento be independentrandomvariablesof zeromean,so that

(5.17)

Now each process of emission or absorption involves a momentum transfer of magnitude~lw/c,
where11w= F2 — F1. Thus we take

X~~(ho.,/c)2. (5.18)

The factor~ is includedbecauseby assumptionthe moleculeis only allowedto movein oneof
threepossiblefield directions.Combiningeqs.(5.17) and(5.18), wehave

&~n(hw/c)2. (5.19)

It remainsto determinethenumbern of emissionandabsorptionprocessesoccurringduring
the time interval r. But this numberfollows from the first part of Einstein’spaper,wheretheA
andB coefficientsareintroduced.A is the rateof spontaneoustransitionsfrom level 2 to level 1.
Bp(w), wherep(w) is the radiationenergydensityat frequencyw, is the ratefor stimulated
transitionsfrom level 2 to level 1. By assumingthatp(w) approachesinfinity as T does,Einstein
showedin the first part of his paperthatBp(w) is alsothe rateof absorptionof radiation asso-
ciatedwith the transitionfrom level 1 to level 2. If thereareN1 moleculesin the lower state I
andN2 in the upperstate2, therefore,

n = N2Ar÷(N2 + N1)Bp(w) r. (5.20)

For simplicity we haveignoredthe possibilityof degeneracy.
Using the result(5.20) in eq. (5.19),we havefinally

& ~(hw/c)~[N2A + (N1 + N2)Bp(w)]. (5.21)

This equationindicatesthat a moleculeinteractingwith thermalradiationwill continuallygain
kinetic energy.Theremustevidentlybe somevelocity-dependentforcewhich tendsto slow down
the molecule.The hypothesesconcerningemissionandabsorptionwere put forth by Einstein for
a moleculeat rest,sowe mustinvestigatehow the thermalradiation appearsin the frameof a
moving molecule.

In thelaboratoryframethe radiationis isotropic,so that the radiationenergyper unit volume
in the frequencyintervalw to w + do.,, andwithin the infinitesimalsolid angledf2 aboutsome
arbitrarydirectionof propagation,is

—p(w) dw d~T2,
4ir
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wherep(w) is independentof direction.For definitenessat this point we considersomepropaga-
tion directiondefinedby the angle0 with respectto the singleaxisalongwhich moleculesare
allowedto move;the azimuthalangleis irrelevant to our considerations.A moleculewith velocity
v seesthis “radiation bundle”as havinga Doppler-shiftedfrequency

w’=~w(~_Y~050) (5.22)

for v/c ~ I. Becauseof the aberrationeffect, furthermore,the bundleappearsto the moleculeto
be directedat an angle0’ given by

V
cosO’ cos0 — —sin

20. (5.23)
C

The radiationdensityat frequencyw transformsto

0’) dw’ do’,4ir

and doesnot appearisotropicto the moving molecule.This quantitymust transformin the same
wayas thesquaredamplitudeof a planewave havingdirectiondefinedby the sameangle0 in the
laboratoryframe. Fromthetransformationpropertiesof theelectromagneticfield, therefore,we
have

/ 2v \
p’(w’, 0’) do.,’ d~2’ 1 — — cos0) p(w) do~d~2 (5.24)

\ c

to first order in v/c. In thesamefirst-order approximationwe note furthermorethat

2v do. d(cos0) 3v
p’(w’, 0’) (1 — _cos0) p(w) , (1 — _cosO’) p(w) (5.25)

c dw d(cosO) c

wherewe haveusedtheresults(5.22)and(5.23).Einsteinnow writes

p(w) ~(~‘ +~ w’ cos0’)~p(w’) + d~~~)(~)w’ cos0’, (5.26)

so that, from eq. (5.25),

p’(w’, 0’) [p(w’) +~ ~w’) ~‘ cos0] [1 — ~cosO’]. (5.27)

For the movingmoleculethe radiationbundleassociatedwith the solid angled~2’induces

= —~---Bp’(w’, 0’) d~7’N
2 (5.28)

4ir

emissionprocessesand
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= —~--B p’(w’, 0’) d&2’ N1 (5.29)
4ir

absorptionprocessesper second.Thenet linear momentumper unit time addedto the molecule
due to theseprocessesis therefore

= (n1 — n2).!~-cos0’ ~-~‘ (-~_)(N1— N2)p’(w’, 0’)d~TZ’cosO’. (5.30)

Spontaneousemissionis equally likely in anydirectionandhenceaddsno net momentumto the
molecule.

The net rateof momentumtransferto the moleculedueto all such“radiation bundles”is
therefore

~ =~ B(N1 —N2)fdcz’cos0’p(w’, 0’) —~-~-~-(N1—N2)B[p(w) _~ dp(w)] —Rv,(5.31)

whereto lowestorderwe havedroppedthe primes.Eq.(5.31) is the desiredresult.It showsthat
as a resultof the molecularmotion throughthe radiationfield the moleculeis subjectedto a
velocity-dependentforce tendingto slowit down.

Einsteinnowconsidersthe changein momentumof a moleculeduringa short time interval r.
If the moleculeinitially hasmomentummu, thenafter avery short time interval r it has momentum

mu’ = mu + ~ — Rur, (5.32)

so that

m
2u’2 = m2u2+ ~2÷ R2r2u2+2mui~— 2mRu2r— 2Rz~ur= m2v+ E~+R2r2u2— 2mRrv2, (5.33)

since& = U = 0 dueto the fact that the two typesof force actingon the moleculesarerandom
and independent.Now for r sufficiently small (orm sufficiently large) we have

m2v~m2u2+&- 2mRru2. (5.34)

But under the condition of equilibrium we have

m2u’2 m2u~2m(~kT) (5.35)

from eq.(5.15).Therefore

&/r—2RkT, (5.36)

which maybe written, from eqs.(5.21)and(5.31),as

B(N
1 —N2) [p(w) — ~. dP(w)] —~-~- [N2A +(N1 +N2)Bp(w)]. (5.37)

3 dw 6kT

Now from the assumptionof detailedbalancein thefirst part of Einstein’spaper,

N2A + (N2 + N1)Bp(w) = 2N1B p(w). (5.38)
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Thisresultof coursealreadyimpliesthe Planckspectrumwhenwe notethat

N2/N1= exp(—hw/kT) (5.39)

at thermalequilibrium.Substitutingeqs.(5.38) and(5.39) into (5.37), we obtainthedifferential
equation

w dp(w) 11w
p(w) — ~ = (exp(hw/kT)— 1~’p(w)exp(hw/kT), (5.40)

with the solution

const.X w
3

p(w) . (5.41)
exp(hw/kT)— 1

Thus thePlanck spectrum is consistent with the assumptionthatthe momentumchangesin
moleculesinteractingwith thermalradiationarein accordwith theclassicalstatisticalmechanics
of the gas in thermalequilibriumwith theradiation.

To understandthe importancewhichEinstein attachedto this result,we must considerhis
earlierinvestigationwith Hopf [124] into thespectrumof thermalradiation.Their approachwas
basedon theaboveassumption.But thereareno discrete,quantumprocessesin theEinstein—
Hopf approach,nor aretherediscreteatomic energylevels.The moleculesinsteadaretakento
be pointmassesto which areappendedsimpledipoleharmonicoscillators,in the spirit of the
Lorentzmodel.Themassof a moleculeallows theassignmentof ameankinetic energy

KE=~kT (5.42)

to eachmoleculeof a gasatthermalequilibrium.The dipole oscillatorallows the moleculeto in-
teractwith the radiationin equilibrium with thegas.For simplicity the moleculeis againallowed
to movein only onedirection,so that theright-handsideof eq. (5.42) is multiplied by ~.

If a moleculehasalinear momentummu at sometime t, thenafter a shorttime r it hasthe
momentum

mu’ = mu + ~ — Rur, (5.43)

which is the sameas eq. (5.32). ~ is themomentumimpartedto a stationarymoleculeduring
time r due to the thermalradiation.—Ruis the force tendingto slow down a moleculemoving
with velocityv throughthe radiationfield. But now ~ andR mustbe calculatedon the basisof
this classicalmodelof the molecule.Theymust berelatedto p(w),which is thendeterminedby
the equilibrium condition(5.36).

Supposethat the moleculesareconstrainedto movealong thex-axisandthat their dipolesare
orientedalongthe z-axis.Thenthe equationof motion for the dipoleoscillatorhasthe form

p_Fp+w2p~Fc3F
5, (5.44)

where w is theoscillator frequency.The secondterm on theleft-handsideof this equationre-
presentsthe forceof radiation reaction;theoscillatormassis assumedto beappropriatelyre-
normalized.When thethermalfield E5 is expandedinto normalmodes,thedifferentcomponents
haveamplitudesessentiallyproportionalto thesquareroot of theradiationdensityp. The cor-
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respondingcomponentsof the induceddipolemomentareaccordinglyalsoproportionalto ‘~/~
The force on the moleculeis

aF~ I dp
F~p~B~ (5.45)

and~it is clear that .~= 0. Theterm ~, where

~=fdtF~, (5.46)

is nonvanishing,andclearlywill be proportionalto the squareof the radiationdensityatthe
oscillatorfrequency,p2(w), if the oscillatorlinewidth isvery smallcomparedwith its oscillation
frequency.In fact the detailedcalculation[15, 124] gives

— 41’ir4c4= 2 p2(w) r. (5.47)

5w

We seealreadya profounddifferencebetweenthe quantum-mechanicalandclassicalmodels.In
thequantum-mechanicalmodelwe dealwith discreteevents,and& dependson thenumberof
theseeventsduring time r, andhenceis proportionalto Bp(w) (eqs.(5.21) and(5.38)).Thus the
quantum-mechanicalmodelpredicts& p(w), whereasthe classicalmodelpredicts& p2(w).

The classicalcalculationof R, on theotherhand,gives the resultthatR dependson p(w) in the
sameway as in the quantum-mechanicalcase.Thisresultsfrom the fact that thevelocity-depen-
dentforceis

1 dp’
F~~ p’ ——B~,i—;-, (5.48)

wherethe prime indicatesthe transformationto the restframeof a moving molecule.Unlike F~
(andtherefore~),F is nonvanishing,dueto the anisotropyof the thermalfield asviewed from
themovingcoordinatesystem.Thusthe classicalcalculation [15, 124] gives the result

R = ~ir2cr Ip(w) — w dp(o.,)
1 (5.49)

L 3 dwJ

in close analogy to eq. (5.31).
Substitutingthe results(5.47)and(5.49) into eq. (5.36), we obtainthe differentialequation

of EinsteinandHopf,

wdp(o.,) ir
2c3

p(w) — — _____ = 2 p2(w), (5.50)
3 dw 3w.kT

the solutionof which is the Rayleigh—Jeansspectrum(5.14).Thus theEinstein—Hopfapproach
leadsto the Rayleigh—Jeanslaw, as would beexpectedfrom sucha classicalapproach.

Boyer [15] hasconsideredthe implicationsof randomelectrodynamicsfor theclassicalmodel
of EinsteinandHopf. In addition to thermalradiationcharacterizedby thedensityfunctionp(w),
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thereis accordingto randomelectrodynamicsa zero-point(temperature-independent)fluctuating
field (eq. (5.4) or (5.9)), the density function p0(w) of which is given by

p0(w) = 11w
3/2ir2c3. (5.51)

Its effect is to addto a moleculea mean-squareimpulsez~given by eq. (5.47)with T = 0:

— 41’ir4c4
2 p~(w)r. (5.52)5w

Thisrepresentsa sourceof kinetic energyfor amoleculeof agasatT = 0. The velocity of the
moleculecannotresult in a velocity-dependentforce, sincethe zero-pointfield is Lorentz-invari-
ant. At a wall of thecontainer,however,thedecelerationof themoleculeresultsin a loss of
kineticenergydueto dipole radiation.ThusBoyersuggeststhat the classicalmodelbe extended
to includethe effectsof thewalls of the container.

Consider again the change in linear momentumof a moleculeduring time r. Insteadof eq.
(5.43),Boyer nowwrites

mv’mv+i~—Rvr+J, (5.53)

whereJ is themomentumchangeof the moleculedueto a collision with a wall. Sincewe arein-
terestedin the equilibrium situationin which the entiregasis at thermalequilibrium,we may
restrictourconsiderationto moleculeswhich strike a wall during time r. The equilibrium condi-
tion v2 = u’2 now takesthe form

&+ 2muJ 2mRrv2, (5.54)

following the sameargumentsthat led from eq. (5.32) to (5.~33),andnoting that àJ— 0.
The term v.1 in eq. (5.54) is proportionalto the kinetic energychangeof a moleculeon striking

a wall. At thermalequilibrium the moleculeson the averageneithergainnor losekinetic energy
on colliding with a wall, so that uJmustbe independentof T. For the specialcaseT= 0, however,
we haveseenthatamoleculeapproachinga wall musthaveagreatervelocity before thanafter
strikingthe wall, so that iiTis negative.ThereforeuJ maybe obtainedfrom theequilibrium condi-
tion at T = 0. At T = 0, R = 0 becausethe zero-pointfield gives riseto no velocity-dependent
force (seeeqs.(5.51)and(5.49)),so that from eq. (5.54),

2mvJ —~. (5.55)

The equilibrium condition(5.54) thereforetakesthe form

&—~2mRrv2. (5.56)

Substitutingeqs. (5.47), (5.49)and(5.52) into eq.(5.56), we obtainthedifferentialequation

ir2c3 r ‘11w3 ~ 2-, w d (w)p2(w) —t 2 = p(w) — — , (5.57)
3w2kT L \2ir c31 J 3 dw

wherewe haveusedalsoequations(5.35)and(5.51) for u2 andp
0(w).The solutionof B oyer’s

differential equation(5.57) is the Planckspectrum
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p(w) = 0) (exP(h~~fl— ~ + 2110)) . (5.58)

This result is perhapsthe mostremarkableachievementof randomelectrodynamicsat this time.
The extensionof “traditional” classicalelectrodynamicshasremovedoneof themostsignificant
stumblingblocks of classicalphysics.

Boyer [16] hasdiscussedin detail someimplicationsof randomelectrodynamicsfor classical
statisticalthermodynamics.Perhapsthereaderwill not be surprisedto learnthat the successof
randomelectrodynamicsin explainingthe blackbodyspectrumextendsto severalother aspects
of thermalradiationusuallythoughtto be explanableonly throughthe introductionof radiation
quanta.It is certainly atheoryworthy of furtherattention.

5.4. Randomelectrodynamicsand thevan der Waalsforces

Thereareseveralwell-knownphysicaleffectswhich haveheuristicexplanationsin termsof the
quantum-electrodynamicalvacuumfluctuationsof theradiationfield. In assessingthe limits of
validity of the classicaltheoryof randomelectrodynamics,it is necessaryto determinewhether
thetheoryprovidesan adequateexplanationof sucheffects.Onesuch effect is thevan derWaals
interactionbetweentwo neutralpolarizableparticles.The usualheuristicexplanationof this inter-
action is that the fluctuatingdipole momentsinducedin the two particlesby the vacuumfield in-
teractto producea net forcebetweenthetwo particles.

Supposewe attemptto explainthis interactionalongthelines of the classicalLorentzmodel
of an atom or molecule.Eachatom is picturedas anharmonic-oscillatordipole; theelectronmay
be consideredto be boundelastically to aninfinitely massivenucleus.Theatomsarea fixed dis-
tancer apart,á~ndthe electronin eachatom is acteduponby its own radiation reactionfield and
theretardedfield from theother atom,as well as the elasticrestoringforcebinding the electron
to the nucleus.Thereareno “external” fields involved in the calculationof vanderWaalsforces.

Let the displacementsfrom equilibrium of the electronsin atoms1 and2 bex1(t)andx2(t),
respectively.Thenwehavethe equationsof motion

2e
2 ... e2 p.. r q r q . r

x
1(t)+ w~x1(t)— ( 3) xi(t)_[_—i---x2(t__)+--~x2(t__)+ —i x2(t__)] , (5.58)

3mc m cr c r c cr c

2e
2... e2 p.. r q r q. r

x
2(t) + w~x2(t)— (___~x2(t)= — ~_ —i—. x1 (t __) -i-—x1 ~t ——) +—~- x1 ~t—~)j. (5.59)

3mc m cr c r c cr c

The electronsin atoms 1 and2 areassumedto moveonly along theaxisdefinedby theunit
vectors~ andj

12~respectively,andp andq aredefinedas

P IL
1~t2_(p1-r)(l12.r), (5.60)

q = 3O~1M(iI2~’)— ~ ~ (5.61)

wherei is a unit vectoralongthe line connectingatomsI and2.
Underno influenceof externalforces,the electronsaresupposedto be at restat their equilibrium

positions.Equations(5.58)and(5.59) showthat two suchinitially unexcitedatoms,a fixed dis-
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tancer apart,remainunexcited:x1(t) = x2(t) = 0, and there is no interactionbetweenthe atoms.
It is known, however, that two ground-state atoms attract each other with a force that varies as
r
7. This force, introduced by vander Waalsin order to accountfor correctionsto the ideal gas

equationof state,is the dominantbindingeffect in manyinert-gasandorganiccrystals.We note
thatthis interactioneludesa classical(Lorentz-model)explanation.In fact, London’s 1930deriva-
tion [126] basedon fourth-orderperturbationtheory was considereda majoraccomplishmentof
the newquantummechanics.

A simpleargumentshowingthe importanceof the quantumtheory for the explanationof the
vanderWaalsinteractiongoesas follows. Supposethe atomsarecloseenoughtogether
(w

0r/c ~ 1) that retardationmaybe neglectedandonly the dominantnear-fieldtermsarere-
tainedin eqs.(5.58)and (5.59):

~1(t) + w~x1(t)= Kx2(t), (5.62)

~2(t) + w
2

0x2(t) = Kx1(t), (5.63)

where

q 1e
2\

(5.64)
r ~mi

The normal-modefrequenciesof this systemaregiven by

= (w~±K)112. (5.65)

In a quantum-mechanicaltreatmentweshould expecttheground-stateenergyof the systemto be-
come

F ~h(w~+ w..) (5.66)

dueto the coupling.To lowestorderin K/wi this is

F 11w
0 — K~11/8w~, (5.67)

which implies the interaction energy

U(r) = — hl(~) ~ 2 (5.68)

8w~r m

The quantum-mechanicalexpressionderivedby London [126] is

U(r) = —i
4q2/211w

0r
6. (5.69)

In this expressionp is the transitiondipolemomentconnectingthe groundandfirst-excitedstates,
only these states beingincludedin a first approximation;q2 is easilyevaluated,assumingclosure
over these states. The results (5.68) and (5.69) are identical if the mass and charge of the
Lorentz-modelelectronarechosensuchthat

e2/m2p2w
0/h. (5.70)
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The relation(5.70)resultsin fact from an interestingcorrespondencebetweenthe Lorentzmodel
andthe two-statemodel.Thiscorrespondencewarrantsa brief digressionhere.

In manynaturalphenomenainvolving the interactionof light with atoms,the light is pre-
dominantlynonresonantwith anytransitioninvolving the normalatomicstate.Whenthiscir-
cumstanceobtains,the atom hasnegligibleprobability of being“removed” from its normal
(ground)state.Underthefrequentlyoccurringcircumstancethat an appliedfield frequencyw is
muchlessthanany of the transitionfrequenciesinvolving the groundstate,the Kramers—
Heisenbergformulagives thepolarizability~(w) as

2 I~joI2w
1o 2 P1o

12Wjo
2 2 .. (5.71)

11iw
10—w ~

The sumis over all excitedstatesopticallyconnectedto the groundstate.~ and arere-
spectivelythe transitionfrequencyanddipolemomentconnectingstateIf> to the ground state
10>. A perusalof a tableof atomicoscillatorstrengthsrevealsthat the transitionconnectingthe
groundandfirst-excitedstatesusuallyhasanoscillatorstrengthmuchlargerthanthoseof other
transitions.Then

a(w)=~2~i
2/ho.,

0, (5.72)

wherew0 and p are the transitionfrequencyanddipolemomentof the transitioninvolving the
groundand first-excitedstates.For the casew ~ ~ theLorentzmodelgives for the static
polarizability

cl(w) = e
2/mw~, (5.73)

whichis the sameas the quantum-mechanicalresult(5.72) if e2/m is chosenaccordingto (5.70).
Thischoiceof e2/mmaybe consideredto result from theincorrect applicationof the
Thomas—Reiche—Kuhnsumrule to the fictitious two-stateatom.This sumrule is essentiallya
statementof the commutationrule [x, p~]= ill, which cannotbesatisfiedin the finite-dimen-
sionalHilbert spaceassociatedwith thetwo-stateatom.

It remainsto showhow the Lorentzdipole-oscillatormodelfollows as a crudeapproximation
to the quantum-mechanicaltheory.As alreadyimplied, the Lorentzmodelmustbe applicable
whenan atom will most likely remain in its groundstate,andwhena singleoscillatorstrength
involving a transitionfrom the groundstateis dominant.Thus weexpectthat the two-statemodel
will reduceto the Lorentzmodelwhenwedemandthat the atomeffectively remainin its ground
state,i.e., when wetake a~= —1. Fromequations(2.81)and(2.89), then~we areleft with the
singleequation

2w 2

+ w2ocm~(t))= E(0, t) (5.74)

wherewe havetakenp andE to be parallel. .w~(t)thus correspondsto thequantityex(t) in the
Lorentz model,x(t) beingthedisplacementof the electronfrom its equilibrium position:

e(x(t) + w~x(t)) —E(O, t). (5.75)
m
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Equations(5.74)and(5.75)areformally identicalwhenthe transcription(5.70) is made,except
for one important difference. Equation (5.74) is an operator equation, andthe field appearing
on theright-handsideis an operator.If expectationvalues are takenon bothsidesof this equa-
tion for the situationwherethereis no “external” field appliedto the atom,then(5.74)reduces
to (5.75) with E(0, t) = 0, sincethe expectationvalue of the solutionof the homogeneous
Maxwell equationvanishes.Equation(5.74)alsoreducesto (5.75) for thecasewherethe field
is describedby a coherentstatesuchthat the electricfield expectationvalueis thesameas the
classicallyprescribedfield usedin the Lorentz-modelequation.

But theattemptto calculatethevan derWaals interactionrevealsa failureof the Lorentz
model,eventhougheachatom is consideredto remain in its groundstate.If the two atomsare
initially unexcited,so that their electronsareat restin their equilibriumpositions,theneqs.
(5.58) and(5.59) indicatethat theywill remain in thesepositions:the atomsdo not interact.
Evidentlythe vacuumfield mustplay anessentialrole in thequantum-electrodynamicaltheory
of thevander Waalsinteraction.

The quantum-mechanicalanaloguesto eqs.(5.58) and(5.59) are

~

x1(t)+ w~x1(t) ( 3hc
3)xi(t) = h ~r E

0(x1, t)

12w0,u
2\ .. I r \ I2W~/.L2\ / r \ f2W~~2\ . / r \

2 Jpx
2~t——J+~3 Jqx2~t——)+~ 2 )qx2~t——), (5.76)\llcri \ CI \1~r / \ CI \1~cr / \ ci

.. 14wop
2\... 2w

0~t
2

x
2(t) + w~x2(t)— I 1x2(t) = p2~E0(x2,t)

Ii

______ / r \ (2w0i
2\ / r \ /2wo,.12\ . / r

— I 2 JpXiIt — J+ ~ Jqx
1~t ~ 2 qx1 ~t ——i, (5.77)\llcr/ \ ci \ lrr / \ CI \1~cr I \ CI

wherej.zji1x1(t) is the dipole momentoperatorassociatedwith atom i. We emphasizethat it is
essential to retainthe free-fieldoperatorE0 in theseequations.Without it, the dipolemoment
operatorsthemselvesdecayto zero,andcommutationrules arebroken.With the free-field term,
however,we canshowthat thecommutationrulesarepreserved.In fact, for the harmonic
oscillatorsunderconsideration,thesecommutationrulesmaybe consideredto be definedby
the commutatorpropertiesof the freefield [127].

Beforediscussingthe derivationof thevan derWaalsinteractionbasedon eqs. (5.76)and
(5.77), let usconsiderthe implicationsof randomelectrodynamicsfor theLorentz-oscillator
model. Therandom-electrodynamicalequationswill obviouslybe formally identicalto eqs.(5.76)
and(5.77),whenthe massandchargeof the Lorentzelectronarechosenin accordancewith eq.
(5.70). Thex.(t) will now be c-numbers.E0, ratherthanbeingthe free-fieldsolution of the
Maxwell operator equation for the electric field, will be the zero-pointfield of the theory of
randomelectrodynamics.

Boyer [19, 20] hasgiven random-electrodynamicalderivationsof the vander Waalsinteraction
betweentwo neutralpolarizableparticles.The formal identity betweeneqs.(5.76)and(5.77) and
thecorrespondingequationsof randomelectrodynamicsallowsus to apply Boyer’smethodof
solution simultaneously to both pairs of equations.
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Weconsider here only the specialcaseof the asymptoticretardedvanderWaalsinteraction.It
was suggestedby VerweyandOverbeek[128] thatat largeseparationsthe vanderWaalsinterac-
tion might fall off morerapidly thanr6, dueto the effectsof retardation.Wheeler[129] actually
hadincludedthe effect of retardationin the calculationof the vander Waalsforcein 1941.Fol-
lowing the suggestionof VerweyandOverbeek,CasimirandPolder[46] presentedadetailed
analysisof the influenceof retardationon the vander Waalsforces.Theyfound for largesepara-
tionsthe interactionenergy

U(r)—23cs
1a211c/4i’rr

7 (5.78)

between two neutral polarizable particles with static polarizabilities a
1 and a2.

Boyer’srandom-electrodynamicalderivationof (5.78) is conceptuallyvery simple. For r very
large, it is expected that the interatomicinteractionwill be primarily a low-frequencyeffect;
higher frequencycontributionswill canceldueto smallphaseshiftsbuildingup overthe large
separationdistance.The second-andthird-derivativetermson the left-handsidesof eqs.(5.76)
and(5.77)maythereforebe neglected,andwe havesimply

x1(t) = — [E~(x1,t) + E12(x1, t)] , (5.79)
11w0

21,2
x2(t) = ~ ~ [E0(x2,t) + E21(x2, t)] , (5.80)

11w0

where~ t) is the dipole field on atom i dueto atomj. In the quantum-mechanicalcasethe
polarizabilities,assumedto be the samefor thetwo atoms,aregiven by eq. (5.72);in the random-
electrodynamicalcasetheyare givenby the classicalresult(5.73).

The interactionenergyis simply

U(r) = —~ a( [E0(x1,t) + F12(x1,t)] 2> — U(oo) = —a(E0(x1, t) . E 12(x1, t)>~— U(oo), (5.81)

to lowestorder,whereagain( >~denotesanaverageovertherandomphasesin the random-elec-

trodynamicalcalculation.Notingthat
x2(t) = aE0(x2,t) (5.82)

to lowestorder,andusingthis expressionfor x2(t) in (5.81) to calculateE12(x1, t), we finally incur
a complicatedintegralexpressionfor U(r). The evaluationof the integralyieldstheresult (5.78)
of CasimirandPolder.Thederivationshowsexplicitly the role played by thezero-point field. In
the random-electrodynamicalcalculationgiven by Boyer,therearenonvanishingcontributionsonly
from termssuchas

(exp{i(Okx — Ok’X’)}>O = <exp{—i(Ok,~— Ok’xt)}>o = ~k,k’~XX’~ (5.83)

In the correspondingHeisenberg-picture,quantum-mechanicalcalculation,which proceedsin the
sameway exceptof coursethat thequantum-mechanicalensembleaverage( > replaces ( )~,non-
vanishingcontributionsresultonly from termssuch as

(ak?Xl(O)a~~(0))= ~ic,k’ ‘
5xx’~ (5.84)
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Boyer[19—21] hasgiven random-electrodynamicalcalculationsfor the vander Waalsinterac-
tionsat all separationsfor particleswhich canbe either electricallyor magneticallypolarizable,
aswell as for the forcesbetweenconductingplates,dielectricandpermeableplates,andpolarizable
particlesandplates.In everycasetheresultsare in agreementwith the knownpredictionsof
quantumelectrodynamics.

5.5. Discussion

The explanationof the blackbodyspectrumandthe vander Waalsforceswithin the classical
theory of randomelectrodynamicsmaybe consideredas quite striking or merelyamusing,de-
pendingon one’spersuasion.

For the physicistaccustomedto thinking of blackbodyradiationin termsof radiationquanta,
the derivationof Planck’slaw from randomelectrodynamicsis remarkableindeed.The failure of
classicalphysicsto accountfor the observedblackbodyspectrumis oftenregardedas proof
enoughfor the failure of classicalelectrodynamics.It was only aftergreateffort andconsiderable
reluctancethatPlanckintroducedthe notion of field quanta;thereseemedto be no otheralter-
native. Einstein’sderivationof Planck’slaw in his paper“On theQuantumTheoryof Radiation”
[2] showedconvincinglythatthe field quantacarrya linear momentum11w/c in addition to
energy11w. The existenceof field quantaseemedindisputable.

But the veryphenomenonwhich signalledthe collapseof classicalphysicshasnow beenshown
to beexplanablefrom the classicaltheoryof randomelectrodynamics.The theory is foundedon
the classicalMaxwell equationsfor the electromagneticfield. Ratherthanthe identically vanishing
solutionof the homogeneousequations,a fluctuatingfield is chosen,the energyspectrumof which
is determinedfrom the requirementof Lorentzinvariance;Planck’sconstantthenentersthe theory
naturallyas a fundamentalconstantwhosevalueis setby comparisonof the theoryto experiment.
The blackbodyspectrumcanbe obtainedby consideringtheinteractionof Lorentz-modeldipole
oscillators in a container with the fields theyproduceas well as the zero-pointfield of random
electrodynamics.The derivationgiven by Boyer [15] showsthat Planck’slaw canbe understood
in termsof classicalzero-point fluctuations.Field quanta,quantizedatomicenergylevels, and
stimulatedemissiondo not enterinto the derivation.Physicistsin 1900would probablyhavebeen
morecomfortablewith this(fully classical)approachthanwith Planck’s.

The derivationof thevander Waalsforcesin randomelectrodynamicsis equally striking. The
reader familiar with the Casimir—Polder paper [46] on the asymptotic retarded van der Waalsin-
teraction,for example, is awareof the lengthyquantum-mechanicalcalculationsrequired.The
physical interpretation of the interactionis not elucidatedby the calculations,andonenormally
relieson heuristicnotionsinvolving quantum-electrodynamicalvacuumfluctuations.In thecalcu-
lationsbasedon randomelectrodynamics,on the other hand, the physicalinterpretationis corn-
pletely clear.Perhapsmoreremarkablethanthe fact that randomelectrodynamicspredictsan in-
teractionbetween“unexcited” atomsis the fact that for all atomicseparations,andfor either
electricallyor magneticallypolarizableparticles,it predictsan interaction of precisely the same
form as in quantumelectrodynamics.

The theory of random electrodynamics has other apparentlyattractivefeatures.All particles
coupledto thezero-pointfield undergozero-pointfluctuations.The energybalancebetween
emissionandabsorptionby a chargeddipoleoscillator interactingwith thezero-pointradiation,
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for example,requiresthat the oscillatorundergorandomoscillations.As the chargeof the Os-

cillator approaches zero,theserandomoscillationspersist;the zero-pointfield haseffecteda kind
of “singular perturbation”.In this limit of vanishingcharge,moreover,the mean-squareposition
andmomentumof the oscillatorare suchas to satisfythe conditionof minimumuncertainty
demandedin quantummechanicsby the Heisenbergprinciple.The limit of vanishingchargede-
fines a theorywhich Boyerterms“randommechanics”.The readeris referredto ref. [122] for
a discussionof this point, andfor an outlineof the currentstatusof randomelectrodynamics.

Having stressedthe attractivefeaturesof randomelectrodynamics,we mustnow presentthe
point of view from which this classicaltheoryappearsas far lessthana possiblealternativeor
equivalentto quantumelectrodynamics.We first recall that the derivationof the retardedvander
Waalsforce givenby Boyer [19] canbe followed throughin formally the sameway in a
Heisenberg-picturequantum-mechanicaltreatment.For the problemunderconsiderationthe atom
is well describedquantummechanicallyby the dipole-oscillatormodel.The retardeddipole fields
of the oscillatorsareof the sameform in the classicaland quantumtheories,thequantum-mech-
anical field beingof coursea Hilbert-spaceoperator.Similarly the free fields areof essentiallythe
sameform in randomandquantumelectrodynamics.Thereis a minor differencein that the zero-
point field of random-electrodynamicsdiffers by a factorof 2h/2 from the corresponding
quantum-electrodynamicalequations(cf. eqs. (2.34)and(5.4)). But this only representsthe fact
thatbothnormallyandanti-normallyorderedfield correlationfunctionscontributeto the zero-
pointenergyspectrumin randomelectrodynamics,while only the anti-normallyorderedcorrela-
tion function(F~~E~~>contributesin the quantum-electrodynamicalcase;the zero-pointenergy
spectraarethe same.

The derivationof the vander Waalsforcesin randomelectrodynamicsyields the sameresultas
in quantumelectrodynamicsbecausethe final answerdependsultimately on thezero-point
energyspectrumof thefield. The equationsof motionare formally the samein the two theories.
The final stepin the derivationinvolvesa term bilinearin the zero-pointelectric field. In the
quantum-electrodynamicalcasewe requirean expectationvalueof this termover thevacuum
field state.In randomelectrodynamicswe requirean averageof formally the sametermover the
randomphasesof thezero-pointfield. The two typesof ensembleaverageyield the sameanswer,
andthereforethe sameresultfor thevanderWaals interaction.Fromthis viewpoint,we might
evencontendthat the principal merit in Boyer’sderivationis the treatmentof the problemin the
Heisenbergpicture, with a consequenteaseof physicalinterpretation.The useof thelanguageof
randomelectrodynamicsmight be considereda subterfuge.

Fromthe samepoint of view, thederivationof the Planckradiationlaw in randomelectrody-
namicsmight be consideredas a disguisedHeisenberg-picturetreatmentof the equilibriumbe-
tweenmaterialoscillatorsandradiation oscillators.The random-electrodynamicaltreatmentonce
againis regardedasa subterfuge.It mightbe expectedthat all the essentialfeaturesof the interac-
tion of dipoleharmonicoscillatorswith the radiationfield in quantumelectrodynamicshavean
isomorphicexplanationin randomelectrodynamics.The basicequationsof motion andfinal
termsto beevaluatedareformally the samein the two theories.The linear couplingbetweenthe
two systemsaccordingto this point of view is too simpleandtoo specific to allow anygeneral
conclusionsaboutrandomelectrodynamics.

Supposewe performa quantum-electrodynamicalcalculationandareled to somefinal expec-
tationvalueto be evaluatedwhichinvolvesthe free field. It appearsthatrandomelectrodynamics
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will give the sameresultfor the problemwheneverthis final expressionis of a particularstruc-
ture.Namely,therearetermsbilinear in the free field andthe positive-andnegative-frequency
partsof the free field enteradditively as the total free field. This appearsin the linearization
approximationin which an atom or moleculeis replacedby an harmonicoscillator.In fact
Boyer [1301 hasshownthat the two theoriesgiveidenticalresultsforN-point correlationfunc-
tionsof the free field if the quantum-electrodynamicalfield operatorsaresymmetricallyordered.

In the problemof spontaneousemissionwe found in section2 thatfor a symmetricordering
of field operatorsin the Hamiltonianthe final expressionfor the radiativefrequencyshift in-
volvedan expectationvalueof the aboveform. Thusif we replacethequantum-electrodynamical
free field with the zero-pointfield of randomelectrodynamics,we obtainthe familiar result
which after massrenormalizationgives Bethe’sresult for the nonrelativistictreatmentof the
Lamb shift. But to conform to the spirit of the classicaltheoryof randomelectrodynamicswe
would haveto treatthe sourceor radiationreactionfield classically.We would thenbe left with
a neoclassicaltheorymodifiedto includethe zero-point field of randomelectrodynamics.

But thejuxtapositionof the neoclassicalandrandom-electrodynamicaltheoriesrunscounter
to the philosophyunderlyingthe theoryof randomelectrodynamics.The theory is only in an
initial stageof its development,andit is hopedthateventuallythe discretespectraof atomsand
moleculeswill be explanablewith this classicaltheory of fluctuations.Thisexplainswhy, for
example,therehasbeenno attemptto derive theratio of theintensitiesof theStokesandanti-
Stokeslines in Ramanscatteringfrom randomelectrodynamics.Problemsof this kind cannotyet
be addressed,becausethe theoryhasnot yetbeenappliedto the problemof atomicstructure.It
should be rememberedthataquarterof a centuryelapsedbetweenPlanck’spaperon the black-
body spectrum and Schrodinger’s paper on the spectrum of atomic hydrogen.

The reader interested in the theory of random electrodynamics is referred to the papers of
Marshall and Boyer on the subject, as well as other recent work [13 1—1 34] on a classical theory
of the vacuumor zero-pointfield.
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Noteaddedin proof

Sincethis articlewas submittedfor publicationsomefurtherwork on the subjectcameto the
author’sattention.Clauser[Phys.Rev.D9 (1974)853] hasperformedan experimenttesting the
semiclassicalpredictionthat the radiationfrom a singleatomicspontaneousdecaycanexcite
morethanonedetectoratom.His resultsrefutethis predictionandsupportthequantum-electro-
dynamicalprediction.NashandGordon[Phys.Rev. Al 2 (1975) 2472] haveexaminedin detail
the problemof radiativeequilibrium in the neoclassicaltheoryandhavefound the predictionsof
the theory incompatible with experimental results.


