(For Th March 20 , 5:00 PM)
Read Feynman "Quantum Mechanics and Path Integrals": Ch 6, Sects 6-1 through 6-4. Read the class notes for the weeks of T March 4 thrhough Th March 13

Problem 1 (Feynman Problem 6-6)
Suppose the potential is that of a central force. Thus $V(\mathbf{r})=V(r)$. Show that $v(\Delta \mathbf{p})$ can be written as

$$
v(\Delta \mathbf{p})=v(|\Delta \mathbf{p}|)=\frac{4 \pi \hbar}{|\Delta \mathbf{p}|} \int_{0}^{\infty}\left(\sin \frac{|\Delta \mathbf{p}| r}{\hbar}\right) V(r) r d r
$$

Suppose V is the Coulomb potntial $-Z e^{2} / r$. In this case the integral for $v(\Delta p)$ is oscillatory at the upper limit. But convergence of the integral can be artificially forced by introducing the factor $e^{-\epsilon r}$ and then taking the limit of the result as $\epsilon \rightarrow 0$. Following through this calculation, show that the cross section corresponds to the Rutherford cross section

$$
\frac{\sigma_{\text {Ruth }}}{d \Omega}=\frac{4 m^{2} Z^{2} e^{4}}{|\Delta \mathbf{p}|^{4}}=\frac{Z^{2} e^{4}}{16 K^{2} \sin ^{4}(\theta / 2)}
$$

where $e=$ charge on a proton

$$
\begin{aligned}
K & =m u^{2} / 2 \\
u & =\left(r_{a}+r_{b}\right) / T \\
\Delta \mathbf{p} & =\mathbf{p}_{\mathbf{a}}-\mathbf{p}_{\mathbf{b}} \\
\Delta p & =2 p \sin (\theta / 2)=2 m u \sin (\theta / 2) \\
\theta & =\text { angle between the vectors }-\mathbf{x}_{\mathbf{a}} \text { and } \mathbf{x}_{\mathbf{b}}
\end{aligned}
$$

Problem 2 (Feynman Problem 6-14)
Use the wavefunction approach to discuss the scattering of an electron from a sinusoidally oscillating field whose potential is given by

$$
V(\mathbf{x}, t)=U(\mathbf{x}) \cos \omega t
$$

For all practical purposes let

$$
x^{2}=\frac{m R_{b c}^{2}}{2 \hbar\left(t_{b}-t_{c}\right)}
$$

and show the following result for the wavefunction $\psi\left(\mathbf{x}_{\mathbf{b}}, t_{b}\right)$:

$$
\begin{aligned}
& \psi\left(\mathbf{x}_{\mathbf{b}}, t_{b}\right)=e^{(i / \hbar)\left(\mathbf{p}_{\mathbf{a}} \cdot \mathbf{x}_{\mathbf{a}}-E_{a} t_{b}\right)}-\frac{m}{4 \pi \hbar^{2}}\left[e^{(i / \hbar)\left(E_{a}-\hbar \omega\right) t_{b}} \int d^{3} x_{c} U\left(\mathbf{x}_{c}\right) e^{(i \hbar) \mathbf{p}_{\mathbf{a}} \cdot \mathbf{x}_{\mathbf{c}}}\right. \\
& \left.\quad \times \frac{1}{R_{b c}} e^{(i / \hbar) R_{b c} \sqrt{p^{2}-4 m \hbar \omega}}+e^{(i / \hbar)\left(E_{a}+\hbar \omega\right) t_{b}} \int d^{3} x_{c} U\left(\mathbf{x}_{c}\right) e^{(i \hbar) \mathbf{p}_{\mathbf{a}} \cdot \mathbf{x}_{\mathbf{c}}} \frac{1}{R_{b c}} e^{(i / \hbar) R_{b c} \sqrt{p^{2}+4 m \hbar \omega}}\right]
\end{aligned}
$$

Interprete this result when r_{b} is large.

