Physics CS 140 Set # 2 Spring 2014
(For T January 21, 5:00 PM)

Read Feynman ’Quantum Mechanics and Path Integrals’: Ch.1. and Ch. 7 Sect. 7-2
pp- 170 and 171

Problem 1.

Show the following results for functional derivatives:
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Problem 2 (Feynman Problem 7-1).
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If S[x(t)] = / L(&,x,t)dt, show that, for any s inside the range ¢, to ¢,
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where the partial derivatives are evaluated at ¢t = s.

Problem 3.
Consider a particle of mass m constrained to move along a 1-D axis under the action of

a given force F'(t). The Lagrangian is L = %qf + qF(t). The action is defined as the

functional
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The motion is such that ¢(¢;) = ¢; and q(t2) = go.



a) Show the general result

b) Verify that the solution for this motion with the given end point conditions above is
given by the expression
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where G(t,t') is the Green’s function for this problem and is defined by
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with G(tl,t/) = G(tQ’t/) =0 s t1 < t < to

¢) The classical action is:
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(You don’t need to evaluate this result for now)

(i) Obtain g (t) by using the general result obtained in part (a) above

(i1) Evaluate the second functional derivative
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