Read Feynman "Quantum Mechanics and Path Integrals": Ch.2. and Ch. 3 pp. 44-46, Sect. 3-4. Ch.5, Sect. 5-1, pp. 96-102

Problem 1 (Feynman Problem 3-2).
Show by substitution that the free-particle kernel $K_{0}(b, a)$ satisfies the differential equation

$$
\frac{\partial K_{0}(b, a)}{\partial t_{b}}=-\frac{i}{\hbar}\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} K_{0}(b, a)}{\partial x_{b}^{2}}\right]
$$

whenever t_{b} is greater than t_{a}.

Problem 2

a) Show that a representation for the Dirac δ-function is given by

$$
\delta(x)=\lim _{\lambda \rightarrow \infty}\left(\frac{\lambda}{i \pi}\right)^{1 / 2} e^{i \lambda x^{2}}
$$

where $\lambda>0$
b) Use the result from part (a) and show that for the kernel of a free particle

$$
K_{0}\left(x_{b}, t_{a} ; x_{a}, t_{a}\right)=\delta\left(x_{b}-x_{a}\right)
$$

Problem 3

Consider the normalized Gaussian wave-packet at $t=0$ describing a free electron of mass m

$$
\psi_{0}(x)=\sqrt[4]{\frac{2}{\pi l^{2}}} e^{-x^{2} / l^{2}}
$$

a) Apply to this wave function the Feynman propagator with $\hbar=1$ and show

$$
\psi(x, t)=\left(\frac{2}{\pi}\right)^{1 / 4} \frac{1}{l(t)} \sqrt{l\left(1-\frac{2 i t}{m l^{2}}\right)} e^{-\left(1-2 i t / m l^{2}\right) \frac{x^{2}}{l^{2}(t)}}
$$

where,

$$
l(t)=\sqrt{l^{2}+\frac{4 t^{2}}{m^{2} l^{2}}}
$$

b) Show that the probability density for finding the electron at x at time t is

$$
P(x)=\sqrt{\frac{2}{\pi}} \frac{1}{l(t)} e^{-2 x^{2} / l^{2}(t)}
$$

Describe the motion and shape of the wavepacked as it evolves in time.

Problem 4 (Feynman Problem 3-7).

The free particle kernel was shown to be of the form

$$
K(b, a)=F\left(t_{a}, t_{b}\right) \exp \left\{\frac{i m\left(x_{b}-x_{a}\right)^{2}}{2 \hbar\left(t_{b}-t_{a}\right)}\right\}
$$

Further information about this function F can be obtained from the property expressed by $K(b, a)=\int_{-\infty}^{\infty} K(b, c) K(c, a) d x_{c}$. First notice that the expression above for the free kernel imply that $F\left(t_{b}-t_{a}\right)$ can be written as $F(t)$, where t is the time interval $t_{b}-t_{a}$. By using this form for F in the expression above for the kernel and substituting into $K(b, a)=\int_{-\infty}^{\infty} K(b, c) K(c, a) d x_{c}$, express $F(t+s)$ in terms of $F(t)$ and $F(s)$, where $t=t_{c}-t_{a}$ and $s=t_{a}-t_{c}$. Show that if F is written as

$$
F(t)=\left(\frac{m}{2 \pi i \hbar t}\right)^{1 / 2} f(t)
$$

the new function $f(t)$ must satisfy

$$
f(t+s)=f(t) f(s)
$$

This means that $f(t)$ must be of the form

$$
f(t)=e^{\alpha t}
$$

where a may be complex, that is, $a=\alpha+i \beta$. It is difficult to obtain more information about the function $f(t)$ from the principles we have laid down (in Feynman's book). However, the especial choice of the normalizing factor A defined in Eq.(2.21):
$A=\left(\frac{2 \pi i \hbar \epsilon}{m}\right)^{1 / 2}$ implies that $f(\epsilon)=1$ to first order in ϵ. This corresponds to setting α in $f(t)=e^{\alpha t}$ above equal to 0 . The resulting value of $F(t)$ is in agreement with

$$
K(b, a)=\left(\frac{m}{2 \pi i \hbar\left(t_{b}-t_{a}\right)}\right)^{1 / 2} \exp \left\{\frac{i m\left(x_{b}-x_{a}\right)^{2}}{2 \hbar\left(t_{b}-t_{a}\right)}\right\}
$$

