(For T February 4, 5:00 PM)
Read Feynman "Quantum Mechanics and Path Integrals": Ch.3, Sects. 3-1 through 3-5.

Problem 1 (Feynman Problem 3-5).
In Set 3 you obtained that the free particle kernel satisfies the equation

$$
\frac{\partial K_{0}(b, a)}{\partial t_{b}}=-\frac{i}{\hbar}\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} K_{0}(b, a)}{\partial x_{b}^{2}}\right]
$$

Use this result and the equation

$$
\psi\left(x_{b}, t_{b}\right)=\int_{-\infty}^{\infty} K\left(x_{b}, t_{b} ; x_{c}, t_{c}\right) \psi\left(x_{c}, t_{c}\right) d x_{c}
$$

to show that the wavefunction of a free particle satisfies the equation

$$
\frac{\partial \psi}{\partial t}=-\frac{i}{\hbar}\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}\right]
$$

which is the Schröndinger equation for a free particle.
Problem 2 (The Gaussian slit. See Fig. 1 next page)
Consider the amplitude for a particle that starts at $x=0$ at $t=0$, passes through a slit of width $2 b$, at time T, and at time t^{\prime} later reaches a point on a screen a distance x^{\prime} from the center of the slit. That is, eqn.(3.19) in the text, which includes the sum over all paths passing through the slit that connect the origin to the point x^{\prime} on the screen. All the distances are measured on the x-axis.

$$
\psi\left(x^{\prime}\right)=\int_{-b}^{b} K\left(X+x^{\prime}, T+t^{\prime} ; X+y, T\right) K(X+y, T ; 0,0) d y
$$

where K is the free particle propagator and X is the position of the center of the slit.
Next introduce a Gaussian slit in the integrand above via the factor $G(y)=e^{-y^{2} / 2 b^{2}}$, with y being the distance from the center of the slit to a point in the slit.
a) Obtain the expression for the amplitude

$$
\begin{aligned}
\psi\left(x^{\prime}\right) & =\sqrt{\frac{m}{2 \pi i \hbar}}\left(T+t^{\prime}+i t^{\prime} T \frac{\hbar}{m b^{2}}\right)^{-1 / 2} \\
& \times \exp \left\{\frac{i m}{2 \hbar}\left(\frac{x^{\prime 2}}{t^{\prime}}+V^{2} T\right)+\frac{\left(m^{2} / 2 \hbar^{2} t^{\prime 2}\right)\left(x^{\prime}-V t^{\prime}\right)^{2}}{(i m / \hbar)\left(1 / t^{\prime}+1 / T\right)-1 / b^{2}}\right\}
\end{aligned}
$$

where $V=X / T$ is the classical velocity to get from the origin of the x-axis to the center of the slit.
b) Show that the probability for the particle to reach x^{\prime} on the screen is

$$
P\left(x^{\prime}\right)=\frac{m}{2 \pi \hbar} \frac{b}{T \Delta x} \exp \left\{-\frac{\left(x^{\prime}-V t^{\prime}\right)^{2}}{(\Delta x)^{2}}\right\}
$$

where we have used the substitution

$$
(\Delta x)^{2}=b^{2}\left(1+\frac{t^{\prime}}{T}\right)^{2}+\frac{\hbar^{2} t^{\prime 2}}{m^{2} b^{2}}
$$

Interpret this result.

Fig. 1

Problem 3

Consider the infinite wall

$$
V(x)= \begin{cases}0, & x>0 \\ \infty, & x<0\end{cases}
$$

A particle has a wave function at $t=0$ given by

$$
\psi(x, 0)=e^{i p_{0} x / \hbar} \delta\left(x-x_{0}\right)
$$

with $x_{0}>0$.

Apply to $\psi(x, 0)$ the propagator derived in lecture 7 and obtain the following form for the wavefunction at $t>0$

$$
\psi(x, t)=A(x, t ; \lambda, V) e^{i \lambda\left(x_{0}+V t\right)^{2}} \sin \left(2 \lambda x x_{0}\right)
$$

Find the constant λ, the velocity V, and the factor $A(x, t ; \lambda, V)$. These are the only variables and constants, including x_{0}, that should appear in $\psi(x, t)$.

Problem 4

A particle of mass m is in an infinite square well of width L

$$
V(x)= \begin{cases}0 & 0<x<L \\ \infty & x<0, x>L\end{cases}
$$

The particle can go from x_{i} to x_{f} inside the well either directly or bouncing off one wall and the other wall, once, twice, etc. Show that the sum over all paths for this case yields the kernel

$$
\begin{aligned}
K\left(x_{f}, t_{f} ; x_{i}, t_{i}\right) & =\sum_{n=-\infty}^{\infty} \sqrt{\frac{m}{2 \pi i \hbar\left(t_{f}-t_{i}\right)}}\left\{\exp \left[\frac{i}{\hbar} \frac{m}{2} \frac{\left(2 n L+x_{f}-x_{i}\right)^{2}}{t_{f}-t_{i}}\right]\right. \\
& \left.-\exp \left[\frac{i}{\hbar} \frac{m}{2} \frac{\left(2 n L-x_{f}-x_{i}\right)^{2}}{t_{f}-t_{i}}\right]\right\}
\end{aligned}
$$

