
Physics CS 140 Set # 5 Winter 2014
(For T February 11, 5:00 PM)

Read Feynman ”Quantum Mechanics and Path Integrals”:Ch.3, Sects. 3-1 through
3-5 with special attention to 3-2 and 3-3.

Problem 1 (Feynman Problem 3-3).Diffraction through a slit.

By squaring the amplitude

ψ(x′) =

∫ b

−b
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and integrating overx, show that the probability of passage through the original sharp-
edged slit is

P (going through) =
m

2πh̄T
2b

In the course of this problem the integral
∫ ∞

−∞

eiaxdx = 2πδ(a)

will appear. this is the integral representation of the Dirac delta function ofa.
Show that the probability per unit distance that the particle arrives at the pointX + y in
the slit is

P (X + y)dy =
m

2πh̄T
dy

Thus the quantum-mechanical results agree with the idea that the probability that a particle
goes through a slit is equal to the probability that the particle arrives at the slit.
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Problem 2 (Feynman Problem 3-12).

If the wave function for a harmonic oscillator is (att = 0)

ψ(x, 0) = exp
{

−
mω

2h̄
(x− a)2

}

then, using the propagator derived in class for the SHO , showthat

ψ(x, t) = exp

{

−
iωT

2
−
mω

2h̄

[

x2 − 2axe−iωT + a2 cos(ωT )e−iωT
]

}

and find the probability distribution|ψ|2.
How would you solve this problem using standard QM? Briefly describe.

Problem 3

Th kernel for an infinite square well of widthL was obtained in set #4:

KL(xf , tf ; xi, ti) =

∞
∑

n=−∞

[K(2nL+ xf , tf ; xi, ti)−K(2nL− xf , tf ; xi, ti)]

That is,

K(xf , tf ; xi, ti) =

∞
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Next use the Fourier integral representation for the free particle kernel derived in class

K(x2, t; x1, 0) =

∫ ∞

−∞

dp

2πh̄
e(i/h̄)(x2−x1)p exp

[

−
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h̄
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2m
t

]

and rewriteK(2nL + xf , tf ; xi, ti) andK(2nL − xf , tf ; xi, ti) in terms of their Fourier
integral representation. Thus get after some trig reductions

KL(xf , tf ; xi, ti) =

∫ ∞

−∞

dp

2πh̄
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[

−
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× 2ie(−i/h̄)xip sin [(p/h̄) xf ]
∞
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At this stage use Poisson’s formula

∞
∑

n=−∞

e2πixn =

∞
∑

r=−∞

δ (x− r)



to finally obtain after some more trig and algebra manipulations the propagator

KL(xf , tf ; xi, ti) =
2

L

∞
∑

n=1

e−iEn(tf−ti)/h̄ sin knxi sin knxf

wherekn = nπ/L andEn = k2nh̄
2/2m are the wave numbers and energy levels respec-

tively for a particle of massm inside an infinite square well of widthL.
Now you have recovered the familiar results for the infinite square well in terms of energy
eigenfunctions and eigenvalues.

Problem 4

In class we obtained the following expression for the kernelof a quadratic Lagrangian

KL(x2, t2; x1, t1) = A(t2, t1)e
(i/h̄)Scl(2|1)

where the amplitudeA(t2, t1) is obtained by direct evaluation of the path integral for the
fluctuationsy(t) from the classical path̄x(t)

A(t2, t1) =

0
∫

0

δ [y(t)]e(i/h̄)S[y(t)]

that is,

A(t2, t1) = lim
ε→0

1

A

∫ ∞
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dy1
A

· · · · ·

∫ ∞

−∞

dyN−1

A
exp
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i
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N−1
∑

n=0

Scl(n+ 1, n)

]

with ε = (t2 − t1)/N and A =
√

2πih̄ε/m

For a free particle of massm

Scl(n + 1, n) =
m

2

(yn+1 − yn)
2

ε

Usemathematical inductionand show that the result of doing the firstn-integrations in the
expression above forA(t1, t2) is

√

m

2πih̄(n + 1)ε
exp

[

i
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m
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y2n+1

]

Note: Assume the expression above is true then show that it is true for n + 1 and finally
check that it holds forn = 1


