(For T February 11, 5:00 PM)
Read Feynman "Quantum Mechanics and Path Integrals": Ch.3, Sects. 3-1 through 3-5 with special attention to 3-2 and 3-3.

Problem 1 (Feynman Problem 3-3). Diffraction through a slit.
By squaring the amplitude

$$
\psi\left(x^{\prime}\right)=\int_{-b}^{b}\left(\frac{m}{2 \pi i \hbar t^{\prime}}\right)^{1 / 2} \exp \left\{\frac{i m\left(x^{\prime}-y\right)^{2}}{2 \hbar t^{\prime}}\right\}\left(\frac{m}{2 \pi i \hbar T}\right)^{1 / 2} \exp \left\{\frac{i m(X-y)^{2}}{2 \hbar T}\right\} d y
$$

and integrating over $x$, show that the probability of passage through the original sharpedged slit is

$$
P(\text { going through })=\frac{m}{2 \pi \hbar T} 2 b
$$

In the course of this problem the integral

$$
\int_{-\infty}^{\infty} e^{i a x} d x=2 \pi \delta(a)
$$

will appear. this is the integral representation of the Dirac delta function of $a$.
Show that the probability per unit distance that the particle arrives at the point $X+y$ in the slit is

$$
P(X+y) d y=\frac{m}{2 \pi \hbar T} d y
$$

Thus the quantum-mechanical results agree with the idea that the probability that a particle goes through a slit is equal to the probability that the particle arrives at the slit.


Problem 2 (Feynman Problem 3-12).
If the wave function for a harmonic oscillator is (at $t=0$ )

$$
\psi(x, 0)=\exp \left\{-\frac{m \omega}{2 \hbar}(x-a)^{2}\right\}
$$

then, using the propagator derived in class for the SHO , show that

$$
\psi(x, t)=\exp \left\{-\frac{i \omega T}{2}-\frac{m \omega}{2 \hbar}\left[x^{2}-2 a x e^{-i \omega T}+a^{2} \cos (\omega T) e^{-i \omega T}\right]\right\}
$$

and find the probability distribution $|\psi|^{2}$.
How would you solve this problem using standard QM? Briefly describe.

## Problem 3

Th kernel for an infinite square well of width $L$ was obtained in set \#4:

$$
K_{L}\left(x_{f}, t_{f} ; x_{i}, t_{i}\right)=\sum_{n=-\infty}^{\infty}\left[K\left(2 n L+x_{f}, t_{f} ; x_{i}, t_{i}\right)-K\left(2 n L-x_{f}, t_{f} ; x_{i}, t_{i}\right)\right]
$$

That is,

$$
\begin{aligned}
K\left(x_{f}, t_{f} ; x_{i}, t_{i}\right) & =\sum_{n=-\infty}^{\infty} \sqrt{\frac{m}{2 \pi i \hbar\left(t_{f}-t_{i}\right)}}\left\{\exp \left[\frac{i}{\hbar} \frac{m}{2} \frac{\left(2 n L+x_{f}-x_{i}\right)^{2}}{t_{f}-t_{i}}\right]\right. \\
& \left.-\exp \left[\frac{i}{\hbar} \frac{m}{2} \frac{\left(2 n L-x_{f}-x_{i}\right)^{2}}{t_{f}-t_{i}}\right]\right\}
\end{aligned}
$$

Next use the Fourier integral representation for the free particle kernel derived in class

$$
K\left(x_{2}, t ; x_{1}, 0\right)=\int_{-\infty}^{\infty} \frac{d p}{2 \pi \hbar} e^{(i / \hbar)\left(x_{2}-x_{1}\right) p} \exp \left[-\frac{i}{\hbar} \frac{p^{2}}{2 m} t\right]
$$

and rewrite $K\left(2 n L+x_{f}, t_{f} ; x_{i}, t_{i}\right)$ and $K\left(2 n L-x_{f}, t_{f} ; x_{i}, t_{i}\right)$ in terms of their Fourier integral representation. Thus get after some trig reductions

$$
\begin{aligned}
K_{L}\left(x_{f}, t_{f} ; x_{i}, t_{i}\right) & =\int_{-\infty}^{\infty} \frac{d p}{2 \pi \hbar} \exp \left[-\frac{i}{\hbar} \frac{p^{2}}{2 m}\left(t_{f}-t_{i}\right)\right] \\
& \times 2 i e^{(-i / \hbar) x_{i} p} \sin \left[(p / \hbar) x_{f}\right] \sum_{n=-\infty}^{\infty} \exp \left[\frac{2 i n L p}{\hbar}\right]
\end{aligned}
$$

At this stage use Poisson's formula

$$
\sum_{n=-\infty}^{\infty} e^{2 \pi i x n}=\sum_{r=-\infty}^{\infty} \delta(x-r)
$$

to finally obtain after some more trig and algebra manipulations the propagator

$$
K_{L}\left(x_{f}, t_{f} ; x_{i}, t_{i}\right)=\frac{2}{L} \sum_{n=1}^{\infty} e^{-i E_{n}\left(t_{f}-t_{i}\right) / \hbar} \sin k_{n} x_{i} \sin k_{n} x_{f}
$$

where $k_{n}=n \pi / L$ and $E_{n}=k_{n}^{2} \hbar^{2} / 2 m$ are the wave numbers and energy levels respectively for a particle of mass $m$ inside an infinite square well of width $L$.
Now you have recovered the familiar results for the infinite square well in terms of energy eigenfunctions and eigenvalues.

## Problem 4

In class we obtained the following expression for the kernel of a quadratic Lagrangian

$$
K_{L}\left(x_{2}, t_{2} ; x_{1}, t_{1}\right)=A\left(t_{2}, t_{1}\right) e^{(i / \hbar) S_{c l}(2 \mid 1)}
$$

where the amplitude $A\left(t_{2}, t_{1}\right)$ is obtained by direct evaluation of the path integral for the fluctuations $y(t)$ from the classical path $\bar{x}(t)$

$$
A\left(t_{2}, t_{1}\right)=\int_{0}^{0} \delta[y(t)] e^{(i / \hbar) S[y(t)]}
$$

that is,

$$
A\left(t_{2}, t_{1}\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{A} \int_{-\infty}^{\infty} \frac{d y_{1}}{A} \cdots \cdot \int_{-\infty}^{\infty} \frac{d y_{N-1}}{A} \exp \left[\frac{i}{\hbar} \sum_{n=0}^{N-1} S_{c l}(n+1, n)\right]
$$

with

$$
\varepsilon=\left(t_{2}-t_{1}\right) / N \quad \text { and } \quad A=\sqrt{2 \pi i \hbar \varepsilon / m}
$$

For a free particle of mass $m$

$$
S_{c l}(n+1, n)=\frac{m}{2} \frac{\left(y_{n+1}-y_{n}\right)^{2}}{\varepsilon}
$$

Use mathematical induction and show that the result of doing the first $n$-integrations in the expression above for $A\left(t_{1}, t_{2}\right)$ is

$$
\sqrt{\frac{m}{2 \pi i \hbar(n+1) \varepsilon}} \exp \left[\frac{i}{2 \hbar} \frac{m}{(n+1) \varepsilon} y_{n+1}^{2}\right]
$$

Note: Assume the expression above is true then show that it is true for $n+1$ and finally check that it holds for $n=1$

