Read Feynman "Quantum Mechanics and Path Integrals": Ch.3, Sects. 3-1 through 3-5 with special attention to 3-2 and 3-3. Ch. 4, Sects. 4-1 and 4-2

Problem 1 Electron going through two slits.
Consider the geometry shown in the figure below for a two-slit interference with an electron. The electron starts from the origin at $t=0$, passes either one of the very narrow slits at time T, and then hits the screen at time $T+t^{\prime}$. The distance from the origin to the slits is D. The distance from the slits to the screen is Z. The electron hits the screen at a distance x^{\prime} from the z-axis.

Fig.1. The two-slit experiment with electrons

Show that the relative probability distribution for locating the electron a distance x^{\prime} on the screen is

$$
P\left(x^{\prime}\right)=\frac{m^{4}}{(2 \pi)^{4} \hbar^{4} T^{2}} \frac{2}{t^{\prime 2}} \cos ^{2}\left(\frac{m d}{2 \hbar t^{\prime}} x^{\prime}\right)
$$

Sketch the probability distribution at times $t_{1}<t_{2}<t_{3}$.

Problem 2

A particle of mass m is trapped in an infinite square well and hits the walls and bounces off the walls and moves freely inside the well. The potential is

$$
V(x)=\left\{\begin{array}{lc}
0 & 0<x<L \\
\infty & x<0, x>L
\end{array}\right.
$$

a) Construct the propagator using the eigenfunctions and eigenvalues of H :

$$
H \phi_{n}(x)=E_{n} \phi_{n}(x)
$$

Compare your answer with the result of problem 3 in set \#5.
b) The particle is at $x=L / 2$ at $t=0$. Find the wave function at times $t>0$. Interprete the result.

Problem 3

Consider a particle of mass m hitting and bouncing off an infinite barrier and otherwise moving freely in the region $x>0$:

$$
V(x)=\left\{\begin{array}{lc}
0 & 0<x \\
\infty & x<0
\end{array}\right.
$$

Consider the set of wave functions parametrized by the wavenumber k

$$
\phi_{E}(x)=\left\{\begin{array}{l}
\phi_{k}(x)=\sqrt{\frac{2 m}{\pi k \hbar^{2}}} \sin k x \quad x>0 \\
0 \quad x<0
\end{array}\right.
$$

where $E=k^{2} \hbar^{2} / 2 m$
a) Show that they satisfy the energy eigenvalue equation $H \phi_{E}(x)=E \phi_{E}(x)$ with the correct boundary condition.
b) Show that they satisfy the normalization

$$
\int_{-\infty}^{\infty} \phi_{E}^{*}(x) \phi_{E^{\prime}}(x) d x=\delta\left(E-E^{\prime}\right)
$$

c) Construct the propagator using the the sum over products of eigenfunctions. Check that your answer agrees with the result obtained in the lecture when the sum over paths was done:

$$
K\left(x, t ; x^{\prime}, 0\right)=\sqrt{\frac{m}{2 \pi i \hbar t}}\left[e^{i \frac{m}{2 \hbar t}\left(x-x^{\prime}\right)^{2}}-e^{i \frac{m}{2 \hbar t}\left(x+x^{\prime}\right)^{2}}\right]
$$

d) At $t=0$ the particle is at the point $x=x_{o}>0$. Find $\psi(x, t)$ and interpret the result.

