
Physics CS 140 Set # 7 Winter 2014
(For T February 25 5:00 PM)

Read Feynman ”Quantum Mechanics and Path Integrals”: Ch.3, 3-2 and 3-3, and
3-11. Ch. 4

Problem 1 Eigenfunctions and energy levels for the SHO.

The propagator for the SHO was obtained earlier in class:
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Use the summation formula for Hermite polynomials (Mehler’s Formula), see Morse &
Feshbach,Methods of Theoretical Physics, Vol. I, p.781.
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and obtain the normalized wave functions and energy levels for the SHO
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Note: In problems 2 and 3 below use the formula derived in class for the amplitude factor
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Problem 2 (Feynman & Hibbs Problem 3-8)

For a harmonic oscillator the Lagrangian is
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Show that the resulting kernel is
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Problem 3 (Feynman & Hibbs Problem 3-9)

Find the kernel for a particle in a constant external fieldf where the Lagrangian is
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Problem 4

An electron starts at the origin at timet = 0 and passes though a square slit of side2a
at the generic point(X, Y ) at timeT and it reaches the screen at the generic point(x, y)
at timeT + t. See figure below. Thez−axis is perpendicular to the plane of the slit and
the screen and passes through the center of the square slit. Use 2-D propagators in the
variables(X, Y ) and(x, y) and show that the probability per unit surface to go though the
slit is equal to the probability to arrive at the slit

P (prob. to arrive at slit) = P (prob. to go through slit) =
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Note: If you plot the probability distribution P (x, y) you should get something analogous
to diffraction by a square slit for the probability per unit area for the electron to arrive at
the screen.


