Read Feynman "Quantum Mechanics and Path Integrals": Read Feynman Ch 6, Sects 6-1 through 6-3. Read the class notes for the weeks of T February 25 through Th March 6

Problem 1

A particle of mass m is hanging vertically from a spring of natural frequency ω. The potential energy is

$$
V(x)=V_{0}-m g x+\frac{m}{2} \omega^{2} x^{2}
$$

where V_{0} is a constant. Find the probability amplitude for the particle starting at x_{0} and ending up at x at time T. That is,

$$
\left\langle x, T \mid x_{0}, 0\right\rangle
$$

Problem 2

a) Evaluate the matrix element of the position operator $\hat{x}(t)$

$$
\left\langle x_{2}, t_{2}\right| \hat{x}(t)\left|x_{1}, t_{1}\right\rangle
$$

for a simple harmonic oscillator of mass m and frequency ω with

$$
L=\frac{m}{2}\left[\dot{x}^{2}-\omega^{2} x^{2}\right]
$$

b) Evaluate the matrix element of the time ordered product for the position operators $\hat{x}(t)$ and $\hat{x}\left(t^{\prime}\right)$

$$
\left\langle x_{2}, t_{2}\right| T\left(\hat{x}(t) \hat{x}\left(t^{\prime}\right)\right)\left|x_{1}, t_{1}\right\rangle
$$

for a free particle of mass m with

$$
L=\frac{m}{2} \dot{x}^{2}
$$

Problem 3

Consider a system such that at the initial time t_{a} the system is in a state described by the wave function $\psi\left(x_{a}, t_{a}\right)$. At a later time t_{b} the original state will develop into the state $\phi\left(x_{b}, t_{b}\right)$. The transition amplitude that this system is found to be in the specific state described by the wave function $\chi\left(x_{b}, t_{b}\right)$ at the time t_{b} is given by

$$
\left\langle\chi t_{b} \mid \phi t_{b}\right\rangle
$$

and the transition probability for this process is

$$
\left|\left\langle\chi t_{b} \mid \phi t_{b}\right\rangle\right|^{2}
$$

where $\left|\phi t_{b}\right\rangle$ is the ket whose wave function is $\phi\left(x_{b}, t_{b}\right)$ and $\left|\chi t_{b}\right\rangle$ is the ket whose wave function is $\chi\left(x_{b}, t_{b}\right)$.
a) Show that the resulting amplitude, whose absolute value square gives the probability desired, is given by the expression

$$
\left\langle\chi t_{b} \mid \psi t_{a}\right\rangle=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \chi^{*}\left(x_{b}, t_{b}\right) K(b, a) \psi\left(x_{a}, t_{a}\right) d x_{a} d x_{b}
$$

where $K(b, a)$ is the propagation kernel for the system. This integral is called the transition amplitude to go from the state $\psi\left(x_{a}, t_{a}\right)$ to $\chi\left(x_{b}, t_{b}\right)$.
b) Assume that a simple harmonic oscillator of mass m has a sharp value x_{0} of the position at $t=0$. Calculate the transition probability that at time $0<t<\frac{\pi}{\omega}$ the oscillator will be in the ground state $\psi_{0}(x, t)$.

Problem 4 (Feynman and Hibbs Problem 6-4)

using arguments similar to those leading to Eq. (6.19), show that the wave function $\psi(b)$ satisfies the integral equation

$$
\psi(b)=\phi(b)-\frac{i}{\hbar} \int K_{0}(b, c) V \psi(c) d \tau_{c}
$$

