Read

RHK Ch. 6; Ch. 7; Ch. 13 (13.1-13.4)

K&K Ch. 3; Ch. 5 (5.1-5.5)

Feynman V1 Ch. 10, Ch.14

Solve

Ch. 12 Problems 3, 5, 7, 9, 10, 12

Ch. 13 Problem 6

Ch. 7 Problem 2, 6

From K&K

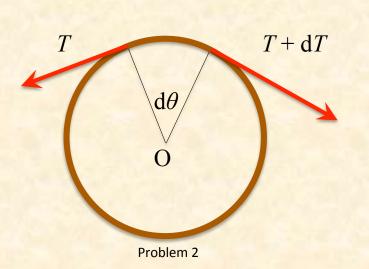
From RHK

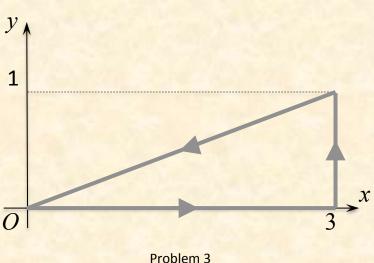
Ch. 3

Problem 3.1

Ch. 4

Problem 4.2




Problem 1. The potential energy of a point particle is $U(x) = -x^2 + 2x^4$.

- a) Find the force associated with this potential energy.
- b) Sketch U(x) showing its essential features.
- c) Discuss the motion for the case E > 0. Find v at x = 0, where E is the total energy of the particle.
- d) Discuss the motion for E < 0.

Problem 2a. A cord moving at low speed v rubs against a round post and deviates from a straight line by a small angle $d\theta$. If the tension on one side of the post is T+dT and on the other side is T, what is the difference dT introduced by friction?

Problem 2a. Find the ratio of tensions at the two ends of a cord wrapped around a circular post a finite angle α and pulled so as to slip.

Problem 3a. Consider the force field $\vec{F} = -Ar^3\hat{r}$ where A is a constant and \hat{r} is the radial unit vector. Is this force conservative? If so, find the potential energy function associated with this force.

Problem 3b. Repeat for the force $\vec{F} = B(y^2\hat{i} - x^2\hat{j})$ where B is a constant. Find the work done by the force along the path shown above.