Read RHK Ch. 14

K&K Ch. 9: 9.1-9.3

Solve

From RHK Ch. 14 Exercises 2, 10, 11, 15, 20, 23; Problems 2, 11, 31

From K&K **Ch. 9** Problem 9.1

Problem 1.

(a) Show that in a chute through the earth along a chord line, rather than along a diameter, the motion of an object will be simple harmonic; assume a uniform Earth density.

(b) Find the period.

(c) Will the object attain the same maximum speed along a chord as it does along a diameter?

Problem 2. Consider the action functional:

$$S[x(t)] = \int_{0}^{T} \left[\left(\frac{dx(t)}{dt} \right)^{2} + x^{2}(t) \right] dt$$

Find the curve x(t) satisfying the conditions x(0) = 0, $x(T) = \sinh T$, which makes S[x(t)] an extremum. What is the extremum value of S[x(t)]? Is it a maximum or a minimum?

Problem 3. A mass M is free to slide on a frictionless air track, as shown below. Suspended by a pivot and a very light rod of length l is another mass m (point mass).

- a) Construct a Lagrangian for this system.
- b) Write down the differential equations of motion for this system.
- (There must be one differential equation for each generalized coordinate.)
- c) Find the frequency of small oscillations for the mass m.
- d) Is the total energy of this system conserved? If so, write down an equation for energy conservation in terms of the generalized coordinates.

M θ m

Problem 4. A bead of mass m is constrained to move without friction on a circular ring of mass M which is rotating at a constant angular velocity ω about the vertical diameter as shown. The radius of the ring is R.

- a) Write down a suitable Lagrangian for this system.
- b) Write down the differential equation for the motion of the bead.
- c) Show that if $\omega^2 < g/R$, the bead can have two equilibrium positions.
- Show that if $\omega^2 > g/R$, the bead has three equilibrium positions.

Good Luck, Dr. B