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Abstract  

The boundary terms in the action for Regge's formulation of general relativity on a sim- 
plicial net are derived and compared with the boundary terms in continuum general 
relativity. 

The Regge calculus [1 ] may play a useful role in the exploration of  the sum 
over histories program for quantizing space-time. (For reviews of this program 
see [2-3] .) The Regge calculus is a natural lattice formulation of  general rela- 
tivity. It can be used to supply manifestly coordinate-invafiant approximations 
to the functional integrals which define the transition amplitudes for continuum 
quantum gravity and it is naturally suited to investigating global questions con- 
cerning these amplitudes. (See, e.g., [4] .) 

In continuum quantum gravity the typical functional integrals of  interest are 
of  the schematic form 

f 6g exp (iS [g] ) (1) 

1 Supported in part by the National Science Foundation grants PHY 78-09620 and PHY 
78-24275. 
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where S is the action for general relativity and the sum is over all physically dis- 
tinct four-geometries in a particular space-time region which match a given three- 
geometry on the boundary of that region. In the Regge calculus four-dimen- 
sional space-time is triangulated into a net of flat four-simplices. Curvature is 
concentrated at the two-simplices or bones of this net. To any functional inte- 
gral of the form in equation (1) in the continuum theory there will therefore 
correspond an integral in the Regge calculus for a given simplicial decomposition 
of the space-time region of interest. The integral will be over the lengths of the 
edges in the interior of the net keeping fixed the lengths of the edges which de- 
fine the boundary. The action will be a function of the edge lengths. Two things 
are therefore needed to define such an integral: a measure on the space of path 
edge lengths and an expression for the action in terms of these edge lengths. It - 
is this expression for the action which concerns us in this note. 

Regge [1 ] has already given an action in the case of a simplicial net where 
the boundaries are ignored. Variation of this action with respect to the edge 
lengths gives the analog of Einstein's equations for the simplicial net so that any 
other action can differ from Regge's only by boundary terms. In the quantum 
theory, however, these boundary terms are important. They are essential in 
order that the quantum mechanical amplitudes satisfy the correct composition 
law and in order that these amplitudes have the correct classical limit. In a num- 
ber of examples [5] they give a contribution to the partition function which is 
important for the agreement with calculations based on straightforward thermo- 
dynamics. In this note we shall derive the boundary terms in the action for the 
Regge calculus. 2 

There are two requirements the action must satisfy in a path integral for- 
mulation of the quantum theory [2, 5] : (1) The action must be additive on 
space-time regions. If there are two contiguous regions with four-geometries g 
and g', then one must have 

S[g+g'] =S[g] +S[g']  (2) 

where g + g' is the four-geometry obtained by joining together the two regions. 
This condition is necessary in order that the usual law for the composition of 
probability amphtudes hold. (2) The classical equations of motion must be 
equivalent to requiring that the action be stationary under variations which fix 
the three-geometry on the boundary. This condition is necessary for the quan- 
tum mechanical theory to have the correct classical limit. In the continuum 

2 The boundary terms we shall derive are suited to boundary conditions which fix the edge 
lengths themselves on the boundary surface. This corresponds to fixing the three-geometry 
of the boundary in the continuum theory. A different choice of boundary conditions (e.g., 
fixing the conformal three-geometry and the trace of the second fundamental form) would 
require different boundary terms. 
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theory both of these requirements are satisfied if the action is taken to be [6, 5] 

1 ~m 1 fa K(+h)X/2dax+C (3) S[g] - 16z r  R(-g)V~ d4x + -~ M 

where K is the trace of the second fundamental form of the boundary, hi/is the 
induced metric on the boundary, and C is a term which depends only on the 
boundary metric. The first integral in equation (3) is over the space-time volume 
of interest, the second is over its boundary, and the plus-or-minus sign is chosen 
according to whether the boundary is spacelike or timelike. (Our conventions are 
the same as those of Reference [7] with units where G -- 1.) 

We shall now consider these two requirements in the case of the Regge cal- 
culus and derive the form of the surface term in that case. For simplicity we 
shall consider only space-times with positive definite metric to avoid introducing 
the extra notation needed to formulate our results for space-times with indef- 
inite metric (see [8], Appendices A and B). To begin we introduce some nota- 
tion for which we follow References [8] and [9]. The collection of simplices 
which triangulate the space-time region we denote by ~. The collection of four 
simplices we denote by ~4 and a particular four-simplex by a. The collection of 
two-simplices (bones) of ~ we denote by I;2. These may be divided into bones 
which lie interior to ~, which we denote by int ~2 and bones contained in the 
boundary which we denote by ~ 2 .  A particular bone will be denoted by b. If a 
bone b is contained in a four-simplex o we shall write b C cr or a D b. 

The Regge action function is 

A [2;] = (870 -1 ~ A(b) 0 (b) (4) 
b E in t  I; 2 

where A(b) is the area of the bone b and O(b) is the bone's defect angle defined 
by 

0 (b )=2r r -  ~ 0(o;b)  (5) 
o D b  

Here, 0 (o; b) is the angle between the two three-simplices of a (rr minus the 
angle between their inward normals) which intersect in b. The sum in equation 
(5) is over all o which intersect in a given bone b. (See Figure 1 for a two- 
dimensional analog.) If the function A is varied with respect to an interior 
squared edge length 12ij one will have first 

8~r~A= Z [~A(b)O(b)+A(b)~O(b)l 
b E i n t Z  2 

(6) 
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Fig. 1. A port ion o f  a two-dimensional  simplicial net.  The  net  consists of  flat two-simplices 
(triangles) and their edges and vertices. The  bones of  the  ne t  are the  vertices: There the  
curvature is concentrated.  A measure  of  the  local curvature is given by the  defect angie 
0 (b) defined by the  difference between 27r and the  sum of  the  interior angles 0 (a; b) of  all 
the  triangles tr which meet  in b. A typical bone  and angle 0 (a; b) are shown. 

The last term can be rewritten using equation (5) as 

Z Z AO) Z  0(o;b) 
b E i n t Z  2 b ~ i n t Z  2 trD b 

=- ~_~ ~ A(b)fO(o;b) (7) 
e E Z  4 b C tr, b ~ i n t Z ~  

The last summation, arising from interchanging the two sums in the first line of 
equation (7), is over all interior bones contained in a given four-simplex o. 

Regge [1] proved the following identity (see [8] for a demonstration in the 
case of space-times with indefinite metric) 

~_. 60(o;b)A(b) = 0 (8) 
b C u  

There is one identity for each o E N4 with the sum being over all bones lying in 
a given e. If N has no boundary equation (8) would show that the last term in 
equation (6) vanished identically and the result of setting ~A = 0 would be 

aA 
0 (b) = 0 (9) 

b E i n t Z  2 
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These are the equations of motion ("thatch equations") of the Regge calculus- 
the analogs of Einstein's equations. If, however, there is a boundary on which 
the edge lengths are held fixed, then the cancellation of the second term in 
equation (6) is incomplete and A will not be an extremum at a solution of the 
thatch equations, equation (9). In fact, assuming equation (9) for interior edge 
lengths l 2 ij we have from equations (6), (7), (8) and the constraint that the 
edge lengths in the boundary not be varied 

S SA= Z Y. 
r  4 b C a ,  b ~  2 

The angle ~o 0 (e; b) occurring in equation (10) has a simple geometrical inter- 
pretation. It is just rr - ~ (b), where ~ (b) is the angle between the normals of the 
two boundary three-simplices which intersect at b. Figure 2 gives a pictorial rep- 
resentation in two dimensions. Thus, for variations which keep fixed the bound- 
ary edge lengths and therefore the areas of the boundary two-simplices 

87 r~a=-~ [a~a~2  ~ A(b)~(b)] (11) 

Fig. 2. A portion of the boundary of a two-dimensional simplicial net. The heavy fines are 
the edges of the net which make up the boundary, a2a. At a typical boundary bone b the 
angle ~ is the angle between the normal to the boundary edges which meet at b. The angle 

is equally the difference between ~r and the sum of the interior angles of the triangles of 
the net which meet in b. 
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Equation (11) shows that the function A fails to be an extremtun at a solu- 
tion of the thatch equations [equation (9)] only by the variation of a boundary 
term. We can therefore immediately write down an action which is an extre- 
mum. It is 

S [ Z ]  = (8~')-1 [bEint~2~ A(b) O(b)'l" b~D~2~" A(b)~(b)+C(~Z)] (12) 

The first sum is over the bones interior to the net; the second is over the bones 
in the boundary. The function C depends only on the edge lengths in the bound- 
ary but is otherwise arbitrary. 

Of the two requirements on the action mentioned earlier as necessary for 
sum over histories quantization, the second is met by equation (12): Variation 
of S will yield equation (9) when the edge lengths of the three simplices on the 
boundary are held fixed. The first requirement that the action be additive can 
also be met by equation (12). 

Let ~' and Z" be two contiguous simplicial nets with ~ = E' U ~" the com- 
bined net. We denote by ~ ,  ~ ,  Z2 the bones of ~', Z", ~, respectively and 
divide ~2 into four types as portrayed in Figure 3: 

Type I: bones in int Z' or int Z" 
Type II: bones in a~'  but not E" or vice versa 
Type III: bones in ~E' n ~E" n i n t  
Type IV: bones in ~ '  n ~ "  n ~Z 
It helps also to reexpress the action for a general net by making use of (5) 

and the analogous formula for $(b) when b E ~Z, 

O(b)=Tr - Y" O(o;b) (13) 
crDb 

Fig. 3. A schematic two-dimensional representation of the classification of the bones of a 
net ~. which is the union of two nets ~' and 2;". 



BOUNDARY TERMS 5 4 7  

Substituting (5) and (13) into (12) yields 

81rS[~1 = -  ~ A(b) O(u;b)+ ~_, 2IrA(b) 
a E ~ , 4 , b ~ 2 , b C  a b ~ i n t ~  2 

+ ~_, 7rA(b) + C[OZ] (14) 
bE~Z~ 

With these preliminaries, consider the difference D = S[Z'] + S[E"] - S[Z] 
with S[Z'] ,  S[Z"],  and S[Z] all expressed in the form of equation (14). Since 
Z4 = E ~ U Y~ ~ the terms A(b) 0(a; b) cancel entirely; and clearly the terms 
27rA(b) for b of type I and the terms A(b) for b of type II cancel as well. For b 
of type III, the contributions zrA(b) from S[Y~'] and S[E"] together cancel the 
2zrA(b) from S[Z].  Finally bones b of type IV contribute to D 

rrA(b ) + hA(b) - hA(b) = 7rA(b ) (15) 

so that we get in all 

S[~'] + S [ ~ " ] - S [ ~ ]  =~ ~ A(b)+C[0Z']  + C [ 0 ~ " ] - C [ a ~ ]  (16) 
b ~ A ~  

where A: = 0 ~  N 02~ N OE2. Thus the requirement of additivity reduces to 
a condition on the purely surface terms: 

C[0Z] =C[O2~'] +C[0Z"] + n ~ A(b) (17) 
b E A  z 

When A 2 is empty, as might happen for example in a spatially dosed space-time, 
the choice C -= 0 fulfills (17) but in general the additivity requirement implies 
nonzero values for the purely surface terms. Since the continuum theory is a 
limit of the simplicial theory, the same remark should apply there as well. 

If all boundaries are embeddable in a flat four-dimensional space, and if A2 
is empty, one choice for C(32~) which will satisfy equation (17) is 

C(OY-,) =c ~ A(b) ~o(b) (18) 
b E  ~Z 

where ~o is the angle defined by equation (13) when the boundary is embedded 
in flat space and c is an arbitrary constant. 

Having established the form of a suitable action for the Regge calculus it is 
of interest to investigate its correspondence with that of the continuum theory. 
Any simplicial net may be regarded as a continuum geometry with the curvature 
concentrated on bones. Previous calculations [8] have already shown that for 
such a geometry 

1S: c d4x (g)X/2 R = ~ A(b) O(b) (19) 
b ~ - ,  2 
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\ / 
X / 

J 

Fig. 4. To calculate the integral of K(h) 112 in equation (20) we may smooth out the surface 
with the extrinsic curvature concentrated on the bones into one in which the three simplices 
are interpolated by cylindrical surfaces of radius r and for which the extrinsic curvature 
therefore varies smoothly. A section transverse to the bone is shown here. The integral of 
K(h) 1/2 is then easily calculated and the limit r --, 0 taken to recover the corresponding ex- 
pression for the simplicial net. 

We shall now show that 

f~ d3x(h)l/2K= ~ A(b) ~(b) (20) 

To see this imagine smoothing out the curvature in a continuous way, computing 
the left.hand side of  equation (20) and taking the limit as the curvature becomes 
concentrated on the bone. A simple way to do this is to approximate the bound- 
ary hypersurface at the bone by a portion of  a hypercylJnder curved in the direc- 
tion normal to the bone and fiat in directions parallel to it. (See Figure 4.) The 
trace of  the extrinsic curvature of  such a cylinder is K = 1/r, where r is its radius 
of  curvature. The length in the normal direction of  the cylinder which inter- 
polates between the two flat three-simplices is r qJ. Thus equation (20) is satis- 
fied, the integration in the normal direction giving a factor of  ~ and that in the 
parallel directions giving the area of  the bone. 

Equations (19) and (20) show that the Regge calculus action in equation 
(12) is exactly the continuum action of  equation (3) in the case when all the 
curvature is concentrated on the bones of  a simplicial net and that further the 
choice in equation (18) for the purely surface terms in the action is (for an ap- 
propriate c)just  that suggested [5, 6] for the corresponding continuum case. 
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