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Measures for Classicality
Murray Gell-Mann and James. B. Hartle

This is a modestly edited section of the authors’ paper Strong Decoherence [1] concerned
with the general problem of a measure for classicality and a specific proposal for that mea-
sure. This section is largely self-contained and can be read separately from the rest. Neither
the text or the references have been updated except for a few “to be published” references.

Quantum mechanics, along with the correct theory of the elementary particles (repre-
sented by the Hamiltonian H) and the correct initial condition in the universe (represented
by the state vector |Ψ〉), presumably exhibits a great many essentially different strongly
decohering realms, but only some of those are quasiclassical. For the quasiclassical realms
to be viewed as an emergent feature of H, |Ψ〉, and quantum mechanics, a good technical
definition of classicality is required. (One can then go on to investigate whether the the-
ory exhibits many essentially inequivalent quasiclassical realms or whether the usual one is
nearly unique.)

In earlier papers, [2–4] we have made a number of suggestions about the definition of
classicality and it is appropriate to continue that discussion here. It is clear that from those
earlier discussions that classicality must be related in some way to a kind of entropy for
alternative coarse-grained histories. We must therefore begin with an abstract characteri-
zation of entropy and then investigate the application to histories. An entropy S is always
associated with a coarse graining, since a perfectly fine-grained version of entropy in sta-
tistical mechanics would be conserved instead of tending to increase with time. Classically,
if all fine-grained alternatives are designated by {r}, with probabilities pr summing to one,
that fine-grained version of entropy would be

Sf−g = −
∑
r

pr log pr , (1)

where log means log2 and where, for convenience, we have put Boltzmann’s constant k times
loge2 equal to unity. A true, coarse-grained entropy has the form

S ≡ −
∑
r

p̃r log p̃r , (2)

where the probabilities p̃r are coarse-grained averages of the {pr}. A coarse graining pr → p̃r
must have certain properties (see [5] for more details):

1) the {p̃r} are probabilities , (3a)

2) ˜̃pr = p̃r , (3b)

3) −
∑
r

pr log p̃r = −
∑
r

p̃r log p̃r . (3c)

These properties are not surprising for an averaging procedure. The significance of the last
one is easily seen if we make use of the well known fact that for any two sets of probabilities
{pr} and {p′r} we have

−
∑
r

pr log pr ≤ −
∑
r

pr log p′r . (4)
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Putting p′r = p̃r for each r and using (1)-(4), we obtain

Sf−g = −
∑
r

pr log pr ≤ −
∑
r

pr log p̃r = −
∑
r

p̃r log p̃r = S , (5)

so that Sf−g provides a lower bound for the entropy S. If the initial condition and the coarse
graining are related in such away that S is initially near its lower bound, then it will tend
to increase for a period of time. That is the way the second law of thermodynamics comes
to hold.

In order to know what nearness to the lower bound means, we should examine the up-
per bound on S. That upper bound is achieved when all fine-grained alternatives have
equal coarse-grained probabilities p̃r, corresponding in statistical mechanics to something
like “equilibrium” or infinite temperature. Each p̃r is then equal to N−1, where N (assumed
finite) is the number of fine-grained alternatives, and the maximum entropy is thus

Smax = log N . (6)

The simplest example of coarse graining utilizes a grouping of the fine-grained alternatives
{r} into exhaustive and mutually exclusive classes {α}, where a class α contains Nα elements
and has lumped probability

pα ≡
∑
r∈α

pr . (7)

Of course we have ∑
α

Nα = N,
∑
α

pα = 1 . (8)

The coarse-grained probabilities p̃r in this example are the class averages

p̃r = pα/Nα , r ∈ α , (9)

and they clearly have the properties (3). The entropy comes out

S = −
∑
α

pα log pα +
∑
α

pα logNα , (10)

where the second term contains the familiar logarithm of the number of fine-grained alter-
natives (or microstates) in a coarse-grained alternative (or macrostate), averaged over all
the coarse-grained alternatives.

Besides entropy, it is useful to introduce the concept of algorithmic information content
(AIC) as defined some thirty years ago by Kolmogorov, Chaitin, and Solomonoff (all working
independently).1 For a string of bits s and a particular universal computer U , the AIC of
the string, written KU(s), is the length of the shortest program that will cause U to print
out the string and then halt. The string can be used as the description of some entity e,
down to a given level of detail, in a given language, assuming a given amount of knowledge
and understanding of the world, encoded in a given way into bits [7]. The AIC of the string
can then be regarded as KU(e), the AIC of the entity so described.

We now discuss a way of approaching classicality that utilizes AIC as well as entropy.
Some authors have tried to identify AIC in a straightforward way with complexity, and in

1 For a discussion of the original papers see [6].
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fact AIC is often called algorithmic complexity. However, AIC is greatest for a “random”
string of bits with no regularity and that hardly corresponds to what is usually meant
by complexity in ordinary parlance or in scientific discourse. To illustrate the connections
among AIC, entropy or information, and an effective notion of complexity, take the ensemble

Ẽ consisting of a set of fine-grained alternatives {r} together with their coarse-grained

probabilities p̃r. We can then consider both KU(Ẽ), the AIC of the ensemble, and KU(r|Ẽ),
which is the AIC of a particular alternative r given the ensemble. For the latter we have
the well known inequality (see, for example [8]):∑

r

p̃rKU(r|Ẽ) ≥ −
∑
r

p̃r log p̃r = S . (11)

Moreover, it has been shown by R. Schack [9] that, for any U , a slight modification U → U ′

permits KU ′(r|Ẽ) to be bounded on both sides as follows:

S + 1 ≥
∑
r

p̃rKU ′(r|Ẽ) ≥ S, (12)

so that we have ∑
r

p̃rKU ′(r|Ẽ) ≈ S. (13)

(Previous upper bounds had O(1) in place of 1, but there was nothing to prevent O(1) from
being millions or trillions of bits!)

Looking at the entropy S as a close approximation to
∑

r p̃rKU ′(r|Ẽ), we see that it is

natural to complete it by adding to it the quantity KU ′(Ẽ) — the AIC of the ensemble with
respect to the same universal computer U ′. This last quantity can be connected with the
idea of effective complexity — the length of the most concise description of the perceived
regularities of an entity e. Any particular set of regularities can be expressed by describing

e as a member of an ensemble Ẽ of possible entities sharing those regularities. Then KU ′(Ẽ)

may be identified with the effective complexity of e or of the ensemble Ẽ [7? ]. Adding this
effective complexity to S, we have:

Σ ≡ KU ′(Ẽ) + S . (14)

This sum of the the effective complexity and the entropy (or Shannon information) may
be labeled either “augmented entropy” or “total information”. If the coarse graining is the
simple one obtained by partitioning the set of fine-grained alternatives {r} into classes {α}
with cardinal numbers Nα, then the total information becomes

Σ = KU ′(Ẽ)−
∑
α

pα log pα +
∑
α

pα logNα . (15)

In (14), the first term becomes smaller as the set of perceived regularities becomes simpler,
while the second term becomes smaller as the spread of possible entities sharing those
regularities is reduced. Minimizing Σ corresponds to optimizing the choice of regularities
and the resulting effective complexity thereby becomes less subjective. Thus, the total
information or augmented entropy is useful in a wide variety of contexts [5, 7]. We apply it
here to sets of alternative decohering coarse-grained histories in quantum mechanics.
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The general idea of augmenting entropy with a term referring to algorithmic information
content was proposed in a different context by Zurek [10]. However, as far as we know, the
emphasis on the utility of the quantity Σ in (14) and (15) is new. We discussed the general
idea of an entropy for histories in [2]. Earlier, Lloyd and Pagels [11] introduced a quantity
they called thermodynamic depth, applicable to alternative coarse-grained classical histories
α. They defined it as

D =
∑
α

pα log(pα/qα) , (16)

where qα is an “equilibrium probability”, which in our notation would be Nα/N for the
simple coarse graining we have discussed. We clearly have

D = logN +
∑
α

pα log pα −
∑
α

pα logNα (17)

or
D = Smax − S (18)

for the set of alternative coarse-grained histories. We see that thermodynamic depth is
intimately related to the notion of an entropy for histories.

In applying augmented entropy to sets of coarse-grained histories in quantum mechanics,
one must take into account that there are infinitely many different sets of fine-grained his-
tories and that these sets do not generally have probabilities because they fail to decohere.
The quantities Nα may therefore conceivably depart from their obvious definition as the
numbers of fine-grained histories in the coarse-grained classes {α}. In fact, there may be
some latitude in the precise definition of the complexity and entropy terms in the total infor-

mation (14). For example, one could consider instead of Ẽ an ensemble Ê consisting of the
coarse-grained histories α = (α1, α2, · · · , αn), their probabilities pα, and the numbers Nα.
A more general definition of the entropy S of histories may help to define these numbers.
The generalized Jaynes construction for coarse-grained histories provides one framework for
doing this [2]. In the most general situation, such a construction defines the entropy S as
the maximum of −Tr(ρ̃ log ρ̃) over all density matrices ρ̃ that preserve the decoherence and
probabilities of a given ensemble E of coarse-grained histories. Other Jaynes-like construc-
tions may also be useful, for example ones that define entropy by proceeding step by step
through the histories. We are investigating these various possibilities.

In any case, our augmented entropy in (15) for coarse-grained decohering histories in
quantum mechanics is a negative measure of classicality: the smaller the quantity, the closer
the set of alternative histories is to a quasiclassical realm. Reducing the first term in (15)
favors making the description of the sequences of projections simple in terms of the field
variables of the theory and the Hamiltonian H. It favors sets of projections at different times
that are related to one another by time translations, as are many sequences of projections
on quasiclassical alternatives at different times in the usual quasiclassical realm.

Reducing the second term favors more nearly deterministic situations in which the spread
of probabilities is small. Approximate determinism is, of course, a property of a quasiclas-
sical realm. Reducing the last term corresponds roughly to approaching “maximality”,
allowing the finest graining that still permits decoherence and nearly classical behavior. A
quasiclassical realm must be maximal in order for it to be a feature exhibited by the initial
condition and Hamiltonian and not a matter of choice by an observer.

Any proposed measure of closeness to a quasiclassical realm must be tested by search-
ing for pathological cases of alternative decohering histories that make the quantity small
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without resembling quasiclassical realm of everyday experience. The worst pathology occurs
for a set of histories in which the P ’s at every time are projections on |Ψ〉 and on states
orthogonal to |Ψ〉. We see that in this pathological case the description of the histories and
their probabilities is simple because the description of the initial state is simple, so that

KU ′(Ẽ) is small. The term −
∑

α pαlogpα is zero and the third term is also zero since the
only α with pα 6= 0 corresponds to projecting onto the pure state |Ψ〉, so that Nα is one and
logNα vanishes.

Evidently the smallness of Σ is not by itself a sufficient criterion for characterizing a
quasiclassical realm. Further criteria can be introduced if we require that quasiclassical
realms be strongly decohering with suitable restrictions on the sets {M}α of operators from
which the future histories are constructed. Requiring strong decoherence ensures a physical
mechanism of decoherence and guarantees the permanence of the past. The sets {M}α must
be restricted so as to rule out pathologies such as discussed above. Presumably they must
all belong to a huge set with certain straightforward properties. Those properties might
be connected with locality, since quantum field theory is perfectly local. (Even superstring
theory is local — although the string is an extended object, interaction among strings is
always local in spacetime.) It would be in this way that strong decoherence enters a definition
of classicality.

A quasiclassical realm would then be characterized in quantum mechanics as a realm
that minimizes the augmented entropy given by (15) subject to further suitable conditions.
Quasiclassical realms so defined would be an emergent feature of H, |Ψ〉, and quantum
mechanics — a feature of the universe independent of human choice. In principle, given
H and |Ψ〉, we could compute the quasiclassical realm that these theories exhibit. We
could then investigate the important question of whether the usual quasiclassical realm is
essentially unique or whether the quantum mechanics of the universe exhibits essentially
inequivalent quasiclassical realms. Either conclusion would be of central importance for
understanding quantum mechanics.
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