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Abstract 
In a fundamental formulation of the quantum mechanics of a closed system, 
such as the universe as a whole, three forms of information are needed to 
make predictions of the probabilities of alternative histories. These are the 
action functional of the elementary particles, the quantum initial condition 
of the universe, and the information about our specific history. We discuss 
the origin of the “quasiclassical domain” of familiar experience and Hamil- 
tonian quantum mechanics with its preferred time in such a formulation of 
quantum cosmology. It is argued that these features of the universe are not 
general properties of quantum theory, but rather approximate features 
emergent after the Planck time because of the character of the specific initial 
condition and dynamics of our universe. 

1. Introduction 
An unavoidable inference from the physics of the last sixty 
years is that we live in a quantum mechanical universe - a 
universe in which the process of prediction conforms to that 
framework we call quantum mechanics on all scales from 
those of the elementary particles to those of the universe 
itself. We perhaps have little direct evidence of peculiarly 
quantum phenomena on very large and even familiar scales 
today, but there is no evidence that the phenomena that we 
do see cannot be described in quantum mechanical terms and 
explained by quantum mechanical laws. In the earliest 
universe, the subject of this conference, we have a physical 
system of the largest possible size for which a quantum 
mechanical description is likely to be essential, especially at 
times earlier than the Planck time. The nature of this quantum 
mechanical description and its observable consequences are 
the subject of quantum cosmology. 

The most general objects of prediction in quantum 
mechanics are the probabilities of alternative histories of the 
universe. Three forms of information are needed to make 
such predictions. These are the action functional of the 
elementary particles, the initial quantum state of the universe, 
and the information about our specific history on which 
probabilities for future prediction are conditioned. These are 
sufficient for every prediction in science and there are no 
predictions which do not, at this fundamental level, involve 
all three forms of information. A theory of the action func- 
tional of the fundamental fields is the goal of elementary 
particle physics. The equally fundamental, equally necessary, 
theory of the initial condition of the universe is the objective 
of quantum cosmology.’ In a fundamental theory these may 
even be related objectives. 

To make contact with observation, a theory of the initial 
condition must seek to explain correlations among obser- 
vations today. What are these observations likely to be? On 
the largest scales there are the features of the universe whose 

* Invited talk at Nobel Symposium no. 79: The Birth and Early Evolution 
of our Universe, Graftavallen, Sweden, June 11-16, 1990. 

Physica Scripta T36 

explanation cosmology has usually traced to the intitial 
condition. These include the approximate homogeneity and 
isotropy, the approximate spatial flatness, the simple spatial 
topology, and the spectra of deviations from exact homo- 
geneity and isotropy which we can see today as large scale 
structure and earlier as anisotropies in the background 
radiation. On very small scales, Sidney Coleman and Stephen 
Hawking have described at this conference how certain 
coupling constants of the elementary particles could be quan- 
tum probabilistic with a probability distribution that may 
depend, in part, on the initial condition. In this talk, however, 
I shall discuss two much more familiar features of the uni- 
verse, accessible at ordinary scales, which must owe their 
origin, at least in part, to the quantum initial condition. These 
are the applicability of classical physics over much of the late 
universe, including especially the existence of classical 
spacetime, and the applicability of the Hamiltonian form of 
quantum mechanics. I shall argue that, in a fundamental 
formulation of the quantum process of prediction, these 
familiar features of the universe call for explanation just as 
much as do the large scale structural characteristics alluded to 
above, although there may be a very wide range of initial 
conditions of the universe from which they follow. 

For a quantum mechanical system to exhibit classical 
behavior there must be some restriction on its state and some 
coarseness in how it is described. This is clearly illustrated in 
the quantum mechanics of a single particle. Ehrenfest’s 
theorem shows that generally 

However, only for special states, typically narrow wave 
pickets, will this become an equation of motion for (x) of 
the form 

For such special states, successive observations of position in 
time will exhibit the classical correlations predicted by the 
equation of motion (1.2) provided that these observations are 
coarse enough so that the properties of the state which allow 
(1.2) to replace the general relation (1.1) are not affected by 
these observations. An exact determination of position, for 
example, would yield a completely delocalized wave packet 
an instant later and (1.2) would no longer be a good approxi- 
mation to (1.1). Thus, even for large systems, and in par- 
ticular for the universe as a whole, we can expect classical 
behavior only for certain initial states and then only when a 
sufficiently coarse grained description is used. If classical 
behavior is in general a consequence only of a certain class of 
states in quantum mechanics, then, as a particular case, we 
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can expect to have classical spacetime only for certain states 
in quantum gravity. The classical spacetime geometry we see 
all about us in the late universe is not property of every state 
in a theory where geometry fluctuates quantum mechanicalIy 
but traceable fundamentally to restrictions on the initial 
condition. Such restrictions are likely to  be generous in that, 
as in the single particle case, many different states will exhibit 
classical features. The existence of classical spacetime and the 
applicability of classical physics are thus not likely to be very 
restrictive conditions on constructing a theory of the initial 
condition. However, they are such manifest and accurate 
features of the late universe that it is important to understand 
quantitatively the class of initial conditions with which they 
are consistent. Any initial condition predicted by theory must 
lie in this class. 

A feature of the late universe which is closely related to 
the existence of classical spacetime is the applicability of 
Hamiltonian quantum mechanics. Time plays a special role in 
the familiar Hamiltonian formulation of quantum mech- 
anics, Time is the only observable for which there are no 
interfering alternatives as position is an interfering alternative 
for momentum. Time is the only observable not represented 
in the formalism as an operator but rather enters the theory 
as a parameter describing evolution. Thus, just for its for- 
mulation, Hamiltonian quantum mechanics requires a fixed 
background spacetime to supply the preferred time. This we 
can expect only for special states of the universe and then 
only approximately. 

Classical physics is applicable over a wide domain in the 
universe. Here in the late universe the geometry of spacetime, 
viewed sufficiently coarsely, i s  classical, definite and evolving 
by Einstein’s equation. Hamiltonian quantum mechanics 
with its preferred time is correct for field theory on all 
accessible scales. The point of view I shall describe in this talk 
is that these familiar, homey, features of our world are most 
fundamentally seen not as exact properties of the basic theory 
but rather as approximate, emergent properties of the late 
universe appropriate to the particular initial condition which 
our universe does have. Put more crudely, I shall argue that 
the classical domain with its classical spacetime and the 
Hamiltonian form of quantum mechanics with its preferred 
time are relics of the big bang. 

To exhibt the classical domain and Hamiltonian quantum 
mechanics as emergent features of the universe we need a 
generalization of the Copenhagen framework for quantum 
mechanics on at least two counts. First, the various Copen- 
hagen formulations of quantum mechanics characteristically 
posited the existence of the classical domain (or a classically 
behaving “observer”) as an additional assumption beyond 
the framework of wave function and Schrodinger equation 
that was necessary to interpret the theory. Second, these 
Copenhagen formulations assumed the preferred time of 
Hamiltonian quantum mechanics. What has been built in we 
cannot expect to get out. A more general framework is 
necessary. 

In this talk I shall describe some routes towards these 
necessary generalizations. The generalizations I shall describe 
stress the consistency of probability sum rules as the primary 
criterion for assigning probabilities to histories rather than 
any notion of “measurement”. They stress the initial con- 
dition of the universe as the ultimate origin within quantum 
mechanics of the classical domain. They stress the sum-over- 

Fig. 1. The two-slit experiment. An electron gun at right emits an electron 
traveling towards a screen with two slits, its progress in space recapitulating 
its evolution in time. When precise detections are made of an ensemble of 
such electrons at the screen it  is not possible, because of interference, to 
assign a probability to the alternatives of whether an individual electron went 
through the upper slit or the lower slit. However, if the electron interacts with 
apparatus that measures which slit it passed through, then these alternatives 
decohere and probabilties can be assigned. 

histories formulation of quantum mechanics as a potentially 
more general and generally covariant framework for a 
quantum mechanics of spacetime. The work on these gener- 
alization cannot be said to be complete but the directions 
seem promising to me. To keep the discussion manageable I 
shall take the discussion in two steps. First, in Sections 2-4, 
I shall neglect gross fluctuations in the geometry of spacetime; 
later, in Sections 5 and 6 ,  I shall return to the generalization 
needed to accommodate them. 

2. Post-Everett quantum mechanics 

We begin with a brief review of the post-Everett formulation 
of the quantum mechanics of closed systems such as the 
universe as a whole. As described above, we shall first assume 
a fixed background spacetime which supplies a preferred 
family of timelike directions. This, of course, is an excellent 
approximation on accessible scales for times later than 

s after the big bang. The familiar apparatus of Hilbert 
space, states, Hamiltonian and other operators may then be 
applied to process of prediction. Indeed, in this context the 
quantum mechanics of cosmology is in no way distinguished 
from the quantum mechanics of a large isolated box, perhaps 
expanding, but containing both the observed and its 
observers. 

The quantum mechanical framework that I shall describe 
has its origins in the work of Everett [2] and has been 
developed by many. In its recent developments it incorpor- 
ates ideas of Zeh [3], Joos and Zeh [4], Zurek [5] ,  Griffiths [6], 
and Omnes [7]. The particular development I shall follow is 
due to Murray Gell-Mann and myself [8, 91. 

A characteristic feature of a quantum mechanical theory is 
that not every history which can be described can be assigned 
a probability. Nowhere is this more clearly illustrated than in 
the two-slit experiment (Fig. 1). In the usual discussion, if we 
have not measured which slit the electron passed through on 
its way to being detected at the screen, then we are not 
permitted to assign probabilities to these alternative histories. 
It would be inconsistent to do so since the correct probability 
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sum rules would not be satisfied. Because of interference, the 
probability to arrive at y is not the sum of the probabilities 
to arrive at y going through the upper and the lower slit: 

P ( Y )  f P d Y )  + P L ( Y )  (2.1) 
because 

l$L(Y) + h(J412 + l$L(Y)12 + I$u(4’)12. (2 .2)  
If we have measured which slit the electron went through, 
then the interference is destroyed, the sum rule obeyed, and 
we can meaningfully assign probabilities to these alternative 
histories. 

It is a general feature of quantum mechanics that a rule is 
needed to determine which histories can be assigned proba- 
bilities. As the two-slit example illustrates, in the Copenhagen 
formulations, probabilities are assigned to histories which are 
measured. This is a rule which assumes a division of the 
universe into one subsystem which is measured or observed 
and another which does the measuring or observing. Further, 
to define measurement, the Copenhagen formulations had, in 
one way or another, to posit as fundamental the classical 
world that we see all about us. We can have none of this in 
cosmology. In a theory of the whole thing there can be no 
fundamental division into observer and observed. There is no 
fundamental reason for a closed system to exhibit classical 
behavior generally in any variables. Measurements and 
observers cannot be fundamental notions in a theory which 
seeks to describe the early universe where neither existed. We 
need a more general rule for assigning probabilities in 
quantum cosmology. 

I shall now describe the rules which specify which histories 
of a closed system may be assigned consistent probabilities in 
the post-Everett formulation and what these probabilities 
are. They are essentially the rules of Griffiths [6] further 
developed by Omnes [7] and independently but later arrived 
at by Gell-Mann and the author [8]. The idea is simple: 
Probabilities can be assigned to those coarsely described 
histories for which the probability sum rules are obeyed as a 
consequence of the particular initial state the closed system 
does have. 

To describe the rules in detail, it is convenient to begin 
with Feynman’s sum-over-histories formulation of quantum 
mechanics since histories are our concern. There, all quantum 
amplitudes are expressed as functionals of completely fine- 
grained histories specified by giving a set of generalized 
coordinates ql(t) as functions of time. These might be the 
values of fundamental fields at different points of space, for 
example. 

Completely fine-grained histories cannot be assigned 
probabilities; only suitable coarse-grained histories can. 
Examples of coarse graining are: (1) Specifying the q’ not at 
all times but at a discrete set of times. (2) Specifying not all 
the q’ at any one time but only some of them. (3) Specifying 
not definite values of these q’ but only ranges of values. An 
exhaustive set of ranges at one time consists of regions { A a }  
which make up the whole space spanned by the q‘ as U passes 
over all values. An exhaustive set of coarse-grained histories 
is then defined by sets of such exhaustive ranges {Ah} at times 
t , , i =  1 , . . . ,  n. 

The important theoretical construct for giving the rule that 
determines whether probabilities may be assigned to a given 
set of alternative coarse-grained histories, and what these 
Physica Scripta T36 
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Fig. 2. The sum-over histories construction of the decoherence functional. 

probabilities are, is the decoherence functional, D [(history)’, 
(history)]. This is a complex functional on any pair of 
histories on any pair of histories in the set. In the sum-over- 
histories framework for completely fine-grained history 
segments between an initial time to and a final time if, it is 
defined as follows: 

D[q”(t), q‘(t)] = S(q;’ - qj) 

x exp {i(S[q”(t)l - S[q‘(Ol)/h}p(qt, 43 .  (2.3) 
Here, p is the initial density matrix of the universe in the q’ 
representation, q t  and qb are the initial values of the complete 
set of variables, and q;’ and qj are the final values necessarily 
common to both hlstories. The decoherence functional for 
coarse-grained histories is obtained from (2.3) according to 
the principle of superposition by summing over all that is not 
specified by the coarse graining. Thus, 

More precisely, the integral is as follows (Fig. 2): It is over all 
histories q”(t), q’(t) that begin at q t ,  qb respectively, pass 
through the ranges [ A , ]  and [Au] respectively, and wind up at 
a common point q; at any time fr > t,,. It is completed by 
integrating over q t ,  qb, qj. The three forms of information 
necessary for prediction - state, action, and specific history 
are manifest in this formula as p,  S,  and the sequence of 
ranges [Aa]  respectively. 

The connection between coarse-grained histories and com- 
pletely fine-grained ones is transparent in the sum-over- 
histories formulation of quantum mechanics. However, the 
sum-over-histories formulation does not allow us to consider 
coarse-grained histories of the most general type. For the 
most general histories one needs to exploit the transform- 
ation theory of quantum mechanics and for this the Heisen- 
berg picture is convenient. In the Heisenberg picture an ex- 
haustive set of alternatives at one time corresponds to a set of 
projection operators {P:(t)} satisfying 

P,k(t) = 1, P,k(t) P,k(t) = S,,P,k(t). (2.5) 
a 

Here, k labels the set of alternatives, 01 the particular alterna- 
tive, and t the time. The operators representing the same 
alternatives at different times are connected by 
p,k(t) = eWhp,(o) e-iHtlh (2.6) 
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where His the total Hamiltonian. Time sequences of such sets 
of alternatives define sets of alternative histories for the 
univese. A particular history is one particular sequence of 
alternatives (PJl(tl), P,2,(t2), . . . , P[(tn)) corresponding to a 
particular sequence of U’S. We abbreviate such an individual 
history by [P,]. With this notation the decoherence functional 
in the Heisenberg picture may be written 

D([P,.],  [PJ = Tr [ K n ( t n )  . . . P ~ , , ( f l W ~ l ( f ~ )  . . . P;(f,)l, 
(2.7) 

In the Heisenberg picture a completely fine-grained set of 
histories is defined by giving a complete set of projections at 
each and every time. Every possible set of alternative histories 
may then be otained by coarse graining the various fine- 
grained sets, that is by using P‘s in the coarser grained sets 
which are sums of those in the finer grained sets. Thus, if 
([Pb8]} is a coarse graining of the set of histories {[Pz]}, we 
write 

c D([PdI, [P,I). (2.8) 
all P, - all Pr - 

not fixed by [PB 1 not fixed by [PPI 

D([PB‘l, [?;;;I> = 1 

A set of coarse-grained alternative histories is said to 
decohere when the off-diagonal elements of D are sufficiently 
small to be considered vanishing for all practical purposes: 

D([P, I, [P,]) = 0, for any a; # ak. (2.9) 
This is a generalization of the condition for the absence of 
interference in the two-slit experiment (approximate equality 
of the two sides of (2.2)). 

The rule for when probabilities can be assigned to histories 
of the universe is then this: To the extent that a set of 
alternative histories decoheres, probabilities can be assigned 
to its individual members. The probabilities are the diagonal 
elements of D. Thus, 
P(P,I)  = D([PZl, [ P A  

= Tr [P,”,(tn) . * * Pa‘,(tl)~Pa’~(tl) . * . P:(tn)I (2.10) 

when the set decoheres. 
The probabilities defined by (2.10) obey the rules of 

probability theory as a consequence of decoherence. The 
principal requirement is that the probabilities by additive on 
“disjoint sets of the sample space”. For histories this means 
the sum rules 

(2.11) 

These relate the probabilities for a set of histories to the 
probabilities for all coarser grained sets that can be con- 
structed from it. For example, the sum rule eliminating all 
projections at only one time is, in an obvious notation: 

xP(@ntn,  ‘ . . u k + l t k + l ,  u k t k ,  ak-ltk-ls * ’ . 9 c r l t l )  
UA 

= p(anfn, . . . ak+ltk+L, ak-ltk-1,. * * 9 al l , ) .  (2.12) 
Given this discussion, the fundamental formula of quantum 
mechanics may be reasonably taken to be 
D([P,,I, [PE]) = &lal . . . 6,,,nPP([P,1) (2.13) 
for all [P,] in a set of coarse-grained alternative histories. 
Vanishing of the off-diagonal elements of D gives the rule for 
when probabilities may be consistently assigned. The dia- 
gonal elements give their values. 

Decoherent histories of the universe are what we may 
utilize in the quantum mechanical process of prediction for 
they may be assinged probabilities. Decoherence thus 
generalizes and replaces the notion of “measurement”, which 
served this role in the Copenhagen interpretations. Decoher- 
ence is a more precise, more objective, more observer- 
independent idea and gives a definite meaning to Everett’s 
branches. If their associated histories decohere, we may as- 
sign probabilities to various values of reasonable scale den- 
sity fluctutions in the early universe whether or not anything 
like a “measurement” was carried out on them and certainly 
whether or not there was an “observer” to do it. 

3. Origins of decoherence 

The decoherence of a set of alternative histories is not a 
property of their coarse graining alone. As the formula (2.7) 
for D shows, it depends on all three forms of information 
necessary to make predictions about the universe and in 
particular on its quantum initial condition. Given p and H ,  
we would compute which sets of alternative histories 
decohere and there would be a great many such sets. 

We are not likely to carry out a calculation of all decoher- 
ing sets of alternative histories for the universe anytime in the 
near future. It is therefore important to investigate specific 
mechanisms for decoherence in more restrictive circum- 
stances. Specific examples of decoherence have been dis- 
cussed by many authors, among them Joos and Zeh [4], 
Zurek [5 ] ,  Caldeira and Leggett [IO], and Unruh and Zurek 
[ 1 13. Typically these discussions have considered coarse 
grainings defined by projection operators which project onto 
a few particular degrees of freedom of a system while ignoring 
the rest. The simplest model consists of a single oscillator 
interacting linearly with a large number of others. A coarse 
graining is used which follows the coordinate of the dis- 
tinguished oscillator and ignores the coordinates of the 
others. Let x be the coordinate of the special oscillator, M its 
mass, wR its frequency renormalized by its interactions with 
the others, and S,, its free action. Consider the special case 
where the density matrix of the whole system, referred to an 
initial time, factors into the product of a density matrix 
p(x, y )  of the distinguished oscillator and another for the rest. 
Then, generalizing slightly a treatment of Feynman and 
Vernon [ 121, we can write the decoherence functional defined 
by (2.4) for this coarse graining as 

(3.1) 
The sum over the paths of the rest of the oscillators has been 
carried out and is summarized by the Feynman-Vernon 
influence functional exp(i W[x’ ( t ) ,  x ( t ) ] ) .  

The case when the rest of the oscillators are in an initial 
thermal state has been extensively investigated by Caldeira 
and Leggett [lo]. In the simple limit of a uniform cut-off 
continuum of oscillators and in the Fokker-Planck limit of 
high temperature, they find 

W[x’( t ) ,  ~ ( t ) ]  = -My  j d t  [x’X’ - X X  + x’X - xi’] 

+ i- 2MykT 5 dt [x’(t) - x(t)I2 (3.2) h 
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where y summarizes the interaction strengths of the dis- 
tinguished oscillator with the rest. The real part of W con- 
tributes dissipation to the equations of motion. The imagin- 
ary part squeezes the trajectories x( t )  and x’( t )  together, 
thereby accomplishing decoherence on the characteristic time 
scale 

2 

tdecaherence 2 [ ( mT) h 
’ ( a>l (3.3) 

As emphasized by Zurek [ 131, this squeezing can be very rapid 
when compared with characteristic dynamical timescales 
(tdecoherenceltdynamlcal N for typical “macroscopic” values). 
In such models coherent phase information is lost by the 
creation of correlations with variables which are then ignored 
in the coarse-graining and so summed over in constructing 
the decoherence functional. 

What such models convincingly show is that decoherence 
is frequent and widespread in the universe. Joos and Zeh [4] 
calculate that a superposition of two positions of a grain of 
dust, 1 mm apart, is decohered simply by the scattering of the 
cosmic background radiation on the timescale of a nano- 
second. So widespread is this phenomena with the initial 
condition and dynamics of our universe that we may mean- 
ingfully speak of habitually decohering variables such as the 
center of mass positions of massive bodies. 

4. Quasiclassical domains 

As observers of the universe, we deal with coarse grainings 
that are appropriate to our limited sensory perceptions, 
extended by instruments, communication, and records, but in 
the end characterized by a great amount of ignorance. Yet we 
have the impression that the universe exhibits a finer grained 
set of decohering histories, independent of us, defining a sort 
of “quasiclassical domain”, governed largely by classical 
laws, to which our senses are adapted while delaying with 
only a small part of it. No such coarse graining is determined 
by pure quantum theory alone. Rather, like decoherence, the 
existence of a quasiclassical domain in the universe must be 
a consequence of its initial condition and the Hamiltonian 
describing its evolution. 

Roughly speaking, a quasiclassical domain should be a set 
of alternative decohering histories, maximally refined con- 
sistent with decoherence, with individual histories exhibiting 
as much as possible patterns of classical correlation in time. 
To make the question of the existence of one or more quasi- 
classical domains into a calculable question in quantum cos- 
mology we need criteria to measure how close a set of 
histories comes to constituting a “quasiclassical domain”. 
A quasiclassical domain cannot be a completely fine- 
grained description for then it would not decohere. It cannot 
consist entirely of a few “classical variables” repeated 
over and over because sometimes we may measure some- 
thing highly quantum mechanical. These variables cannot be 
always correlated in time by classical laws because some- 
times quantum mechanical phenomena cause deviations from 
classical physics. We need measures for maximality and 
classicality [8]. 

It is possible to give crude arguments for the type of 
habitually operators we expect to occur over and over again 
in a set of histories defining a quasiclassical domain. Such 
habitually decohering operators are called “quasiclassical 
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operators”. In the earliest instants of the universe the 
operators defining spacetime on scales well above the Planck 
scale emerge from the quantum fog as quasiclassical [14]. Any 
theory of the initial condition that does not imply this is 
simply inconsistent with observation in a manifest way. Then, 
where there are suitable conditions of low temperature, 
density, etc., various sorts of hydrodynamic variables may 
emerge as quasiclassical operators. These are integrals over 
suitably small volumes of densities of conserved or nearly 
conserved quantities. Examples are densities of energy, 
momentum baryon number, and, in later epochs, nuclei and 
even chemical species. The sizes of the volumes are limited 
above by maximality and are limited below by classicality 
because they require sufficient “inertia” to enable them to 
resist deviations from predictability caused by their inter- 
actions with one another, by quantum spreading, and by 
the quantum and statistical fluctuations resulting from the 
interactions with the rest of the universe that accomplish 
decoherence. Suitable integrals of densities of approximately 
conserved quantities are thus candidates for habitually 
decohering quasiclassical operators. These “hydrodynamic 
variables” are among the principle variables of classical 
physics. 

It would be in such ways that the classical domain of 
familiar experience could be an emergent property of the 
early universe, not genrrally in quantum mechanics, but as a 
consequence of our specific initial condition and the Hamil- 
tonian describing evolution. 

5. Generalized quantum mechanics 

I would now like to turn to the generalization of quantum 
mechanics which may be needed to resolve the conflict 
between the need for a preferred time variable in Hamiltonian 
quantum mechanics and the inability of any generally 
covariant quantum theory of spacetime to supply one. To 
start, it is useful to consider what we might mean most 
generally by a quantum mechanical theory [9]. Roughly 
speaking, by a quantum mechanics we mean a theory that 
admits a notion of fine and coarse-grained histories, the 
amplitudes for which are connected by the principle of super- 
position and for which there is a rule (decoherence) for when 
coarse-grained histories can be assigned probabilities obeying 
the sum rules of probability calculus. More precisely, from 
the discussion in the preceeding section its possible to 
abstract the following three elements of quantum mechanics 
in general: 

(1) The $ne-grained histories: The sets of fine-grained, 
exhaustive, alternative histories of the universe that are the 
most refined description to which one can contemplate 
assigning probabilities. 

(2) A notion of coarse graining: A coarse graining of an 
exhaustive set of histories is a partition of that set into 
exhaustive and exclusive classes (h} .  Various possible coarse- 
grained sets of alternative histories may be constructed by 
coarse graining the fine-grained sets or by further coarse 
graining of an already coarse-grained set. 

(3) A decoherence functional The decoherence func- 
tional, D(h, h’), is defined on each pair of coarse-grained 
histories in an exhaustive set, (h ) ,  for all possible sets includ- 
ing the completely fine-grained ones. It must satisfy the 
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following properties: 

(i) Hermiticity: 

D(h ,  h’) = D*(h’, h), (5.la) 

(ii) Positivity: 

D(h,  h) 2 0, (5.lb) 

(iii) Normalization: 

1 D(h ,  h’) = 1, (5.1~) 

(iv) The principle of superposition: If {Q is a coarser graining 
of a coarse-grained set { h }  then the decoherence functional 
for the coarser grained set is related to that of the finer 
grained set by: 

D(6,  P) = 1 D(h,  h’). (5.ld) 

These three elements are sufficient for the process of pre- 
diction. Decoherence can be defined and probabilities 
assigned according to the fundamental formula 

h ,  h’ 

all h all h’ 
in K in 6‘ 

D(h,  h’) % dhh,p(h). ( 5 4  
As a consequence of the four requirements (5.1) on the 
decoherence functional these probabilities will obey the rules 
of probability calculus. With these probabilities the thoery 
becomes predictive. 

In Hamiltonian quantum mechanics the three elements 
are as follows: (1) The set of fine-grained histories are defined 
by sequences of sets projections onto complete sets of 
states, one set at each time. (2) Coarse grainings of sets of 
histories are defined by sets of projections which are sums 
of projections in finer grained ones. (3) The decoherence 
functional is (2.7). However, Hamiltonian quantum mechan- 
ics is not the only way of constructing a theory with the three 
elements of generalized quantum mechanics. More general 
possibilities may be considered, and, as we shall argue below, 
may be useful in constructing a generally covariant quantum 
theory of spacetime. 

An interesting example of a generalized quantum mech- 
anics is provided by field theory in the kind of wormhole 
spacetime discussed by Morris, Thorne, Yurtsver [ 151 and 
others that is illustrated in Fig. 3. These are not the four- 
dimensional wormholes discussed in connection with the 
value of the cosmological constant. They are handles on 
three-dimensional space. The topology of spacetime is 
R x M 3  with M 3  being multiply connected. 

Imagining that before some time t = t, the wormhole 
mouths are at rest with respect to one another. At time t, 
they begin to rotate about one another and continue until a 
moment of time symmetry when they reverse their motion 
eventually coming to relative rest at time t,. Before t ,  and 
after t, there are no closed timelike lines and it is possible 
to define surfaces of constant time that foliate those portions 
of spacetime. In between t, and t , ,  however, because of 
time dilation in the rotating wormhole mouth, there are 
closed timelike lines, as Fig. 3 illustrates. By going through 
the wormhole throat it is effectively possible to go backward 
in time. Such wormhole spacetimes are time orientable but 
not causal. 

It is clear that there is no straightforward Hamiltonian 
quantum mechanics in a wormhole spacetime between the 

Fig. 3. Closed timelike lines in a wormhole geometry. The figure shows a 
spacetime diagram (time upward) with two wormhole mouths (the shaded 
regions). The wormhole geometry is multiply connected so that it is possible 
to pass nearly simultaneously from points in one wormhole mouth to 
another. The wormhole mouth on the left remains at  rest in an inertial frame. 
The one at right is initially at rest with respct to the first at t = 0 but then 
begins to rotate about it. The figure shows the corotating frame and the 
readings of a clock at  the centre of each wormhole mouth. As a consequence 
of time dilation in the rotating mouth, this spacetime has closed timelike 
curves of which one is shown. The dotted segment represents the nearly 
instantaneous passage through the wormhole throat. 

surfaces t, and t, . What would be the surfaces of the preferred 
time? How would unitary evolution of arbitrary states in the 
Hilbert space be defined in the presence of closed timelike 
lines? 

A generalized quantum mechanics of the kind we have 
been discussing, however, may be constructed for this 
example using a sum-over-histories decoherence functional. 
The three ingredients would be the following* 

(1) Fine-grained histories: For the fine grained histories we 
may take single-value field configurations, +(x) ,  in the worm- 
hole spacetime. 

(2) Coarse grainings: The fine-grained histories may be 
partitioned according to their values on spacetime regions. 
Select a set of spacetime regions, specify an exhaustive set of 
ranges for the average values of the field in these regions, and 
one has partitioned the four-dimensional field configurations 
into classes, { h } ,  that have the various possible values of the 
average field. For example one might specify the spatial field 
configurations on an ifiitial constant time surface with t < t, 
and on a final constant time surface with t > t,. The resulting 
probabilties would be relevant for defining the S-matrix for 
scattering from the wormhole. 

- 
* This generalization was developed in discussions with G .  Horowitz. 
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(3) Decoherence functional: A sum-over-histories decoher- 
ence functional is 

x exp {i(W(X)l - ~[4(X’)l>/~}P0[4O(X), 4 X X ) l .  
(5.3) 

Here, the integrations are over single-valued field con- 
figurations between some initial constant time surface to < t, 
and some final constant time surface tf > t,. ~ $ ~ ( x )  and +;(x) 
are the spatial configurations on the initial surface; their integ- 
ral is weighted by the density matrix p o .  +&) and &(x) are the 
spatial configurations on the final surface; their coincidence is 
enforced by the functional &function. The integral over 4(x) 
is over the class of field configurations in the class h. For 
example, if h specifies the average value of the field is some 
region to lie in a certain range, then the integral is only over 
4(x) that have such average values. Formally, this decoherence 
functional satisfies four conditions of eq. (5.1). 

With the generalized quantum mechanics based on the three 
elements described above probabilities can be assigned to 
coase-grained sets of field histories in the wormhole spacetime. 
These probabilities obey the standard probability sum rules. 
There is no equivalent Hamiltonian formulation of this quan- 
tum mechanics because this wormhole spacetime, with is 
closed timelike lines provides no foliating family of spacelike 
surfaces to define the required preferred time. Nevertheless, the 
generalized theory is predictive. What has been lost in this 
generalization is any notion of “state at a moment of time” and 
of its unitary evolution in between the surfaces t, and t,. This 
is perhaps not surprising for a region of spacetime that has no 
well defined notion of “at a moment of time”. 

6. A quantum mechanics for spacetime 

I would now like to sketch how a generalized quantum 
mechanics for spacetime might be constructed that does not 
break general covariance by singling out a preferred family of 
spacelike surfaces for the distinguished time variable that 
would be needed in Hamiltonian formulation. I would then 
like to discuss how Hamiltonian quantum mechanics could be 
an approximation to this more general framework appropriate 
because of the classical spacetime of the late universe [16]. 

A history in cosmology is a cosmological four-geometry 
with a four-dimensional matter field configuration upon it. An 
example is the classical Friedman evolution of a closed uni- 
verse from the big bang to a big crunch. In quantum mechanics 
all the possible histories, classical and non-classical, must be 
assigned amplitudes. Classical or non-classical, cosmological 
histories may be thought of as successions of three-dimensional 
geometries. The Friedmann universe is a three-sphere expand- 
ing and contracting according to the Einstein equation. Non- 
classical histories can have arbitrarily varied histories of expan- 
sion and contraction. Thus, cosmological histories may be 
thought as paths in the superspace of three-geometries and 
three dimensional matter configurations (Fig. 4). 

One natural way of defining a coarse graining of cos- 
mological histories is to utilize a family of regions in super- 
space, {&}, and partition the paths according to how they 
pass through them. A history which passes through, say each 
of three regions at least once has at least spacelike surfaces 
with geometries and matter field configurations specified to 
Physica Scripta T36 

Fig. 4. Superspace. A cosmological history is a four-dimensional cosmo- 
logical spacetime with matter fields upon it. A two dimensional representation 
of such a history is shown in the upper left of this figure proceeding from a big 
bang to a big crunch. A cosmological history can be thought of as a succession 
of three-dimensional geometries and spatial matter field configuration. Super- 
space is the space of such three-dimensional geometries and matter field 
configurations. A “point” in superspace is a particular three-geometry and 
spatial matter field configuration. The succession of three-geometries and 
matter fields that make up a four-geometry and field history, therefore, trace 
out a path in superspace. 

an accuracy determined by the sizes of the regions. A set of 
regions defines a partition of the paths into exhaustive and 
exclusive classes. For example, with two regions there is the 
class of paths which go through both regions at least once, the 
class of paths which go through the first region at least once 
but never the second, the class which goes through none of 
the regions, and so forth. A sum-over-histories decoherence 
functional on the various classes {h}  defining such a coarse- 
grained set is then naturally constructed as follows: 

D(h,  h’) = /h,y w 4  / K , w  W64’  exp {@k, 41 - w, 4”h) 
(6.1) 

The sum over (g, 4)  is over histories which start from 
prescribed initial conditions (say, the “no boundary” 
proposal) and proceed through regions {Ra as specified by 
the class h to a final condition representing complete ignor- 
ance. The sum over w, 4’) is similarly over histories in the 
partition h’. The initial density matrix and the final &function 
which occur in other sum-over-histories expressions like (2.4) 
are here expressed in terms of conditions on the paths, %‘. 
With appropriate conditions, this construction satisfies the 
requirements for a decoherence functional discussed above. 
With this decoherence functional the fundamental formula 
(5.2) can be used to identify decoherent sets of histories and 
assign them probabilities which obey the rules of probability 
theory to the level that decoherence is enforced. 

There is, in general, no possible choice of time variable 
such that this quantum mechanics of spacetime can be put 
into the Hamiltonian form. For that to be the case we would 
need a time function on superspace whose constant time 
surface the histories cross once and only once. There is none. 
Put differently, there is no geometrical quantity which 
uniquely labels a spacelike hypersurface. The volume of the 
universe, for example, may single out just a few surfaces in a 
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classical cosmological history, but in quantum mechanics we 
must consider all possible histories, and a non-classical his- 
tory may have arbitrarily many surfaces of a given volume. 

However, while we do not recover a Hamiltonian formu- 
lation precisely and generally we may recover it approxi- 
mately for special coarse grainings in restricted domains of 
superspace and particular initial conditions. Suppose for 
example, the the initial condition was such that for coarse 
grainings defined with sufficiently unrestrictive regions, in a 
regime of three-geometries much larger than the Planck scale, 
only a single spacetime geometry 2 contributed to the geo- 
metrical sums (5.1) defining the decoherence functional. Then 
we would have 

w, h’) = jh,‘6 64 jw,w 64’ exp W E ,  41 - SE, 4”. 
(6.2) 

This decoherence functional defines the quantum mechanics 
of a field theory of q5 in the background spacetime 2. Any 
family of spacelike surfaces in this background picks out a 
unique field configuration since the sums are over fields which 
are single-valued on spacetime. There is a notion of causality, 
and we recover a sum-over-histories expression of the field 
theory of 4 in the background spacetime 2 in a particular 
initial cosmological state. This does have an equivalent 
Hamiltonian formulation. 

It could be in this way that the familiar Hamiltonian 
framework quantum mechanics emerges an approximation 
appropriate to the existence of an approximate classical 
spacetime - an approximation which is not generally valid 
in quantum theories, but appropriate to our special place late 
in a universe with particular initial conditions. 

7. Conclusions 
In the history of physics, ideas that were once seen to be 
fundamental, general, and inescapable parts of the theor- 
etical framework are sometimes later seen to be consequent, 
special, and but one possibility among many in a yet more 
general theoretical frameowork. This is often for the follow- 
ing reason: The idea was not a truly general feature of the 
world, but only perceived to be general because of our special 
place in the universe and the limited range of our obser- 
vations [ 171. Examples are the earth-centered picture of the 
solar system, the Newtonian notion of time, the exact status 
of the laws of the thermodynamics, the Euclidean laws of 
spatial geometry, and classical determinism. In veiw of this 
history, it is appropriate to ask of any current theory “which 
ideas are truly fundamental and which are ‘excess baggage’ 
that can be viewed more successfully as but one possibility 
out of many in a yet more general theoretical framework?” In 
cosmology it is especially appropriate to ask this question. 
We live in a special position in the universe, not so much in 
place, as in time. We are late, living ten and some billion years 
after the big bang, a time when many interesting possibilties 
for physics could be realized which are not easily accessible 
now. Moreover, we live in a special universe whose smooth, 
perhaps comprehensible, initial condition is but one of the 
many we could imagine. 

This lecture has advanced the point of view that there are 
two features of common quantum mechanics usually taken to 
be fundamental that may be special, approximate, emergent 
features of the late epoch of a universe with our kind of initial 

condition. These are the “quasiclassical domain” of familiar 
experience and the Hamiltonian framework of quantum 
mechanics with its preferred time variable. Before the Planck 
time there are unlikely to have been classically behaving 
variables of any sort. In particular it is unlikely for there to 
have been a classically behaving background spacetime to 
supply the preferred time of Hamiltonian quantum mech- 
anics. However, although a “quasiclassical domain”, so 
central to the Copenhagen interpretations of quantum 
mechanics, may not be a general feature of all epochs of all 
universes it may be seen as an approximte feature of the late 
epoch of this universe in a more general post-Everett formu- 
lation. Hamiltonian quantum mechanics, with its preferred 
time, may not be the most general formulation of quantum 
mechanics, but it may be an approximation to a more general 
sum-over-histories formulation appropriate to the late 
epochs of a universe, like ours, whose intial condition implies 
classical spacetime there. 
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