
Foundations of Physics, VoL 16, No. 6, 1986

Computability and Physical Theories

Robert Geroch 1 and James B. Hartle 2

Received August 22, 1985

The familiar theories o f physics have the feature that the application o f the theory
to make predictions in specific circumstances can be done by means o f an
algorithm. We propose a more precise formulation of this feature--one based on
the issue of whether or not the physically measurable numbers predicted by the
theory are computable in the mathematical sense. Applying this formulation to one
approach to a quantum theory o f gravity, there are found indications that there
may exist no such algorithms in this case. Finally, we discuss the issue o f whether
the existence o f an algorithm to implement a theory should be adopted as a
criterion for acceptable physical theories.

"Can it then be that there is... something of use for unraveling the universe to be
learned from the philosophy of computer design?"

- - J . A. Wheeler I~l

I. I N T R O D U C T I O N

The process of making predictions in physics involves two steps. The first is
the formulation of a theory covering a broad class of phenomena; the
second, the application of that theory to the specific circumstances of
interest. For making predictions of the motion of the planets of our solar
system, for example, the first step is the formulation of Newton's theories of
mechanics and gravitation; the second the solution of a system of many
dozens of ordinary differential equations. These two steps are rather dif-
ferent in character. The first involves the selection, from a wide variety of
phenomena, of those one judges to have a common cause, and then the for-

Enrico Fermi Institute, Chicago, Illinois 60637.
2 Depar tment of Physics, University of California, Santa Barbara, California 93106.

533

0015-9018/86/0600-0533505.00/0 © 1986 Plenum Publishing Corporation
825/16/6-3

534 Geroch and Hartle

mulation of a mechanism for how that cause is to operate. The test of a
good theory is its simplicity and breadth. The second step involves the
selection of a specific algorithm by which to extract from the theory its
implications. The test of a good algorithm is its convenience.

What underlies our confidence that physics can be structured in this
way? Perhaps it is primarily our experience with present-day physical
theories. In both classical and quantum physics, the theory culminates in
the formulation of differential equations, while the implementation of the
theory consists of selecting some algorithm--of which there are many--for
solving the equations. But not all theories of physics need be of this type.
We may someday in physics be confronted with a situation in which the
line between the theory and its implementation is not so shart~-in which
the activity of applying the theory is not so different from that of finding
the theory in the first place. Specifically, we may reach a point at which
there exist no algorithms whatever for applying a theory mechanically to
specific circumstances. Indeed, there are suggestions that, with quantum
gravity, we may already be at this point.

John Wheeler has stressed on several occasions (1'2) the relation
between physical laws, computation, and logic. Here, on the occasion of his
75th birthday, we discuss certain possible formulations of, and attitudes
toward, these issues. Section 2 is a review of mathematics. We briefly sum-
marize the notion of solvability, by computer, of a mathematical problem,
and the closely related notion of a computable number. Section 3 involves
physics. We propose, in parallel with the notion of a computable number in
mathematics, that of a measurable number in a physical theory. The
question of whether there exists an algorithm for implementing a theory
may then be formulated more precisely as the question of whether the
measurable numbers of the theory are computable. We argue that the
measurable numbers are in fact computable in the familiar theories of
physics, but there is no reason why this need be the case in order that a
theory have predictive power. Indeed, in some recent formulations of quan-
tum gravity as a sum over histories, there are candidates for numbers that
are measurable but not computable. In Sec. 4, we speculate as to the con-
sequences for physics should there be accepted a theory having measurable
numbers that are not computable. We suggest that such a theory should be
no more unsettling to physics than has the existence of well-posed
problems unsolvable by any algorithm been to mathematics.

But, in the spirit of many of John Wheeler's papers, we aim more to
raise issues and stimulate discussion than to state conclusions.

Computability and Physical Theories 535

2. COMPUTABILITY

Computability theory deals with the issue of whether certain well-
posed mathematical problems can be solved by means of a digital com-
puter. The key result is a theorem to the effect that one particular problem
cannot be solved in this way. From this theorem, one shows unsolvability
of a variety of other problems, including that of finding rational
approximations to certain real numbers. These are called the noncom-
putable numbers. We briefly summarize this subject below. 3

We begin with a few ground rules. First, we wish to deal only with
digital computers, and not with analog, for we are concerned for the
moment only with mathematics, and not with physics. We are interested
only in what is possible in principle with such computers, and not in such
issues as efficiency or speed. Fix some finite character set, e.g., the standard
one of 256 characters. By a string, we mean a finite sequence of characters.
Thus, while each string is itself finite, there is no overall upper limit to the
allowed lengths of strings. The computer is to have access to an infinite
number of memory locations, each capable of holding a string. All these
locations are to be blank initially, in order to avoid a situation in which
"the answer to the problem" is already encoded, from the beginning, in the
memory. The language of the computer is to consist of the specification of
certain allowed strings, called the instructions in that language. Of course,
not every possible string need be an instruction. A program in the language
consists of a finite sequence of instructions. We may represent a program
by placing its instructions one after another to form a single long string.
Again, not every possible string need be a program. Finally, we demand of
the language that it include at least the following three instructions: (i) an
input instruction, which temporarily interrupts the running of the program
while the user reads in, for possible later use in the program, any string, (ii)
a print instruction, which causes the computer to display to the user any
string produced by the program, and (iii) a halt instruction, which causes
the program to cease execution.

The above is an outline of the types of languages we have in mind. In
practice, there are numerous specific languages in which computer
programs are commonly written, e.g., Fortran, Basic, Pascal, Cobol, and
various machine languages. One might think that whether a problem can
be solved by a computer program will depend on the language in which
that program is to be written. But, at least for these specific languages, this
is not the case: A problem that can be solved in any one of these languages

3 For a more detailed and rigorous treatment of this material, see, for example, Ref. 3.

536 Geroch and Hattie

can be solved in any other. Consider, for example, Pascal and Basic. One
could write a program in Basic that "imitates Pascal", i.e., that takes a
sequence of Pascal instructions, determines for each what would be done in
Pascal, and then does precisely that. Any problem solvable in Pascal is
thus solvable in Basic, and similarly for other combinations of these stan-
dard languages.

Since, in the sense above, the language is irrelevant, let us fix once and
for all a language, and call it "Fortran," with the understanding that this
word can be regarded as standing for any of the others. What problems can
be "solved" by a Fortran program? The idea is to specify in some detail
what one wants one's program to do, and then to determine whether or
not there exists such a program.

Consider, as an example, Fermat's conjecture: that there exist no
positive integers x, y, z, and n, with n ~> 3, such that xn+ y " = z n. Does
there exist a Fortran program that prints "true" if Fermat's conjecture is
true, or "false" if it is false, and then halts? The answer to the question,
stated in this way, is yes. Indeed, consider the program, with just two
instructions, that merely prints "true" and halts; and a second program
that prints "false" and halts. Since Fermat's conjecture is either true or
false, one of these is the desired program. So, there does indeed exist a

program that does what we have asked. Similarly, any well-posed "yes-or-
no" problem is solvable. One might be tempted to reformulate the question
so that its answer requires the specification of which is the desired program.
But it turns out to be difficult to do this in a precise way.

Clearly, the more interesting problems are those that are actually a
sequence of problems. For example: Does there exist a program having a
single input instruction such that, when any integer n is read in, the
program prints "prime" or "not prime" according to whether that integer is
prime or not, and then halts? The answer of course is yes: Most computer
users have written such a program. So, in this sense, the problem of deter-
mining whether or not a number is prime is solvable. Similarly, there exists
a program that continues to print out the successive digits in the decimal
expansion of ~r, never halting.

As a final example, we return to Fermat's conjecture, but this time
with a different question. Does there exist a Fortran program having a
single input instruction such that, when any integer n >~ 3 is read in, the
program prints "yes" or "no" according to whether or not there are
positive integers x, y, and z with xn+ y n = z n, and then halts? Since Fer-
mat's conjecture is open, we certainly are not in possession of such a
program, l i t would not do, for example, to have one's program merely try
various combinations of x, y, and z, for then, were n such that there are no
suitable combinations, the program would never halt.] Indeed, it is even

Computability and Physical Theories 537

unclear whether or not there exists such a program. 4 There does, for exam-
ple, if Fermat's conjecture is true (namely, the program that always prints
"no" and halts), or if the conjecture is false for all but a finite number of n
(namely, the program that compares the n read in with this finite number
of candidates). But what if the n's for which the theorem fails are more
"scattered"?

The key theorem in this subject displays an explicit example of a
problem that cannot be solved by any program. It is convenient, for this
discussion, to introduce the term monoprogram to mean a program having
a single input instruction. The problem is to determine, given any
monoprogram and the string we intend to read in for its input, whether
that monoprogram will ultimately halt. In more detail, consider a program
X, having just two input instructions and operating as follows. Let, for the
first input instruction, there be read in the string representing a
monoprogram P, and for the second, an arbitrary string S. Then J(itself
must always halt, having printed "halts" or "does not halt" according to
whether or not the monoprogram P, with string S read in for its input,
halts or not. [-Should the first string read in to X not represent any
monoprogram, then X can do anything.] It is instructive to attempt to
write, say, for Fortran, such a program X. One first thinks of various sim-
ple arrangements by which P, with S read in, might halt, and so writes X
to look for those arrangements. But one continually discovers ever more
complicated ways by which P might halt, and so the program X becomes
more and more complicated. Eventually, with no end in sight, one gives up
in frustration.

There exists no such program X. The proof is simple, but subtle. Sup-
pose, for contradiction, that there were such an X. Construct from it the
following monoprogram P. When string S is read in for its input, P merely
runs program X, reading in string S for both of X's inputs. Then P waits
patiently for X to finish. If X would have printed "halts," then P goes into
an infinite loop, never halting; while if X would have printed "does not
halt," then P halts. Thus, given program X one could, by merely changing
a few of its instructions as indicated above, write this program P. Now run
program P, but, for its input string, read in the string representing the
program P itself. Will P so run halt or not halt? Either answer gives a con-
tradiction. Suppose, for example, that P, with the string representing P
read in, halts. This means, from the way P was constructed, that X, with
the string representing P read in for both its inputs, will print "does not
halt." But this in turn means, from the way X is supposed to operate, that

4 Fo r purposes of this i l lus t ra t ion, we ignore the recent resul t tha t Fe rmat ' s conjecture holds
for all bu t a t mos t a finite m e m b e r of n. See Ref. 4.

538 C, eroch and Hattie

P, with the string representing P read in, does not halt a contradiction.
Similarly for the alternative supposition. This contradiction establishes in
turn that the desired program X does not exist. This result is called the
halting theorem.

Note that the halting theorem asserts only that there is no general
algorithm (i.e., n6 program X) for deciding whether or not programs halt.
There need not be any specific program such that the issue of whether or
not that program halts is undecidable. Indeed, in the formal sense there
cannot be, for whether a specific program halts is a "yes-or-no" question.
Imagine that one's job consists of receiving from one's employer a
monoprogram and a string, and then trying to decide whether or not that
program, with that string read in, halts. The first few cases turn out to be
quite easy. Then one day one receives a more difficult case; but, after a
month's work, devises a most clever solution. This new method works for
the next few cases. But eventually one will receive a case requiring a new,
still more clever, solution. The halting theorem states in essence that this
job will never become routine-- that new and ever more clever solutions
will always be required.

It is of interest to see the role played in the halting theorem by the
language being used. Clearly, the particular language--provided only that
it has the three basic instructions--is irrelevant. But it is crucial that the
program X be written in the same language as are the programs P that X
tests. Consider, for example, the simplest possible language---that having
just the three instructions "input," "print," and "halt." Then the halting
theorem in this case asserts that no program X written in this simple
language can solve the halting problem for programs written in this same
language. One sees directly that this is true, for programs in this simple
language cannot "branch." Suppose, however, that one allows the program
X to be written in Fortran. There does exist a Fortran program X that will
solve the halting problem for programs P written in our simple language.
[Program X merely checks whether or not program P includes a "halt"
instruction.] But, by the halting theorem, no Fortran X will solve the
halting problem for Fortran P's. Next, imagine a language that is essen-
tially Fortran, but having an instruction of the form "Do, for I = 1 to ~ , "
with appropriate modifications to incorporate this into the rest of the
language. One can write a program X in this "super-Fortran" that solves
the halting problem for ordinary Fortran programs P. [Program X
basically asks whether P has halted after I steps, for " I = 1 to ~ . "] But
again no such X will solve the halting problem for programs P also written
in "super-Fortran."

While one can imagine the action of "super-Fortran" language, it is
much more difficult to see how one might build a physical computer that

Computability and Physical Theories 539

actually runs programs in this language. To execute "Do, for I = 1 to oc" in
the traditional way would require performing an infinite number of steps in
finite time. Indeed, to go one step further, it is difficult to see how a n y

language that could actually be run on a physical computer could do more
than Fortran can do. The idea that there is no such language is called
Church's thesis. 5 Thus, under Church's thesis, there is a universal notion of
an "algorithm"--of "the most that can be done on a physical com-
puter"--and this notion is correctly captured by standard computer
languages. The role of the thesis, then, is to give technical results of the
form "... cannot be solved by a Fortran program" the broader meaning
"... cannot be solved by any algorithm."

Since we shall shortly be concerned with physics, it is convenient to
reexpress the above in terms of the objects with which physics deals:
numbers.

A real number w is said to be c o m p u t a b l e if there exists a (Fortran)
program with a single input instruction such that, when any positive
rational number e is read in, the program prints some rational number r
with] w - rl < ~ and then halts. Thus, a number is computable if there is an
algorithm that generates rational approximations to the number.
[Rationals are used in the definition because they can be "finitely dis-
played."] So, for example, the number n is computable. Indeed, it is easy to
write out an appropriate program in detail, using, e.g., a power-series
expansion for n. Similarly, n e sin x/2--and, in fact, any other number one
can think of offhand--is computable.

That there must exist noncomputable numbers is easily seen, for the
cardinality of the set of Fortran programs (that of the integers) is smaller
than the cardinality of the set of real numbers. In fact, one can give an
"explicit example" of such a number. Fix once and for all an ordering (first,
second, etc.) for pairs consisting of a monoprogram and a string. [-One
might, for example, first fix an ordering for the (finite) character set. Then
apply dictionary ordering to those pairs for which the program and string
combined have just one character, then to those having just two, etc.] Now
consider the following number:

K = ~. ~,3 ~ (1)
n = l

where en is one if the nth monoprogram with string (in the ordering above)
halts, and zero if it does not. This sum, since it necessarily converges, cer-
tainly defines a number--in fact, one between 0 and 1. We now claim that
this number K is not computable. Indeed, suppose that there did exist a

5 For further discussion of the physical l imitations on computing, see, e.g., Ref. 5.

540 Geroch and Hartle

program P to compute it, as above. Then we would immediately have a
solution to the halting problem: If you wish to determine whether the nth
monoprogram with string halts, merely read in to P the value e = 3 n ~,
and, from the rational approximation to K then printed by P, determine
whether or not the appropriate term appears in the sum (1). It thus
follows, in light of the halting theorem, that K is not computable. More
generally, this strategy can always be applied to make the transition
between "whether there exists a program to answer a sequence of yes-or-no
questions" and "whether a certain number is computable."

It is curious that, while the number K above is not computable as we
have defined that term, it is "determinable" in a somewhat weaker sense.
We claim: There exists a program that successively prints out an increasing
sequence of rational numbers, never halting, such that this sequence con-
verges to K. Construct such a program as follows. Fix an integer, say 10.
Let our program write out the first ten monoprograrns and strings, run
each of these programs for just ten steps, and then evaluate the sum of the
first ten terms in (1), letting ~n be 1 if the corresponding program has
halted in ten steps, zero otherwise. This is the first rational approximation.
The successive approximations are obtained by increasing the integer, say,
to 100, then 1,000, etc., and repeating the process. There clearly results an
increasing sequence of rational numbers converging to K. Note that this
program does less than would be required to show K computable, for we
do not know at any stage how close the "rational approximation" is to K.
If, for example, the first monoprogram required 1017 steps before halting,
then our sequence of rationals would "jump upward" by about 1/3 very far
along in the sequence. Note also that there can exist no program that
prints out a decreasing sequence of rationals converging to K, for the
existence of programs yielding both decreasing and increasing sequences
would imply that K itself is computable.

We emphasize that computability is an attribute of the number itself,
and not how that number is presented. Thus, for example, the number K
given by Eq. (1) must be irrational, for every rational number is com-
putable. As a further illustration of this point, consider the number

M= ~ 3-"/L(n) (2)
n = l

where L(n) is the number of steps taken by the nth monoprogram and
string before it halts (or "infinite," i.e., omit the corresponding term in (2),
if the program does not halt). Is the number M computable? One might
think of writing, along the following lines, a program to provide rational
approximations to M. The program would first determine how many terms

Computability and Physical Theories 541

in the sum (2) would be required to approximate M to within the given
allowed error e, would then determine the corresponding L(n), and would
finally take the sum of those terms. But this strategy must fail, for, by the
halting theorem, there is no program that will determine the L(n). Yet,
despite this failure, the number M is actually computable! A program that
shows this is the following. In order to approximate M to within error, say,

= 1/100, it suffices to deal only with the first ten terms in the sum (2),
and, even for these, only either to determine L(n) or else ensure that it
exceeds 1,000. So, given e = 1/100, our program merely runs the first ten
monoprograms with strings for 1,000 steps each, letting L(n) be infinite for
any monoprogram that has not by then halted. Similarly for other e. Thus,
a number may appear to be noncomputable by virtue of the way it is
presented, and yet turn out to be computable by appeal to some more
sophisticated algorithm.

3. MEASURABILITY

Imagine a physical theory whose prediction, for the result of some par-
ticular experiment, is the noncomputable number K of Eq. (1). The theory
has thus made a perfectly definite prediction, for K is merely some specific
number. Imagine next that we wish to test this prediction. We do so in the
usual way: Select some desired accuracy e, carry out the experiment to
within that accuracy, and then check to see whether the number that
results from the experiment is within e of K. But, in actually carrying out
this test, we would be confronted by the following difficulty: There exists
no algorithm to determine whether a given number is within ~ of K--for
this is the essence of K's being noncomputable. Of course, it is nonetheless
possible to test the theory--and to do so to arbitrary accuracy. The point
is only that the test cannot be carried out mechanically: Each new level of
accuracy will require new ideas for the testing procedure. We regard this as
the prototype of the situation in which a theory has no algorithm for its
implementation. In this section, we formulate this issue more precisely. In
the following section, we discuss possible consequences for physics should
such a theory come to be accepted.

The key step is the identification of the experimentally determinable
numbers that emerge from the theory--what we shall call the measurable
numbers of the theory. This having been done, the issue of whether a
theory can be mechanically applied can be stated thus: Are all measurable
numbers of the theory computable? It turns out that "measurable number"
must be formulated with some care, in particular to ensure that we thus
distinguish only the final physical predictions of the theory, not numbers

542 Geroch and Hartle

from intermediate calculations. As a consequence, this term must be given
a meaning slightly more restrictive than its common one.

Regard number w as measurable if there exists a finite set of instruc-
tions for performing an experiment such that a technician, given an abun-
dance of unprepared raw materials and an allowed error e, is able by
following those instructions to perform the experiment, yielding ultimately
a rational number within e of w. "Measurable" is analogous to, although of
course much less precise than, "computable." The technician is analogous
to the computer, the instructions to the computer program, the "abun-
dance of unprepared raw materials" to the infinite number of memory
locations, initially blank. Indeed, one can think of the measurable numbers
as those that are "computable" using an analog, rather than a digital,
computer. 6 A few examples will illustrate what we have in mind.

The number n is measurable. Suitable instructions for this case might
direct that a metal disk be turned on a lathe, that measurements of its
circumference and diameter be taken, and that their ratio be computed.
Of course, the care with which the disk is to be constructed, and with
which the measurements are to be taken, would be dictated by the allowed
error e.

The number e 1/2 is measurable. Suitable instructions might direct that
a projectile be released in a viscous fluid, that measurements be taken of
the distance dl the projectile has traveled when it slows to half its initial
speed as well as the ultimate distance traveled d2, and that the combination
d2/(d 2 - dl) be computed. Why would not a similar argument show that
e K, where K is the number given by Eq. (1), is measurable? It is only
necessary to replace in the instructions "half ' by "a fraction K." But these
modified instructions would not be regarded as acceptable, for, since K is
not computable, it would not be possible for the technician to perform the
experiment by merely "following instructions."

The ratio of the energies of two given levels in the helium atom is
measurable. Suitable instructions might direct that there be constructed
helium atoms, and that the transition energies be measured with
appropriate care.

The fine structure constant is measurable. Suitable instructions 7 might
direct that there be measured the wavelengths of the photons emerging
from positronium decay as well as that of the lowest energy photon that

6 For other connections between digital computers and the natural "analog" world, see Ref. 6.
The thesis raised in these papers is that limitations on the power of digital computers are
universally applicable to their analog counterparts and so can be used to place limitations
on the behavior of physical systems. We are not directly concerned with this issue here.

7 See Ref. 7 for this and other methods of measuring a.

Computability and Physical Theories 543

will ionize hydrogen in its ground state, and that the square root of twice
the ratio of these wavelengths be computed.

The meaning of "unprepared raw materials" is illustrated by the
following example. Place two metal rods on a table: Do the obvious
instructions show the ratio of their lengths to be measurable? We contend
not, for two carefully calibrated rods are hardly "unprepared." Were we to
allow such examples, then clearly any number would be measurable.
Measurable numbers are to be those that flow from the operation of
physical laws, not from mere initial conditions. The analogous requirement,
in the computable case, is that all memory locations initially be blank.
Otherwise, any number would be computable. The lathe used to turn the
disk in the first example above does not constitute "prepared raw
materials," for one could build a lathe from scratch. The Earth-Moon mass
ratio would not be regarded as measurable, since the Earth-Moon system
is "prepared." But we would regard as measurable the proton-electron
mass ratio.

All numbers in physics are essentially dimensionless, for even for
example an elapsed time reported in seconds merely gives the ratio between
that elapsed time and the elapsed time that is the standard second. But, for
the issue of measurability, the choice of standard is important. If, for exam-
ple, the standard second is 1/86,400 of the mean solar day, then instruc-
tions reporting times in these units would not be acceptable, for the
experiment involves "prepared" raw materials. But this problem does not
arise if the standard second is the time of 9, 192, 631,700 vibrations of a
certain hyperfine transition in Cs 133. It is curious that most such
"unprepared" standards arise via quantum mechanics.

It is intended that "measurable" be an attribute of the number itself,
and not of how that number is presented. Thus, a given number is either
measurable or it is not, the instructions merely serving (as does the com-
puter program in the computable case) to show it measurable. Consider,
for example, instructions that direct the technician to work with an
unstable system, so the number finally reported varies wildly from one run
to the next. There is no number that these instructions show to be
measurable. This is analogous to a Fortran program that prints rationals
that vary wildly from one e to the next. There is no nv~mber that this
program shows to be computable.

The notion "measurable" involves a mix of natural phenomena and
the theory by which we describe those phenomena. Imagine that one had
access to experiments in the physical world, but lacked any physical theory
whatsoever. Then n o number w could be shown to be measurable, for, to
demonstrate experimentally that a given instruction set shows w
measurable would require repeating the experiment an infinite number of

544 Geroch and Hartle

times, for a succession of e's approaching zero. One could not even
demonstrate that a given instruction set shows measurability of any num-
ber at all, for it could turn out that, as e is made smaller, the resulting
sequence of experimentally determined rationals simply fails to converge. It
is only a theory that can guarantee otherwise. The situation is analogous to
that of trying to demonstrate that a given Fortran program shows some
number to be computable. There is no general algorithm for deciding this.
In particular, it would not do merely to run the program for a few selected
values of e.

So, "The number w is measurable." is basically a statement about the
theory within which we are working, and only indirectly--only to the
extent that the theory correctly describes the physical world--a statement
about natural phenomena. Thus, in the example of measurement of ~, the
theory is that of classical continuous elastic solids in Euclidean space.
Classical continuous elastic solids is required to ensure that arbitrarily
accurate measurements can, in principle, be made on the disk (without
interference, for example, from quantum mechanics or atomic structure).
Euclidean geometry ensures that the ratio obtained will be independent of
disk size, and also that n is actually the number to which the
approximations converge. In the example of e 1/2, the theory is that of
viscous fluids, and in particular its prediction of exponential decay. In the
example of the helium atom, the theory is quantum mechanics; in that of
the fine-structure constant, quantum e'lectrodynamics.

Every computable number is measurable. This is easy to see: Let the
instructions direct that the raw materials be assembled into a computer,
and that a certain Fortran program--one specified in the instructions--be
run on that computer. That is, every digital computer is at heart an analog
computer.

We now ask whether, conversely, every measurable number is com-
pu tab le -or , in more detail, whether current physical theories are such that
their measurable numbers are computable. This question must be asked
with care. Consider, for example, the fine-structure constant ~-1. This
number is measurable in quantum electrodynamics, as discussed above. Is

1 computable? The problem is that in quantum electrodynamics the
actual value of ~-1 is not specified by the theory, but rather is left to be
determined by experiment. There is no "number," mathematically specified,
whose computability can be investigated. There is no meaning to be
attached to the statement "~ 1 is computable." [Of course, were quantum
electrodynamics reformulated with ~-1 specified, say to be 137.036
(exactly!), then the computability of the fine-structure constant would be
meaningful.] We are thus led to divide the measurable numbers into two
classes: those assigned specific values by the theory, and those not. For

Computability and Physical Theories 545

example, z, as measured by the disk, and e ~/2, as measured by the viscous
fluid, are clearly assigned values by the theories. The example of the helium
atom is more subtle. If the theory is that of a helium atom with infinite-
mass, pointlike nucleus and no relativistic effects, then the ratio of energy
levels is assigned a specific value by that theory. But a finite mass brings in
the electron-nucleon mass ratio, and relativistic effects the fine-structure
constant, neither of which is assigned a specific value in conventional
theory. Of course, specific values may be assigned in some future theory.

We suggest that the familiar theories of physics are such that all the
measurable numbers specified by these theories are in fact computable. The
following example, representing a "typical" theory whose mechanism is a
differential equation, will support this suggestion. Let the state of the
physical system be characterized by a single variable x, evolving with time
according to the equation 8

~ t = 5(x 2 - t 2) sin(xt) (3)

Let it be the case that a technician, given any allowed error e, is able to (i)
set the system initially in state x within e of any given rational number, and
(ii) wait for time t within e of any given rational number, and then measure
to within e the final state of the system. Then under these ground rules the
measurable numbers of the theory are clearly the following: all numbers of
the form X(to), where to is any computable number and x(t) is the solution
of Eq. (3) with initial condition any computable xo. Are all of these num-
bers computable? This is a purely mathematical question, involving the
character of the solutions of Eq. (3). It turns out that all these numbers are
indeed computable, as one sees by noting that one could integrate Eq. (3)
numerically on a computer. Thus, at least in this model theory, the
measurable numbers are computable. Note that, were the coefficient 5 on
the right in Eq. (3) replaced by a constant 2 not further specified, then the
measurable numbers would not be specified by the theory; and were it
replaced by the noncomputable number of Eq. (1), then the measurable
numbers would not be computable. In a more realistic treatment, the issue
of what the technician can set and what he can measure would be deter-
mined by the interactions in the theory. We note, finally, that a similar
argument applies to field theories governed by hyperbolic equations, 9

8 The right side of Eq. (3) could as well be any smooth "explicit" funct ion--or even some not
so explicit. We here merely select one as an example in order to avoid the issue of what is the
class of allowed functions.

9 For examples of lack of computabili ty in solutions of differential equations, see Ref. 8.

546 Geroch and Hartle

although the technician must for such examples be given considerable
power to control initial conditions.

Thus, we argue, the conventional theories of physics do have the
property that all measurable numbers specified by these theories are com-
putable. Here, then, is at least one sense in which it is true that these
familiar theories can be applied by means of algorithms.

There is a recent example °) in which this issue comes very much to
the fore. Consider one version of quantum gravity for closed cosmologies,
formulated as a sum over histories. An observable in the theory is a
functional, A[f#], of geometries (# on compact 4-manifolds. The expec-
tation value of such an observable in the analog of the ground state is
given, formally, by

~2 A[f#] e x p (- I [f #])
<A) = (4)

2 exp(- I [~])

where I [N] is the Euclidean gravitational action. The sums in Eq. (4) are
over all compact 4-geometries--including in particular all possible
topologies for the 4-manifolds. Now fix a "reasonable" observable A. Is the
number given by Eq. (4) measurable? Is it computable?

As we have seen, even for simple theories the issue of whether a given
number is measurable can be subtle. But this theory is anything but simple,
for the theory purports to provide the quantum description of the entire
Universe. What instructions would allow a technician to "measure" (A) ?
Our understanding of the physics of quantum gravity is not yet to the
point at which we can answer this question. Nonetheless, one expects that
there will be s o m e measurable numbers in the final theory, and such expec-
tation values would seem to be good candidates.

Is (A) computable? Unfortunately, the mathematics of quantum
gravity has not yet been developed to the point that we have a complete
mathematical formulation of what Eq. (4) is to mean. But one possible
meaning that has been proposed involves use of Regge calculus. Fix an
integer n. Consider a simplicial 4-manifold with exactly n vertices. That is,
take n points as vertices, and specify which pairs of vertices are to be con-
nected by an edge, which triples of adjoining edges are to be connected by
a face, which quadruples of adjoining faces are to be connected by a
tetrahedron, and which quintuplets of adjoining tetrahedra are to be con-
nected by a 4-simplex--all such that the resulting space is a topological 4-
manifold. Next, specify numerical values for the lengths of all the edges of
this simplicial 4-manifold. The result is a simplicial 4-geometry f9. We can
now evaluate A[f#] and I[N], and thus one term in each of the sums in
Eq. (4). To evaluate the sums themselves, we proceed as follows: first keep

Computability and Physical Theories 547

the simplicial 4-manifold fixed and integrate over the values of the edge
lengths; and then sum the result over all simplicial 4-manifolds with exactly
n vertices. There results the n-vertex simplicial approximation (A) , a num-
ber we denote (A)n. Finally, take the limit of the (A) , as n goes to
infinity--assuming this limit exists! The result is our candidate for the
expectation value (A) .

This particular meaning for Eq. (4) has the following curious feature.
Imagine an attempt to evaluate the {A)n by computer. One would select
and read in some value for the integer n. The computer would then con-
sider n vertices, and try all combinations of which vertices are to be con-
nected by edges, which edges by faces, etc. From the resulting list of sim-
plicial complexes, the computer would then eliminate all those that are not
4-manifolds. Then, from the resulting list of simplicial 4-manifolds, the
computer would eliminate all duplications---cases in which there is
included more than one simplicial representation of a single 4-manifold.
The computer would then perform, for each simplicial 4-manifold in this
reduced list, the integrations over edge lengths. Finally, the computer
would take the sums over the 4-manifolds. The result would be reported as
~A)n. The curious feature is that there exists no computer that can carry
out this task! The key problem is with the elimination of duplications. It is
known that the issue of whether two simplicial 4-manifolds are
topologically identical is undecidable. The theorem, in more detail, is the
following.l° Let simplicial 4-manifolds be specified by giving the number n
of vertices, which vertices are to be connected by edges, which edges by
faces, etc. This information could be encoded, for example, into a string.
Then: There exists no Fortran program that will accept as inputs two such
strings, ultimately print "same manifold" or "different manifolds" according
to whether the 4-manifolds represented by the strings are topologically the
same or different, and then halt. Further, even the elimination of those sim-
plicial complexes that are not manifolds may be problematic. It appears
likely that the question of whether a simplicial complex is a manifold is
decidable in dimension four, but undecidable in higher dimensionsY °)

All this is not to say that quantum gravity will admit measurable num-
bers that are not computable. The mere fact that one particular strategy for
writing a program to compute the {A)n fails does not mean that the (A)n
are noncomputable. We have seen an example in Eq. (2). Further, even
should the (A)~ turn out to be noncomputable, this does not guarantee
that their limit, {A), is also noncomputable. It is easy to write down
examples of sequences of noncomputable numbers having computable
limits. [The noncomputable numbers are dense in the reals.] It could also

lo Fo r a review of these results, see Ref. 10.

548 Geroch and Hartle

turn out that the meaning ultimately assigned to Eq. (4) is different from
that indicated here. For example, one might simply adopt the rule that
duplications of 4-manifolds are not to be excluded in the sums; or, alter-
natively, the rule that the sums are not to be over different 4-manifolds. It
could turn out that the numbers ultimately measurable in the theory are
quite different from these expectation values. Or, finally, what is ultimately
quantum gravity may bear little resemblance to a sum over simplicial
histories.

Yet quantum gravity does seem to be a serious candidate for a
physical theory for whose application there is no algorithm, tl

4. DISCUSSION

What must be the character of a physical theory in order that it
be regarded as satisfactory? Surely, it must include some mechanism for
making quantitative predictions--for producing, under specified
experimental arrangements, quantities subject to experimental verification.
Otherwise, we would hardly have a "theory." But this is by no means the
only criterion. The familiar theories of physics possess, in addition to
predictive power, such features as simplicity, generality, and elegance.
Historically, these criteria have not always been incidental, for they have
at times played a central role in the search for physical laws. General
covariance is an example--one for which, remarkably, the "criterion"
turned out to be empty!

We here raise the possibility of another type of criterion: that the
theory be such that its predictions can be extracted not merely "in prin-
ciple, possibly by ever higher levels of skill and sophistication," but also "in
practice, mechanically." The criterion, in the present more precise version,
is that all the measurable numbers specified by the theory be computable
numbers. At issue is the status of this criterion.

First note that it may be difficult to decide whether or not a given
theory satisfies this criterion. One mathematical formulation of the theory
may provide no algorithm for implementing the theory, and yet another,
equivalent, formulation does. The physical issue of whether a number is
measurable, as well as the mathematical issue of whether it is computable,
can be a subtle matter. Nevertheless, it should be far more straightforward
to decide whether a theory satisfies this criterion than, for example, to
decide whether a theory is "elegant." It is at least more a question of fact
than of taste.

11 For discussion and other examples of undecidable problems in physics and mathematical
physics, see Refs. 11 and 12.

Computability and Physical Theories 549

In present physical theories, the computability of the measurable
numbers is manifest, so this issue is rarely raised. But now the issue may be
forced upon us, by quantum gravity. There are indications that this theory
may have measurable numbers that are not computable, at least if its
formulation as a sum over simplicial histories is a good guide.

What, then, would be the consequences for physics should there be
accepted a theory whose' measurable numbers are not computable? Fix
some experimental arrangement, and attempt to extract from such a theory
its prediction for that experiment. To predict to within, say, 10%, one
manipulates the mathematics of the theory for a while, arriving eventually
at the predicted number. To predict to within 1%, it will be necessary to
work much harder, and perhaps to invent a novel way to carry out certain
mathematical steps. To predict to 0.1% would require still more new ideas.
The process would be similar to that of trying to compute rational
approximations to the noncomputable number given by Eq. (1). The
theory certainly "makes definite predictions," in the sense that predictions
are always in principle available. It is just that ever increasing degrees of
sophistication would be necessary to extract those predictions. The predic-
tion process would never become routine.

Clearly, this would not be a particularly desirable state of affairs. But
it would seem to be merely an inconvenience--far from a disaster for
physics.

The status of the other criteria for physical theories arose, not through
general arguments, but rather through experience with specific examples.
Whether physical theories will be required to possess some algorithm by
which they can be implemented will presumably be settled by the same
process.

ACK N O W L E DGMENT

Many colleagues gave helpful advice on a preliminary version of this
paper. We are grateful in particular to B. DeWitt, J. Friedman, B. Horne,
G. Horowitz, W. Kohn, A. Komar, G. Kreisel, D. Scalapino, R. Sorkin, M.
Srednicki, and S. Wolfram. This work was supported in part by the NSF.

R E F E R E N C E S

1. J. A. Wheeler, Int. J. Theor. Phys. 21, 557 (1982).
2. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco,

1970).

825/16/6-4

550 Geroch and Hartle

3. A. Yasuhara, Recursive Function Theory and Logic (Academic Press, New York, 1971).
4. G. Faltings, Invent. Math. 73, 349 (1983).
5. Int. J. Theor. Phys. 21, Nos. 3 4 (1982).
6. S. Wolfram, Phys. Rev. Lett. 54, 735 (1985); Sci. Am. 251, 188 (Sept. 1984).
7. B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Mod. Phys. 41, 375 (1969).
8. M. B. Pout-El and I. Richards, Ann. Math. Logic 17, 61 (1979); Adv. Math. 39, 215

(1981).
9. J. B. Hartle, to appear.

10. W. Haken, in Word Problems, W. W. Boone, F. B. Cannonito, and R. C. Lyndon, eds.
(North-Holland, Amsterdam, 1973).

11. A. Komar, Phys. Rev. B 133, 542 (1964).
12. G. Kreisel, Synthese 29, 11 (1974).

