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Copenhagen Quantum Mechanics as an Approximation to

Decoherent Histories Quantum Mechanics

James Hartle

Reproduced here two are modestly edited excerpts from the authors’s lectures [1, 2] con-
cerning the connection between decoherent histories quantum theory and the Copenhagen
formulation of the quantum mechanics of measurement situations that is typically found
in contemporary textbooks. A rudimentary knowledge of decoherent histories quantum me-
chanics and its notation is assumed such as can be found in [1]. The equation numbering
corresponding to the original source has been preserved. The references have not ben up-
dated.

Copenhagen (textbook) quantum mechanics predicts the probabilities of the histories of
measured subsystems. Measurement situations can be described in a closed system that
contains both measured subsystem and measuring apparatus. In a typical measurement
situation the values of a variable not normally decohering become correlated with alternatives
of the apparatus that decohere because of its interactions with the rest of the closed system.
The correlation means that the measured alternatives decohere because the alternatives of
the apparatus with which they are correlated decohere.

The recovery of the Copenhagen rule for when probabilities may be assigned is immedi-
ate. Measured quantities are correlated with decohering histories. Decohering histories can
be assigned probabilities. Thus in the two-slit experiment (Figure 1) , when the electron in-
teracts with an apparatus that determines which slit it passed through, it is the decoherence
of the alternative configurations of the apparatus that enables probabilities to be assigned
for the electron.

As far as we know, the predictions of Copenhagen quantum mechanics are correct in its
domain of applicability — measurements. Copenhagen quantum mechanics is not opposed to
the decoherent histories quantum mechanics of closed systems. Rather Copenhagen quantum
mechanics is an approximation to the more general framework . It is an approximation that
is appropriate in the special cases of measurement situations and when the decoherence of
alternative configurations of the apparatus may be idealized as exact and instantaneous.
However, while measurement situations imply decoherence, they are only special cases of
decohering histories. Probabilities may be assigned to alternative positions of the moon and
to alternative values of density fluctuations near the big bang in a universe in which these
alternatives decohere, whether or not they were participants in a measurement situation and
certainly whether or not there was an observer registering their values.

In conventional discussions of measurement in quantum mechanics it is useful to consider
ideal models of the measurement process (See, e.g. von Neumann [3] London and Bauer
[4] , Wigner [5] or almost any current text on quantum mechanics). Such models idealize
various approximate properties of realistic measurement situations as exact features of the
model. For example, configurations of an apparatus corresponding to different results of an
experiment are typically represented by exactly orthogonal states in these models. This kind
of ideal model is useful in isolating the essential features of many laboratory measurement
situations in an easily analyzable way. Ideal measurement models are useful in quantum
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FIG. 1: A model closed quantum system containing an observer together with the necessary

apparatus for carrying out a two-slit experiment. The observer can decide to measure whether

the electron went through the upper slit by lowering a detector in front of it. Alternatives for the

system include whether the observer measured which slit the electron passed through or did not,

whether the electron passed through the upper or lower slit, the alternative positions of arrival of the

electron at the screen, the alternative arrival positions registered by the apparatus, the registration

of these in the brain of the observer, etc., etc., etc. Each exhaustive set of exclusive alternatives

is represented by an exhaustive set of orthogonal projection operators on the Hilbert space of

the closed system. Time sequences of such sets of alternatives describe sets of alternative coarse-

grained histories of the closed system –deciding to measure, running the expeiment, recording the

result, etc. Quantum theory assigns probabilities to the individual alternative histories in such a

set when there is negligible quantum mechanical interference between them, that is, when the set

of histories decoheres. A more refined model might consider a quantity of matter in a closed box.

One could then consider alternatives such as whether the box contains a two-slit experiment, as is

assumed here, or contains something else.

cosmology for the same reasons. They are useful in indicating how the Copenhagen formu-
lation of quantum theory can be derived as an approximation to the quantum mechanics of
the universe described here.

Consider a closed system one part of which is a subsystem to be studied and the rest of
which can be organized into various types of measuring apparatus. The latter includes any
“observer” that may be present. Corresponding to this division, we assume a Hilbert space
that is a tensor product, Hs ⊗Hr, of a Hilbert space for the subsystem and a Hilbert space
for the rest. We assume an “initial condition” that is a product of a density matrix for the
subsystem in Hs and another for the rest in Hr

ρ = ρs ⊗ ρr . (II.10.1)

Various sets of yes-no alternatives for the subsystem are represented by exhaustive and
exclusive sets of projection operators {Skα(t)}, α = 1, 2, 3, · · · . Their Schrödinger picture
representatives are of the form Skα = skα ⊗ Ir where the skα are a set of projection operators



3

acting on Hs. Of course, since the subsystem and the rest are interacting, the Heisenberg
picture representatives Skα(t) will not in general have this product form. The various possible
configurations of an apparatus which measures the set of alternatives {Skα(t)} are described

by an exhaustive set of alternatives for the rest {R(k,τ)
β (t)}, β = 1, 2, 3 · · · . The operator

R
(k,τ)
β (t) corresponds to the alternative that the apparatus has recorded the alternative β

for the subsystem studied in the set k at time τ . We can ask about the value of this record

at any time and so R
(k,τ)
β (t) itself depends on t. For example, we could ask whether the

record of the result of the measurement persists. The S’s and the R’s at the same time are
assumed to commute with one another.

Two of the three crucial assumptions defining the ideal measurement model are the
following:

i. Correlation: The alternatives {Skα(t)} and {R(k,τ)
β (t)} are exactly correlated, that is

Tr
[
R
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n
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(tn) · · ·R(1,t1)

β′
1
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1
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1
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]
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nβ

′
n
· · · δα′

1β
′
1
δα1β1 · · · δαnβn . (II.10.2)

This is an idealization of the measurement situation correlations discussed in the previous
section. The existence of such correlations is not inherent in the properties of the operators
{Skα(t)} and {Rk

α(t)}. Their existence depends also on the Hamiltonian and on choosing an
initial ρ that models an experimental preparation of apparatus and subsystem and which
will lead to a measurement situation. We assume in the model that we have a ρ and H of
this character.1

ii. Persistent Records: We assume that, as a consequence of ρ and H, distinguishable,
persistent, non-interacting records form of the results of the measurements of the various

times t. The R
(k,τ)
β (t) describe the alternative values of these records at time t. More

precisely we assume that if t2 > t1 are any two times later than τ then these operators have
the property

Tr
[
· · ·R(k,τ)

β′
2

(t2) · · ·R(k,τ)

β′
1

(t1) · · · ρ · · ·R(k,τ)
β1

(t1) · · ·R(k,τ)
β2

(t2) · · ·
]
∝ δβ′

2β
′
1
δβ1β1 , (II.10.3)

where the elipses (· · · ) stand for any combination of R’s and S’s in the correct time order.
That is, the record projections effectively commute with all other projections at time t > τ .
Eq. (10.3) is the statement that values of the records at later times are exactly correlated
with those of earlier times. An assumption like (10.3) is not needed if only one measurement
situation at one time is to be discussed, as is common in models of the measurement process.
It is needed for discussions of sequences of measurements, as here, to ensure that subsequent
interactions do not reëstablish the coherence of different measurement alternatives.

The questions of interest in this model are whether the set of histories of “measured”
alternatives {[Sα]} decoheres, and, if so, what their probabilities are. The answers are
supplied by analysing the decoherence functional

D ([Sα′ ], [Sα]) = Tr
[
Snα′

n
(tn) · · ·S1

α′
1
(t1)ρS

1
α1

(t1) · · ·Snαn
(tn)

]
. (II.10.4)

1 A more realistic model would treat a more general ρ but include as the first set of projections in the

string defining a history a set one member of which is the alternative “ready to measure the alternatives

in the set k”. The relevant probabilities defining the correlations of a measurement situation would then

be conditioned on this alternative for the apparatus.
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Alongside each Skαk
(tk) in the above expression insert a resolution of the identy into record

variables ∑
βk
R

(k,tk)
βk

(tk) = 1 . (II.10.5)

Because of the assumption (i) of exact correlation between the subsystem alternatives Skαk

and the records [eq. (10.2)], only the term with βk = αk is this sum survives.
A consequence of condition (10.3) and the properties of projections (2.4) is that all the

inserted R’s can be dragged to the left of the decoherence functional and evaluated at the
last time. The decoherence functional is then

D ([Sα′ ], [Sα]) = Tr
[
R

(n,tn)
α′
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(tn) · · ·R(1,t1)

α′
1

(tn)Snα′
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(tn) · · ·S1

α′
1
(t1)ρ

×S1
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(t1) · · ·Snαn
(tn)R(1,t1)

α1
(tn) · · ·R(n,tn)

αn
(tn)

]
. (II.10.6)

Then, since the record variables, R
(k,τ)
β , are exclusive by construction, we may use the cyclic

property of the trace to show that the off-diagonal terms in the α’s of (10.6) vanish identically.
The records decohere. However, since the records are exactly correlated with measured
properties of the system studied according to assumption (i), this decoherence accomplishes
the decoherence of the measured alternatives of the system. Thus, as a consequence of the

existence of alternatives {R(k,τ)
β (t)} with the properties (i) and (ii) the decoherence functional

(10.4) is exactly diagonal and we can write

D ([Sα′ ], [Sα]) = δα′
nαn · · · δα′

1α1
Tr
[
Snαn

(tn) · · ·S1
α1

(t1)ρS
1
α1

(t1) · · ·Snαn
(tn)

]
(II.10.7)

Put differently, we can say that the decoherence of the records in the larger universe has
accomplished the exact decoherence of the measured quantity of the subsystem studied.2

The third assumption of the ideal measurement model is the following:
(iii) Measured Quantities are Undisturbed. We assume that the diagonal elements of the

decoherence functional (10.5), which give the probabilities of the histories [Sα], are the same
as if they were calculated with the operators skα(t)⊗ Ir where skα(t) are the alternatives for
the subsystem evolved with its own Hamiltonian. Thus,

p([Sα]) = tr
[
snαn

(tn) · · · s1α1
(t1)ρss

1
α1

(t1) · · · snαn
(tn)

]
. (II.10.8)

where ρs, the projection operators {skα(t)}, and the trace tr refer to the Hilbert space
Hs. This is the assumption that the measurement interaction instantaneously reduces the
off-diagonal elements of the subsystem’s decoherence functional to zero while leaving the
diagonal elements unchanged. The values of measured quantities are thus left undisturbed.

In idealized models of this kind, the fundamental formula is exact and the rule for as-
signing probabilities can be restated: Probabilities can be assigned to histories that have
been measured and the probability is (10.8). This is the rule of the Copenhagen interpre-
tations for assigning probabilities. Eq. (10.8) may be unfamiliar to those used to working

2 A slightly different idealization leading to the same result would be to assume that the correlations ex-

pressed in (10.2) are with projections {R(k,τ)
α (t)} that always exactly decohere because of the properties

of the initial ρ no matter where located in a string of projections in the decoherence functional. Such vari-

ables are typically described as “macroscopic”. There is some economy in such a sweeping idealization but

the model of persistent records suggests a mechanism by which such decoherence might be accomplished.
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with a state vector that evolves unitarily in between measurements and by reduction of the
state vector at a measurement. In fact, it is a compact and efficient expression of these two
forms of evolution as has been stressed by Groenewold (1952), Wigner (1963), Aharonov,
Bergmann, and Lebovitz (1964), Unruh (1986), and Gell-Mann (1987) among others. I
shall demonstrate this equivalence explicitly below but for the moment let us discuss the
significance of the ideal measurement model.

The ideal measurement model shows how the Copenhagen rule for assigning probabilities
fits into the more general post-Everett framework of quantum cosmology. The rule holds
in the model because certain approximate features of some measurement situations have
been idealized as exact. Specifically, these idealizations include the exact factorization of
the initial density matrix ρ [eq. (10.2)], the exact correlation between measured system and
registering apparatus [eq. (10.2)], and the exact persistence and independence of measure-
ment records [eq. (10.3)]. In practice none of these idealizations will be exactly true. There
are many typical experimental situations involving measurements at a single time, however,
where they are true to an excellent approximation3. The further idealization that measured
quantities are undisturbed almost never holds for measurements of microscopic quantities
but is typical for measurements of macroscopic ones. For experimental situations where the
idealizations of measurement model are approximately true, the Copenhagen rule supplies
an approximation for the probabilities of the fundamental formula. The fundamental for-
mula, however, applies more generally and precisely, for example, to situations in the early
universe where nothing like the idealizations of this measurement model may be appropriate.

Let’s return to the equivalence of eq.(10.8) with the usual picture of a unitarily evolving
state vector reduced on measurement. To see the equivalence let us calculate the probability
for a sequence of just two measurements at times t1 and t2 according to the usual story in
the Heisenberg picture, given and an initial pure ρs = |ψ >< ψ| at time t0. The state |ψ >
is constant from t0 to t1. The probability that the outcome of the first measurement is α1 is

p(α1) =< ψ|s1α1
(t1)|ψ > . (II.10.9)

The normalized state after the measurement is reduced to

|ψα1 >=
s1α1

(t1)|ψ >√
< ψ|s1α1

(t1)|ψ >
. (II.10.10)

The probability of obtaining the result α2 on the next measurement given the result α1 on
the first is

p(α2|α1) =< ψα1|s1α1
(t2)|ψα1〉 =

< ψ|s1α1
(t1)s

2
α2

(t2)s
1
α1

(t1)|ψ >
< ψ|s1α1

(t1)|ψ >
. (II.10.11)

The joint probability for α2 followed by α1 is

p(α2, α1) = p(α2|α1)p(α1) . (II.10.12)

so that using (10.9) and (10.11) we have

p(α2, α1) =< ψ|s1α1
(t1)s

2
α2

(t2)s
1
α1

(t1)|ψ > . (II.10.13)

3 See Section II.11 of [2] for some estimates of the degree of approximation.
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This is just the formula (10.8) for the Copenhagen probabilities for the special case of a
history with two times and a pure initial density matrix ρs.
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