
X. Summation

These lectures have developed generalized quantum frameworks for non-relativistic

quantum mechanics, field theory, and a single relativistic world line in which quantum

theory is put into fully spacetime form both with respect to dynamics and alternatives.

These frameworks motivate the proposal of Section VIII for a quantum framework for

cosmology incorporating a quantum dynamics of spacetime geometry. The three basic

elements of a generalized quantum theory are compared for these frameworks in the table

above.

To conclude we summarize the main points concerning the quantum mechanics of

cosmology developed in these lectures in a short list:

• Quantum mechanics is formulated for a closed system — the universe. Decoherence

rather than measurement distinguishes those alternatives which may consistently be

assigned probabilities from those which may not. The framework may thus be applied

to make predictions of alternatives of interest to cosmology in the very early universe

or on very large distance scales which are not part of any measurement situation. The

familiar Copenhagen quantum mechanics of measured subsystems is an approxima-



tion to this more general quantum theory of closed systems that is appropriate when

the decoherence of the alternatives of the apparatus that register the results of the

measurement can be idealized as exact.

• The sum-over-histories approach to quantum mechanics is used to formulate the quan-

tum mechanics of cosmology in fully spacetime form. Dynamics is expressed in terms

of sums over fine-grained histories that are four-dimensional manifolds, metrics, and

matter field configurations. Alternatives are defined by partitions (coarse-grainings)

of these four-dimensional, fine-grained histories into exhaustive sets of exclusive dif-

feomorphism invariant classes. The analogs of “unitary evolution” and “reduction of

the wave packet” are given a unified sum-over-histories expression. The formulation is

manifestly four-dimensionally diffeomorphism invariant if the formal diffeomorphism

invariance of the functional integrals defining sums-over-geometries can be relied upon.

• The alternatives to which this quantum theory assigns probabilities, if they decohere,

are at once more general and more restricted than the “observables” that are often

considered in other formulations. Four-dimensional diffeomorphism invariant alterna-

tives on a spacelike surface, for example, usually are restricted to classical constants of

the motion that commute with the constraints. The present formulation considers the

much larger, more realistic, and more accessible class of diffeomorphism invariant space-

time alternatives. However, in its present form the theory considers only alternatives

describable in spacetime form as partitions of the unique fine-grained set of histories

of the sum-over-histories formulation. Alternatives analogous to all the Hermitian ob-

servables of transformation theory are considered approximately by expressing them

in spacetime form. A spacetime description is adequate for our experience and for cos-

mology. It remains to be seen whether it is fundamental, as assumed here, or whether

the theory can be extended to an even richer class of alternatives.

• Formally, the generalized quantum mechanics of spacetime is free from the “problem

of time”. No preferred family of spacelike surfaces was needed either to define the

fine-grained histories, or quantum evolution, or the alternatives for which probabilities

are predicted. These were specified directly in four-dimensional, geometrical, terms.

This does not mean that the notion of time has been eliminated from this framework,

for this is a quantum theory of spacetime! But this generalized quantum framework

for spacetime neither requires nor specifies a preferred family of spacelike surfaces.

• Familiar Hamiltonian quantum mechanics of matter fields, with its preferred time(s),

is an approximation to this generalized quantum mechanics of spacetime. The ap-

proximation is appropriate for decoherent coarse-grainings that specify coarse-grained

geometries that display the classical correlations predicted by Einstein’s equation with

high probability. The classical geometries that summarize these correlations supply the

notion of time for an approximate Hamiltonian quantum mechanics of matter fields.
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Such classical behavior of geometry is an emergent feature of the boundary condi-

tions in cosmology. Having generalized Hamiltonian quantum mechanics to deal with

quantum spacetime, we recover known it in a suitable limit.

• A significant advantage of any sum-over-histories formulation of quantum mechanics

is that the classical limit may be analyzed directly. That is especially important in

quantum cosmology where we expect that most of the predictions of particular theories

of the initial condition that can be confronted with observation will be semiclassical in

nature. A system behaves semiclassically when, in a suitably coarse-grained decoherent

set of histories, the probability is high for histories correlated by deterministic laws.

These probabilities are supplied by this generalized quantum framework providing

criteria for when the semiclassical approximation is appropriate. The wave function

that specifies the initial condition does not have a direct probabilistic interpretation in

this framework. However, assuming their decoherence, the probabilities for histories

can be used to provide a justification for the familiar rules that have been used to

extract semiclassical predictions directly from wave functions of semiclassical form.

• A lattice version of this generalized quantum mechanics can be constructed using the

methods of the Regge calculus with fine-grained histories that are four-dimensional

simplicial geometries. Such quantum models are a natural cut-off version of general

relativity. They supply a finite and tractable arena in which to examine the low energy,

large scale predictions of specific proposals for initial condition and with which to test

the sensitivity of these predictions to the nature of quantum gravity at smaller scales.

• This sum-over-histories formulation of the quantum mechanics of cosmological space-

times is a generalization of familiar quantum mechanics that neither utilizes states on

spacelike surfaces nor even permits their construction in general. It is therefore differ-

ent from the usual versions of Dirac or ADM quantum mechanics which are formulated

in terms of states on a spacelike surface. Constraints do not play a primary role in

constructing quantum dynamics. States satisfying the constraints are used to specify

the initial and final conditions of a quantum cosmology but it is only in this sense

that “true physical degrees of freedom” are defined. However, should a preferred time

be discovered in classical general relativity nothing necessarily needs to be changed

in this formulation of the quantum mechanics of spacetime as long as that preferred

structure is expressible in terms of the metric. Further, should experiment show that

quantum theory singles out a preferred family of spacelike surfaces not distinguished

by the classical theory it is still possible to construct a generalized quantum mechanics

on the principles described here, by suitably restricting the set of fine-grained histories.

This short list of attractive features does not mean that the generalized quantum me-

chanics of spacetime that we have described is correct! That determination is, in principle,

a matter for experiment and observation. Of course, we are unlikely to have such experi-
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mental checks any time in the near future and much remains to be done to complete the

theory. The main issue, of course, its to provide a complete and manageable quantum

theory of gravity whose consequences can be investigated with the generalized quantum

framework developed here. Once that is done problems such as the exact nature of the

fine-grained histories and the diffeomorphism invariance of the functional integrals defin-

ing sums over these histories may be addressed more precisely. In the meantime, we may

analyze these questions in the context of models which capture some of the features of the

expected quantum theory of gravity.

As far as quantum cosmology is concerned, the main result of these investigations is to

show that the rules for semiclassical prediction that are commonly employed can be put

on a firmer probabilistic footing in a generalized quantum framework that does not require

a preferred notion of time or or a definition of measurement.

Beyond theories of the initial condition, it is possible that these ideas may be useful

in formulating a quantum theory of gravity which must necessarily predict the quantum

behavior of spacetime geometry in a suitable limit. Thus, while we have learned little about

a correct quantum theory of gravity in these lectures, we may have learned something of

how to formulate questions to ask of it.
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Notation and Conventions

For the most part we follow the conventions of Misner, Thorne, and Wheeler [1] with

respect to signature, curvature, and indices. In particular:

Signature — (−,+,+,+) for Lorentzian spacetimes.

Indices — Greek indices range over spacetime from 0 to 3. Latin indices range over space

from 1 to 3. Indices on tensors are often suppressed where convenient.

Units — In Sections VI-VIII we use units in which h̄ = c = 1. In Section IX we include

h̄ explicitly but set c = 1; The length ` is ` = (16πG)
1
2 = 1.15× 10−32cm which is (4π)

1
2

times the Planck length.

Coördinates and Momenta — The four coördinates of spacetime {xα} are frequently ab-

breviated just as x. Similarly, conjugate momenta {pα} are abbreviated as p. Spatial

coördinates {xi} are written x and spatial momenta {pi} as p. Thus p · x = pαx
α and

p · x = pix
i. Similarly, configuration space coördinates {qi} are written as q, conjugate

momenta {pi} as p, and p · q = piq
i.

Vectors — Four-vectors aα, bα, · · · are written a, b, c · · · and their inner products as a · b,
etc. Three-vectors are written as ~a,~b,~c · · · and their inner products as ~a · ~b, etc. Thus,

in the case of displacement vectors and their conjugate momenta we use p · x = ~p · ~x
interchangeably.
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Covariant Derivatives — ∇α denotes a spacetime covariant derivative and Di a spatial one.

∇2 = ∇α∇α. In flat space ∇f is ∇αf and ~∇f is the usual three-dimensional gradient.

Traces and Determinants — Traces of second rank tensors Kαβ are written as K = Kα
α

except when the tensor is the metric in which case g is the determinant of gαβ and h the

determinant of spatial metric hij ;

Extrinsic Curvatures — If nα is the unit normal to a spacelike hypersurface in a Lorentzian

spacetime, we define its extrinsic curvature to be

Kij = −∇i nj .

Intrinsic Curvatures — Intrinsic curvatures are defined so that the scalar curvature of a

sphere is positive.

Momentum Space Normalization — We use Lorentz invariant normalization for momentum

states of a relativistic particle and include factors of 2π and h̄ as follows:〈
p ′′
∣∣p ′〉 = (2πh̄)3(2ωp) δ

(3) (p ′′ − p ′
)

where ωp =
√

p 2 +m2. Similarly in the non-relativistic case〈
p ′′
∣∣p ′〉 = (2πh̄)3δ(3) (p ′′ − p ′

)
.

This convention means that sums over momenta occur as d3p/[(2ωp)(2πh̄)3] or as d3p/(2πh̄)3

respectively.

Klein-Gordon Inner Product —

i

∫
t
d3xφ∗(x)

↔
∂

∂t
ψ(x) = i

∫
t
d3x

[
φ∗(x)

∂ψ(x)

∂t
− ∂φ∗(x)

∂t
ψ(x)

]
.

The Feynman Propagator —

∆F (x) = h̄2
∫

d4p

(2πh̄)4

eip·x/h̄

p2 +m2 − iε
.
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