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ABSTRACT

Potential and actual applications of numerical simulations to issues in
quantum gravity are discussed and compared with numerical simulations
in the classical theory.

Numerical simulations are becoming an increasingly powerful and important
tool in classical general relativity. They are increasingly powerful because of the
accessibility of high speed computers and the efforts of many investigatorsl] in
developing the techniques with which to use them to solve Einstein’s equation.
They are increasingly important because for most astrophysical systems we lack
the analytic methods and certainly the controlled experiments by which to answer

the interesting questions.

Numerical simulation is also likely to be a powerful and important tool in the
quantum theory of gravity. The reasons are similar to those which occur in the
classical theory. The systems of interest, for example the universe, are complex,
the interesting questions are only accessible qualitatively to analytic analysis. It

is certainly difficult to imagine controlled experiments.

There are significant differences in the typical issues of the classical and quan-
tum theories of gravity which lead to different numerical problems and therefore
to different numerical techniques. The first major difference between classical and
quantum gravity is that in the latter we do not have the theory. In classical gravity
we have Einstein’s well tested theory. We ask of this standard theory a variety
of complex questions. Einstein’s action, however, does not lead to a satisfactory
quantum field theory. In quantum gravity we are therefore often engaged in the

enterprise of presenting simple, standard questions to a variety of theories.



The second major difference between classical and quantum gravity is that in
classical gravity we are typically interested in dealing with particular geometries
while in quantum gravity we are interested in geometries “wholesale.” The objects
of interest in quantum gravity are quantum amplitudes. For example, one might
be interested in scattering amplitudes in which gravitational processes play a part.
In quantum cosmology one is interested in the wave function of the universe. These
amplitudes are conveniently expressed as sums over geometries and it is in this
form that they are most accessible to numerical approximation. For example, a
possible wave function of the universe defined on the configuration space of three

geometries is?]

VPGl = exp(—I[*6)), (1)
g

where I is the Euclidean action and the sum is over compact Euclidean 4-geometries
46 with a single boundary on which the induced 3-geometry is 3 §. In classical
gravity we are interested in particular solutions of Einstein’s differential equations.

In quantum gravity we are interested in sums over classes of geometries.

This difference in aim dictates a difference in technique. In classical relativity
we typically efficiently calculate using a differencing scheme adapted to the par-
ticular problem. In quantum gravity we need a general discretization method for
dealing with geometries wholesale. Simplicial approximation and the methods of

Regge calculus provide this.

A simplicial geometry is made up of flat simplices joined together. A two di-
mensional surface can be made out of flat triangles. A three dimensional manifold
can be built out of tetrahedra; in four dimensions one uses 4-simplices and so on.
The information about topology is contained in the rules by which the simplices
are joined together. A metric is provided by an assignment of edge lengths to the

simplices and a flat metric to their interiors.

A two dimensional surface made up of triangles is in general curved as, for
example, the surface of the tetrahedron in Figure 1. The curvature is concentrated
at the vertices because one cannot flatten the triangles meeting in a vertex without
cutting one of the edges. If one does cut one edge and flatten, the angle by which
they fail to meet is a measure of the curvature called the deficit angle. (See Figure

1). Concretely, the deficit angle is 27 minus the sum of the interior angles of the
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Figure 1: The surface of a tetrahedron is a two dimensional surface whose
curvature is concentrated at its vertices. To flatten the three triangles
meeting at verges A one could cut the tetrahedron along edge AC. The
angle § by which the edges AC fail to meet when flattened is a measure of
the curvature at A called the deficit angle.

triangles meeting at the vertex. It can thus be expressed as a function of their
edge lengths.

In four dimensions the situation is similar with all dimensions increased by 2.
The geometry is built from flat 4-simplices. Curvature is concentrated on the two
dimensional triangles in which they intersect. There is a deficit angle associated
with each triangle which is 27 minus the sum of the interior angles between the

bounding tetrahedra of the 4-simplices which intersect the triangle.

As Regge showed,3] Einstein’s familiar gravitational action may be expressed
as a function of the deficit angles and the volumes of the simplices. For example,
the Euclidean Einstein action with cosmological constant for a connected closed

manifold in n-dimensions is
gnl* 21, = — / z(g)3 (R — 24). ()

Here, £ = (167rG’)% is the Planck length and gy is dimensionless coupling. We use

units where A = ¢ = 1 throughout. On a simplicial geometry (2) becomes exactly

"Iy =2 ) Vaa(0)0n—2(0) +24 Y Va(r). )
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Here ¥ is the collection of k-simplices and V}, is the volume of a k-simplex. The

deficit angle 6,,_o is defined by

On—3(0) =21 — > 040, 7), (4)
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where the sum is over all the n-simplices 7 which meet o, and the 0,—2(0,7) are
their interior angles at 0. Both V}, and 6,,_5(0, 7) are simply expressible in terms of
the edge lengths through standard flat space formulae. By using these expressions

in (3) the action becomes a function of the edge lengths.

As Hamber and Williams have shown? other gravitational actions, such as
curvature squared Lagrangians, may be similarly expressed in an approximate
form which becomes exact in the continuum limit. A similar formalism holds for
Lorentzian geometries in which some of the squared edge lengths become “time-
like” and, as a consequence, some of the angles become hyperbolic.s] There is also

an approximate 3 4 1 version of the theory in which time is continuous but space

is built up out of tetrahedra.%:"]

A typical calculation of the gravitational action is shown in Figure 2. The
manifold is C P2 in the beautiful triangulation of Kiihnel and Lassmannsl, C’Pg.
This has 9 vertices, 36 edges, 84 triangles, 90 tetrahedra and 36 4-simplices. Under
the symmetry group of the triangulation the edges fall into two classes — 9 in one
class (class I) and 27 in another (class II). Figure 2 shows the action® when all
the class I edges have a value L; and all the class edges a value Lrr. At the
value Ly = Ly = (2.14)(¢/H), where H? = £A?/3, there is a saddle point — an
extremum of the action and thus a solution of the discrete analog of Einstein’s

equation.

Extremizing the action with respect to the edge lengths gives a set of algebraic

equations
oI
— =0 =019, 5
8si ’ ! ( )
equal in number to the number of edge lengths. These are the discrete version of

Einstein’s equation.lo]

In a sense they constitute a general differencing scheme for
the Einstein equation. By and large, however, while some classical solutions have
been obtained with these equations,lle] they have not proved to be the most
efficient differencing scheme. The reason is that the Regge calculus is general.

For any particular problem, e.g., axisymmetric rotating collapse, better adapted
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schemes can typically be found. In addition, as we shall see, Regge calculus is

particularly poorly adapted to dealing with asymptotically flat geometries.

Figure 2: The action on a triangulation of C P2. The nine vertex triangula-
tion C Pg has two classes of edges which transform among themselves under

the action of its symmetry group. The figure shows a contour map of the
action (divided by 100) when all the edges of the first class have the value
Ly and all of the second class have the value Ly;. The cosmological con-

stant has the value specified by H2 = 1. In the shaded region at upper left
the simplicial inequalities are violated. There is a saddle point extremum

and a solution of the Regge equations when L; = Ly = 2.14¢/H?,

The Regge calculus can be useful in the classical theory when one is interested
in dealing with geometries wholesale. A good example is the recent investigation
of Piran and Williams into the evolution of cosmologies driven by the energy of a
massive scalar field.13] They used the 3+ 1 Regge formalism to examine the space
of initial conditions and show that a large class of them lead to an inflationary

expansion.

If one attempts to solve the Regge equations on larger and larger simplicial
nets in an effort to get a better and better approximation to a classical solution

it becomes more and more difficult to do. Assume, for example, one uses the
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Newton-Raphson method to solve the algebraic equations,

al
f’L (Sj.) as 0' (6)
From any given point § in the space of squared edge lengths one seeks a displace-

ment As to a new set of edge lengths which satlsfy the equation. Expanding the
condition f(s + A8) = 0 to linear order in As to find

— -1 821’
As=—(10) e, @)= (7)
Y%7

By iterating this equation one hopes to converge to a solution for given ny and

then with larger and larger nets to get a better and better approximation to a
continuum solution.

As the net is made larger, however, I(2) becomes increasingly close to singular.
The reason is the diffeomorphism invariance of the continuum theory. Regge calcu-
lus is formulated directly in terms of the edge lengths — physical gauge invariant
quantities. For a general curved simplicial geometry we expect if we change the
edge lengths we will change the geometry. There is however an important ex-
ception to this and that is flat space. Imagine scattering some vertices through
a region of flat space, connecting them with edges to form a simplicial net, and
assigning lengths to these edges using the flat metric. Now displace the vertices
in some manner. One obtains a new assignment of edges but the same geometry

and same action. There is a 4 X (number of vertices) parameter family of such

assignments.

In increasingly refined simplicial approximations to a curved geometry there
will eventually be regions with large numbers of vertices in which the geometry is
approximately flat. There will therefore be variations of the edge lengths which
leave the action approximately unchanged. These directions, 4 X (the number
of vertices) in number, correspond in the continuum limit to the 4-fold per point
family of coordinate transformations under which the continuum action is invari-
ant. Thus, while there is not an exact notion of gauge invariance in the Regge
calculus, there is an approximate invariance which in the continuum limit becomes

the diffeomorphism invariance of the continuum theory.”‘]

The approximate invariance of the action means that I(2) will have small eigen-

values and become increasingly singular as the continuum limit is approached.
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This is the discrete realization of the fact that the continuum Einstein equation

does not determine a solution uniquely but only up to a coordinate transformation.

I would now like to turn to the central problem of numerical quantum gravity
— sums over geometries. Consider, by way of example, the sum over histories
which gives the expectation value of some physical quantity A in the quantum
state of the universe (1). Formally we would write this as
4 4
i Al g}exn(.—_[[ g})

_ BegAltg]exp(—1]
)= Sagexp(—I[4g]) ~’ ®)

where [ is the Euclidean action and the sum is over compact 4§ without boundary.
To define such a sum there are three things to specify: the action, the % §’s which
contribute, and the measure on the space of % g’s.

A geometry is a manifold with a metric. In general a sum over geometries will
therefore involve a sum over manifolds as well as a sum over metrics. This sum

over manifolds is usually called “summing over topology.”

Giving meaning to formal sums such as (8) is the same problem as under-
standing how to compute them numerically. Sums over geometries can be given a
concrete meaning by taking limits of sums of simplicial approximations to them.
This is analogous to defining the Riemann integral of a function as the limit of
sums of integrals of precise linear approximations to the function. For example,
simplicial approximation could be used to give a concrete meaning to the formal
sum for (A) as follows. (1) Fix a size of a simplicial net, say the number of ver-
tices ng. (2) Represent each manifold by a triangulation with ng vertices. (3)
Approximate the sum over physically distinct metrics by a multiple integral over

the squared edge lengths s;. (4) Take the limit of these sums as nq goes to infinity.
In short, express (A) as

2 M(no) Jo 4B1A(s;, M) exp[—I(s;, M)]
(A4) = lim . (9)
0= 3 M (no) Jo 451 exp[—I(s;, M)]
There remains the specification of the measure d¥; and the contour C for the
integral over edge lengths. Of course, today we understand little about the con-
vergence of such a process but is is at lest definite enough to be discussed. We
can hope to carry out the multiple integral over edge lengths by standard tech-

niques, e.g., the Monte-Carlo method, for each representative manifold, and sum

the results up.



The sum over manifolds gives rise to some interesting questions.15] The classi-
fication of 4-manifolds is an example of an undecidable question in mathematics.
That is, roughly speaking, given two simplicial 4-manifolds A and B, each with
ng vertices, there does not exist a computer program COMPARE (4, B,ng) which
will run, halt and print “yes” if the manifolds are the same and “no” if they are
not. Nothing, however, prevents us from classifying 4-manifolds with any fixed,
finite number of vertices. It is only that the techniques used to classify manifolds
with one ng will not work for larger values. The job of numerically summing over

manifolds will never become routine. 16l

Hamber and Williams have carried out pioneering Monte-Carlo sums over met-
rics on a 4-torus using a Regge calculus approximation to curvature squared gravi-
tational actions.!?] Their nets were impressively large, having for example, several
thousand edges. Space does not permit a review of all their interesting and sugges-
tive results. As an example, however, one might note their calculation of “random
geometry” — expectation values computed as in (8) with zero action! They found
that expected dimensionless measures of the curvature squared were much larger
than corresponding expected measures of the curvature indicating that random
geometries are “rough” in the mean. Their calculations while preliminary in in-

terpretation do show conclusively that numerical sums over metrics can be done.

An area in which numerical quantum gravity is likely to be of importance is
quantum cosmology although few calculations have been attempted. Most pro-
posals for a quantum state of the universe are explored in the context of mini-
superspace models based on symmetries. To construct such models one restricts
attention to geometries of particular symmetries, depending on fewer parame-
ters, evaluates the action in terms of these parameters, and takes it to describe
a mechanical system whose quantum mechanics one can construct and discuss.
Minisuperspace models are easy to implement, generally easy to interpret, and
usually suggestive. However, with their drastic truncations they are unlikely to
be accurate approximations. Based on symmetries, they are not systematically
improvable and necessarily suggest information about the quantum state only in

a small region of superspace near the universe we know.

Regge calculus provides a potentially much more powerful way to explore the
quantum state of the universe.!4! In a sense any given simplicial 4-manifold spec-

ifies a minisuperspace approximation in which the infinite number of degrees of
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freedom are replaced by a finite number of edge lengths. These models however,
offer the prospect of systematic improvements by making the triangulation finer
and finer. Further because they are not based on symmetries they can be used to
explore the wave function in domains far from those close to the present universe.
For problems such as these, numerical simulations may play as important a role

in the quantum theory of gravity as they already do in the classical theory.
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