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If the topology and geometry of spacetime are quantum-mechanically variable, then the particu-
lar classical large-scale topology and geometry observed in our universe must be statistical predic-
tions of its initial condition. This paper examines the predictions of the "no boundary" initial con-
dition for the present large-scale topology and geometry. Finite-action real tunneling solutions of
Einstein s equation are important for such predictions. These consist of compact Riemannian (Eu-
clidean) geometries joined to a Lorentzian cosmological geometry across a spacelike surface of van-

ishing extrinsic curvature. The classification of such solutions is discussed and general constraints
on their topology derived. For example, it is shown that, if the Euclidean Ricci tensor is positive,
then a real tunneling solution can nucleate only a single connected Lorentzian spacetime (the unique

conception theorem). Explicit examples of real tunneling solutions driven by a cosmological con-
stant are exhibited and their implications for cosmic baldness described. It is argued that the most

probable large-scale spacetime predicted by the real tunneling solutions of the "no-boundary" initial
condition has the topology R XS' with the de Sitter metric.

I. INTRODUCTION

A geometry is a manifold with a metric. In a sum-
over-histories quantum mechanics of spacetime it is,
therefore, as natural to sum over manifolds as it is over
metrics. Admitting different manifolds to the sums over
geometries defining quantum amplitudes means allowing
different possibilities for the topology of physical space-
time and allowing also for the possibility of quantum
transitions between the topology of space at one time and
another. This raises interesting questions.

As far as we know today, there are no certain reasons
of principle or consistency which mandate the inclusion
of topology as a variable in the quantum mechanics of
spacetime. The idea has been opposed by some as incon-
sistent with the spirit of field theory. However, the semi-
nal considerations of Wheeler' and the suggestive work of
Hawking on the evaporation of black holes have provid-
ed considerable physical motivation for this mathemati-
cally natural idea. Further, allowing quantum ampli-
tudes for different topologies may have important conse-
quences even on familiar scales. The most striking of
these is certainly the suggestion of Hawking, " Coleman,
Giddings and Strominger and others that the inclusion
of manifolds with wormholes in a sum-over-histories
prescription for the universe's initial condition can lead
to a determination, in part, of the coupling constants of
the low-energy effective interactions of the elementary
particles. In particular, the effective cosmological con-
stant may be forced to a vanishing value.

If different topologies and metrics are allowed quantum
mechanically, what determines the topology and metric
of spacetime on the scales of the laboratory and the scales

of cosmology? There is no evidence that any topologies
other than the simplest possibilities (e.g. , R XS ) are real-
ized on the scales and domains of the universe accessible
to us. The metric properties are similarly simple (homo-
geneous and isotropic on average). The answer to these
questions, such as that of why spacetime behaves classi-
cally at all in these regimes, is not to be found generally
in the quantum theory of gravity. For, if metric and
manifold are quantum-mechanically variable, the number
of states which imply a particular behavior of the metric
(e.g. , classical) or a particular manifold (e.g. , RXS ) are
but a negligible fraction of the total number of states
available to the universe. Rather, the answer is to be
sought in the theory of the initial condition of the
universe which prescribes a particular quantum state
which predicts probabilities for these possibilities.

The "no-boundary" proposal is a promising theory of
the initial condition. Here, among other amplitudes, the
wave function of a closed universe on a spacelike surface
consisting of n disconnected parts is prescribed as a sum
over histories of the form

%,(h„y, ,aM, , . . . , h„,y„,aM„)

=g v(M) I 6g A/exp( I[g, ttt, M]) . —
C'

The arguments of the wave function are the spacelike
three-metrics h~, and matter fields g~, on the discon-
nected parts of the three-manifold BM„, 3 = 1, . . . , n.
The functiona1 I is the Euclidean action for metric g and
matter field configuration P on a four-manifold M. The
sum over manifolds, weighted by v(M), is over a class
which have the boundaries BM„and no other boun-
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daries. The functional integral is over four-metrics g and
matter field configurations P which induce h „and gz on
BM~. To make a construction such as this definite, the
class of manifolds, the measure for the functional in-
tegrals, and the contour C over which these integrals are
taken must be specified. Various possibilities have been
suggested for these. ' ' The "no-boundary" proposal,
such as any other theory of the initial condition, has the
heavy burden to show that when the universe is large it
predicts classical spacetime with a topology and metric
consistent with observations on familiar and large scales.

Classical spacetime is predicted by a theory of the ini-
tial condition when two requirements are satisfied. (i)
There is negligible interference between alternative his-
tories for spacetime geometry determined on scales far
above the Planck length. That is, the alternative histories
decohere. ' (ii) The geometries of successive spacelike
surfaces in these histories are highly correlated according
to classical laws. There may be many initial conditions
which lead to decoherence and classical correlations.
However, classical correlations are most commonly sig-
naled in quantum cosmology when the wave function of
the universe is well approximated semiclassically. ' Con-
sider, for example, a spacelike surface with a single com-
ponent, BM. Suppose that Vo[h, y, BM] is well approxi-
mated by the form

0'0[h, y, BM]

=g v(M)h[h, y, BM, M]cos(S[h, y, BM,M])
M

(1.2)

with S being a classical action satisfying the Hamilton-
Jacobi equation of classical Einstein theory on real
Lorentzian spacetimes. For the validity of the approxi-
mation the action S must vary much more rapidly with
its arguments h and y than h. Such a wave function pre-
dicts that the universe has one among the manifolds in
the sum (1.2) and one among the Lorentzian metrics on
that manifold that could produce the classical action S.
Manifolds and metrics with greater weight vh are more
likely than those with lower values. If, for example, only
a single manifold M contributed significantly to the sum
(1.2) we would predict a definite topology for the universe
in the large.

The situation is similar if the spacelike surface
consists of two disconnected pieces. If
Vo[h&, y, , BM, ;h2, yz, BM2] were well approximated
semiclassically analogously to (1.2), then the theory of in-
itial condition could predict two disconnected universes
with classical evolutions corresponding to the contribut-
ing action weighted by the corresponding prefactors.
The relative likelihood of two universes or one would be
established by comparing this amplitude to (1.2).

Approximate forms such as (1.2) arise from the
steepest-descents approximation to the defining sum over
histories. ' In that approximation, the sum over histories
(1.1) is dominated by the extrema of the action I. In gen-
eral, these will occur in pairs of complex conjugate
geometries and the extremum value of the action will
have both real and imaginary parts. For example,

I[h,y, BM;g, P, M]=I„[h,y, BM;g, P,M]

+iS[h,y, M;g, P,M] (1.3)

NTZIAN
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FIG. 1. The same figure describes schematically several
different tunneling situations. (1) Pair creation from the vacu-
um in a uniform electric field. In this case the Euclidean solu-
tion for particle motion is a circle which joins smoothly onto
the uniformly accelerated motion of the created pair in the uni-
form field. (2) The nucleation of a bubble of true vacuum in a
false vacuum. The Euclidean instanton solution is a solution to
the Euclidean classical field equations with a true vacuum inside
and false outside. This joins to a Lorentzian solution in which
the wall of the bubble expands. (3) In quantum cosmology, an
example of a tunneling solution is the round Euclidean sphere
joined on at an equator to the Lorentzian de Sitter space at its
radius of maximum contraction.

for a single connected BM. Here, we have written out ex-
plicitly the dependence of I on the boundary data
(h, y, BM) and on the extremizing solutions (g, P, M). If,
when the three-metric h is large, S varies much more rap-
idly as a function of h and g than I&, then S will satisfy
the Hamilton-Jacobi equation to a good approximation
and a form such as (1.2) will result. The real part of the
action will contribute a plausibly dominant slowly vary-
ing exponential factor exp( I„[h—,y, BM;g, P, M]) to the
weight A. Thus, in a way which will be discussed in more
detail in Sec. V, the possible predictions of the "no-
boundary" proposal for the geometry and topology of the
classical spacetime of the late universe are reduced, in
part, to a study of the classical extrema of the action I on
the contributing manifolds M. ' One is, thereby, led to
the mathematical problem of exhibiting the complex
solutions of Einstein's equation on various manifolds M
with boundary BM, which near that boundary become
close to real Lorentzian cosmological spacetimes having
spatial sections which are large compared with the
characteristic scales entering the underlying dynamics
(e.g., the Planck length or the scale set by the cosmologi-
cal constant). The solutions of interest for the semiclassi-
cal approximation need not be differentiable or even con-
tinuous. They need only have finite action.

Among complex solutions one expects the purely real
tunneling metrics to be of special importance. A real
tunneling solution describes transitions from a purely
Riemannian' metric to a purely Lorentzian one. Such
solutions describe tunneling in a variety of other situa-
tions in physics (see Fig. 1). The production of electron-
positron pairs in a uniform electric field of sufficient
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strength can be described semiclassically by a circular
Euclidean particle motion joined to hyperbolic Lorentzi-
an motion. ' The decay of the false vacuum can be de-
scribed semiclassically by a Euclidean instanton solution
joined onto a Lorentzian solution representing an ex-
panding bubble of true vacuum. ' ' In quantum cosmol-
ogy such real tunneling solutions describe the universe
"tunneling from nothing, " and are the dominant contri-
butors to the semiclassical approximations to the "no-
boundary" proposal. ' The simplest example occurs
when the action describes pure gravity with a positive
cosmological constant A. Then a tunneling solution of
the Einstein equation is a round Riemannian four-sphere
joined across an equator to Lorentzian de Sitter space at
its minimal radius. Except for the conformal modes, this
solution is a local minimum of the real part of the ac-
tion. '

Gravitational tunneling solutions necessarily corre-
spond to discontinuous metrics because the signature
changes from one region to anther. ' However, as we
shall see, a discontinuous metric can have finite action.
The Riemannian part of the metric contributes a real
term to the (Euclidean} action while the Lorentzian part
contributes an imaginary part. The Lorentzian part of
tunneling solutions are, therefore, the possible spacetimes
of the late universe predicted in the "no-boundary" pro-
posal with a weight dominated by exp[ —(action of the
Riemannian part)].

In this paper we shall begin an attack on classifying the
complex solutions of the "no-boundary" proposal by ex-
amining the real tunneling solutions for simple manifolds
and simple (or no) matter fields. We shall exhibit some
general requirements and some particular examples. In
this way, among an admittedly small class, we shall be
able to see what large scale topologies and metrics for
spacetime the "no-boundary" proposal favors.

(g, P, M) with finite action. Thus, on the whole of M we
impose the classical Einstein equation

(2.3)

for appropriate matter fields whose energy-momentum
tensor is T &, including any cosmological constant.
Here, as throughout, we use units where A= c = 1;
I =(16m 6 }' is the Planck length.

Equation (2.3) must hold on X. That is, we do not
want a distributional contribution to the Ricci tensor R

&
at X. This means that the second fundamental form K,
of the metric on X must not have a discontinuity across
X. The second fundamental form K, of X when thought
of as the boundary of Mz is given by

Kjj V( I' nj) (2.4)

where n is the unit normal to X in M~ and latin indices
range over directions in X. When X is thought of as the
boundary of MI, the definition of E; that is continuously
related to that of (2.4) is obtained by analytically continu-
ing the metric to Lorentzian signature. Then,

K, =+i V(; n, j, (2.5)

K,"=0 . (2.6)

The three-metric on X together with the condition
K; =0 will satisfy the Hamiltonian constraint

(2.7)

where n is the unit timelike normal to X in Ml .
With these definitions, it is an easy consequence of

the Einstein equation that for finite action K, must be
continuous across X. For real solutions this requires
that, on X,

II. SOME GENERAL PROPERTIES
OF REAL TUNNELING METRICS

A. Definition and matching conditions

We are interested in manifolds M without boundary
which are the union of two manifolds Ml and Mz with
common boundary X:

M=MI. UM~,

aM„=r=aM, .

(2.1)

(2.2)

On M& we have a Riemannian metric (signature:
+ + + + ) and on Ml Lorentzian metric (signature:—+++). The metrics induced on the common bound-
ary X agree and are necessarily spacelike (signature:
+++). In keeping with the idea of the "no-boundary"
proposal, we shall assume that Mz is connected but not
necessarily that Ml is connected. Thus, X will in general
have more than one connected component
X, , X2, . . . , X„, say. Each connected component of M~
is to be thought of as a disjoint "daughter" universe. The
Riemannian "mother" universe Mz is thus connected
and compact with boundary X.

We wish to restrict attention to classical histories

where T„„ is the projection of T
& onto the normal to the

surface. Any solution of (2.7) will provide initial data for
Einstein's equations but not all such initial data can arise
as the boundary geometry of a compact Riemannian man-
ifold Mz. The "no-boundary" proposal picks out the
subset of possible initial data which are the boundary
values of Riemannian solutions on M~. By this restric-
tion it becomes predictive. If we assume strong cosmic
censorship, or what is essentially the same thing that MJ
is globally hyperbolic, then the topology of the universe is
determined by the topology of X as R X X.

Since we shall always assume that in the Lorentzian
sector T„„&0,X must have positive Ricci scalar. The
possible topologies of X are then extremely limited. The
results of Schoen and Yau and others show that con-
nected components of X must be connected sums of ellip-
tic spaces and three wormholes (i.e., S' XS 's). The vast
majority of three-manifold topologies are ruled out.
Thus, just from positive energy, the possible topologies
for the universe nucleated by a real tunneling solution are
very restricted.

As we shall see in detail later, the further requirement
that X bound a compact four-manifold restricts the topol-
ogy of X even more. For example, consider the de Sitter
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metric. If its round three-sphere sections are identified
across a diameter, one still has a regular Lorentzian solu-
tion to the Einstein equation. Such a solution, however,
would be ruled out in the "no-boundary" proposal be-
cause the identified S which is X can no longer be the
boundary of a portion of S with its round metric.
Indeed, according to a theorem of Chem and Simons,
no such identified S with round metric can be confor-
mally immersed, let alone isometrically embedded, in S
with its round metric.

B. Doubling and %'ick rotations

Because X has vanishing second fundamental form, we

may construct two new manifolds from M~ by joining
two copies of it, Mz and Mz, across X. A similar con-
struction works for MI. The new manifolds are called
the "doubles" of the original ones and we denote them by
2MR and 2ML, respectively (Fig. 2). Metrics on the
copies induce a metric on the double which is at least C'
because E,, =O on X. Clearly, 2MR will be a compact
Riemannian manifold without boundary and each con-
nected component of 2ML is a Lorentizian spacetime
without boundary. If the Einstein equation holds, one ex-
pects the metric to be real analytic (see Ref. 26 in the
Riemannian case). The metrics on the doubled manifolds
would then not only be C', but analytic as well. In the
Riemannian case, this may be thought of as a kind of
Schwarz reflection principle for the Neumann problem
for solutions of Einstein's equation.

The doubled manifolds admit an isometry 9 which in-

terchanges the two halves Mz (ML—+, respectively) and

leaves points on X fixed. That is,

OM+—=M (2.8)

ds =d~'+h, , (x', r)dx'dx', (2.10)

where h; (x",r) is an even function of time. Clearly by a
Wick rotation, ~~it, we obtain another real section.
Conversely, if a Wick rotation, reit takes (2.10) to a new
real metric, then h; (x, t ) must be an even function of t
and the new real section also admits a reflection map.
The existence of a reflection map has other important
consequences as we shall see in the next subsection.

Before turning to these consequences we would like to
view L9 from the point of view of the complex geometry of
the complexification of our solution of the Einstein equa-
tions. ' This is a four-complex-dimensional manifold
Mc (or eight real dimensional) with local complex coordi-
nates z and complex metric g &dz dz~. The two four-
dimensional real manifolds 2ML and 2MR correspond to
real slices in M& on which the restricted metric is real
and Lorentzian, or, respectively, real and Riemannian.
These two real slices intersect transversely in the real
three-dimensional manifold X. As described in Refs. 26
and 27 each real slice is the fixed point set of an antiholo-
morphic involution of M& which is compatible with the
complex metric g &. As a consequence 2M& and 2ML
are totally geodesic submanifolds of M& and hence their
intersection X is also totally geodesic. Denoting these an-
tiholomorphic involutions by Jz and JL we have, point-
wise,

(2.9)

Assuming that MR (respectively, ML ) is oriented (respec-
tively, time oriented), 0 is orientation reversing or time
reversing, respectively. Physically, 2ML admits a mo-
ment of time symmetry on X and the "daughter"
universes are born in a momentarily static state, that is,
with no initial kinetic energy. Note that by construction
8 is well defined on all of the real manifold 2M+ (or

2ML ).
The existence of the reflection map 8 means that

geometries on ML and Mz are related by a Wick rota-
tion. Near X, any metric which allows a reflection map 0
may be cast in the form

J„(2M„)=2M„,

JL (2ML ) =2ML,

J~(X)=JL(X)=X .

(2.11)

(2.12)

(2.13)

FIG. 2. From a compact geometry on a manifold MR with
boundaries X on which K„=O we can construct a C' geometry
on a closed manifold 2M~ by doubling.

Furthermore, since 2M~ and 2MI are locally unique, it is

clear that, although JL does not fix the Riemannian real
slice Mz pointwise, it does leave it invariant as a set. In
other words, restricted to 2M~, Jz coincides with the
orientation reversing isometry 0. Similarly restricted to
2ML, JL coincides with time reversal symmetry. The in-

teresting question of the global actions of JL and J~ on
the complexification Mc will not be addressed here. For
our purposes, it suffices that Ji and Jz are defined in a
neighborhood of the two real slices. Near their intersec-
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tion X we may introduce a local complex coordinate ~
such that Jz corresponds to w~~and JL to ~~ —~. Re-
stricted to 2M+, Jl is just v~ —~, ~ real, and so coin-
cides with 0. Similarly restricted to 2ML, Jz is just
~~ —~, ~ imaginary, and so coincides with time reversal.
See Refs. 27 and 28 for more details.

At this stage an example is probably in order. The
simplest case is de Sitter space. Consider the complex
quadric M& in C given by

J~: (Z', Z, Z, Z, Z )~(Z ',Z,Z, Z, Z ) . (2.15)

Lorentzian de Sitter space 2ML is the fixed point set of
the antiholomorphic involution

J, : (z', z', z', z', z') (z', z', z', z', —z') .

(2.16)

The intersection X =2M„A2ML is the three-sphere

(Z') +(Z ) +(Z ) +(Z ) +(Z ) =3/A (2.14) (Z'} +(Z )'+(Z ) +(Z ) =3/A (2.17)

and the complex metric induced on this surface from the
flat metric on C in the natural way. The four-sphere
2M+ is the fixed point set of the antiholomorphic involu-

tion

with (Z', Z, Z, Z ) all real. M& is the lower hemi-

sphere of S, that is, it has Z real and negative. ML is
the future half of de Sitter space, that is, it has —iZ real
and positive. In local coordinates we may set

1/2

(x'x x x )= 3
j

' 1/2
A

cos
3

(singsin8cosg, singsin8sing, singcos8, cosg) (2.18)

and
1/2

3X =5

A

A
sin

3

3
ds =dr + —cos

A

The metric thus becomes

1/2

1/2
A

3

(2.19)

since for manifolds of arbitrary dimension,

X(2M ) = 2X( M) —X( BM ), (2.23)

and the Euler number of any compact three-manifold
vanishes, the Euler number of 2M& must be even. The
Hirzebruch signature, r(2M~ ), must also vanish. To see
this we express ~(2M& ) as

Thus, Mz corresponds to
1/2

3

A
0,7T

2
(2.21}

X[dg +sing (d8 +sin 8dg )] . (2.20)
r(2M& ) = f S&g d x

= f S&g d'x+ f S&g d'x
M~

„S+0+S g d x,
'"R

(2.24)

(2.25)

and Ml to

v=it, t «0 . (2.22)

Note that the metric form is an even function of the time
variable ~. It thus makes sense to allow ~ to be purely
imaginary, and we get a new real, but Lorentzian metric,
an example of (2.10). The Riemannian manifold Mz can
be thought of as running along the real ~ axis and the
Lorentzian manifold M~ as running along the imaginary
7 axis.

The example of de Sitter spacetime is rather a simple
one. In Sec. IV we will give a rather more nontrivial ex-
ample which also satisfies the Einstein equation.

C. General topological and geometrical restrictions on 2M&

We mentioned in Sec. II A that the topology of 2 was
considerably restricted by the condition that it has posi-
tive three-Ricci scalar. In this section, we shall find fur-
ther restrictions on the topology of the compact Rieman-
nian double 2M& arising from the existence of an orienta-
tion reversing isometry 8. The most immediate is that,

where

S= R (eR) ~~1

48 2 at3XP (2.26)

61+S= —S (2.27)

and the two contributions to ~ in (2.4) cancel. In fact, a
similar argument also works for the Euler number using
the Gauss-Bonnet theorem on Mz with boundary term.
Since the boundary BM& =X has vanishing second funda-
mental form, the boundary term vanishes and the in-
tegrand is now a scalar rather than a pseudoscalar. The
two terms add to give an even Euler number.

One may also see these results using harmonic forms
on 2M&. We have

y=2 —2b, +b2 +b2 (2.28)

~=b2 —b2 (2.29)

and 8+S is the pullback of S under 0. Since S is a pseu-
doscalar
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where b, is the dimension of the space of harmonic one-
forms and b2+ and b2 are the dimension of the space of
self-dual or anti-self-dual two-forms. If 0 is a self-dual
harmonic two-form, then the pullback 0+ Q is clearly an
anti-self-dual two-form. Thus b2+ =b2, whence ~=0 and
y=2(1 b—&+b~+ ) is even.

The merit of thinking about two-forms is that is also
becomes clear (as pointed out to us by Nigel Hitchin) that
2M+ cannot be a Kahler manifold except in the trivial
case of a local product. If it were Kahler manifold, it
would admit a covariantly-constant Kahler two-form 0
which, by convention, can be taken to be anti-self-dual.
The pullback 9+0 would therefore be covariantly con-
stant and self-dual. by taking a linear contribution of 0
and 8e Q one obtains a covariantly constant simple two-
form, 0 &= Vt U&~. This defines an integrable distribu-
tion in the tangent space of 2M„which is what it means
to say that the metric is locally a product. [Put another
way, the holonomy reduces to SO(2) X SO(2).]

We shall see later that the three conditions: (a) y even,
(b) v=0, (c) 2M„not a Kahler manifold unless a product,
considerably restrict the possible manifolds on which
there are real tunneling solutions of the Einstein equa-
tion.

D. Continuous isometrics of 2M+

(2.34)

4 3Z = ——r 2

A

' 1/2 ' 1/2
A

cos u
3

(2.35)

Z'=r(sin8cosg, sin8sing, cos8),

the metric becomes

(2.36)

element. It follows from (2.33) that X must contain two
open regions X+ and X on one of which E is inward
directed while on the other K is outward directed. If X
is connected there must be a two-dimensional surface B
(not necessarily connected) on which K vanishes,
separating the two regions X+ and X . This two-surface
is the fixed point set of the one-parameter subgroup of
isometrics generated by E . It is sometimes called a
"bolt of the first kind. " It is not difficult to show that a
bolt B is a totally geodesic submanifold of X and hence of
2M~ or 2ML.

The physical significance of B is that on analytic con-
tinuation of 2M& to the Lorentzian sector 2MI, B be-
comes the Boyer axis of a Killing horizon, i.e., the inter-
section of a past and future horizon, which may also be a
cosmological event horizon. A good example is provided
by de Sitter spacetime. Setting, in (2.14),

1/2 ' ' 1/2
A

sin u
3

K+ =—'(K +8m K )+ (2.30)

It may be that M~ and hence 2M+ has continuous
isometrics. If E is a Killing vector associated with a
one-parameter subgroup of the isometry group,
Isom(2M~), then the pullback 8+X is also a Killing
field. It follows that we can decompose K into two or-
thogonal pieces

ds= 1 — du+ 1—Ar Ar
3 3

+r (d8 +sin8 dP ) . (2.37)

The surface X corresponds to Z =0. The portion of X
corresponding to X+ is

which are tangential (E+ ) or normal (E ) to X. Of
course, either part may vanish.

The part E is normal to X and clearly by dragging X
along the integral curves of K we obtain a family of sur-
faces orthogonal to E, that is, E is a hypersurface or-
thogonal Killing vector. K+ acts in these surfaces. If we
analytically continue to the Lorentzian spacetime, ML,
then K is a static Killing vector. It follows that locally
the metric may be cast in the form

u =0, 0 ~ r ~ (3/A)' (2.38)

The bolt corresponds to r =&A/3, i.e., to the two-sphere
given by the intersection of Z =0 and Z =0. Note that
u has the character of an angular coordinate. Another
example which we shall not discuss in detail is provided
by the product metric on S XS (the Nariai metric).

ds = V (x ')du +h,, (x ')dx 'dx', (2.31) III. THE UNIQUE CONCEPTION

where h, (x') depends only on the spatial coordinates x'
and the Wick rotation corresponds to replacing u by iu.
This form of Wick rotation of a static spacetime is
perhaps the most frequently encountered form but (from
our earlier discussion) it is not the most general one.

Since Killing's equations imply that

Having described some general topological and geome-
trical properties of closed Riemannian manifolds admit-
ting a reflection map 8, we now wish to see what the
consequences of the Einstein equation are. We shall as-
sume that on 2M& the Ricci tensor is non-negative, i.e.,

VJC =0, (2.32) R pV V~+CV V, C)0, (3.1)

we may integrate (2.30) over Mz+ (or Mz ) using the
divergence theorem to obtain

f K der = f (K n )der=0, (2.33)

where n is the outward normal to X and do. the volume

for all vectors V . Condition (3.1) certainly holds for
vacuum Einstein metrics with positive cosmological term
(i.e., A & 0). It also holds for some (but not all) physically
reasonable matter energy-momentum tensors when
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analytically contained to the Riemannian regime. This
has some striking consequences for the geometry and to-
pology of 2M~. It implies, for example, that the funda-
mental group n&(2MR ) is finite. It also implies the fol-

lowing unique conception theorem:

X is connected .

This result follows from the finiteness of ~&(2M+ ). If X
were not connected we could construct a compact mani-
fold by taking copies Mz and joining them back to back
to construct a manifold containing a closed loop (Fig. 2)
that cannot be shrunk to zero no matter how many times
it is traversed.

An alternative proof is provided by Fraenkel's result
that any two compact minimal hypersurfaces in a com-
pact Riemannian manifold with positive Ricci tensor
must intersect. Since X is totally geodesic (K,, =0) it is

automatically minimal (h'~K,"=0) and the theorem fol-

lows. An interesting illustration of Fraenkel's theorem is
provided by the equatorial three-spheres on S . They in-
tersect on S 's. Using the coordinates introduced in
(2.37) the family of equatorial three-spheres u =const and
u = m.&3/A+const intersect in the bolt r =&3/A.

From a physical point of view, the fact that X is con-
nected has the important consequence that a tunneling
solution of the sort we are considering (assuming R &

) 0)
must nucleate a unique Lorentzian spacetime. The situa-
tion illustrated in Fig. 3 cannot take place. It is impor-
tant to realize, however, that the unique conception
theorem is crucially dependent upon our assumption that
the Ricci tensor is positive. If we consider matter for
which this assumption is violated (such as the four-form
used by Giddings and Strominger ) then one can find real
tunneling solutions in which X has more than one con-
nected component. In the four-form case there is a con-
served global charge whose sum over the disconnected
components of X must equal zero. In other words, the
creation of universe-antiuniverse pairs is enforced by
charge conservation. In the absence of a conserved glo-
bal charge and, in particular, for pure gravity with a posi-
tive cosmological term, however, our theorem shows that
only single universe production is allowed. '

IV. EXPLICIT TUNNELING SOLUTIONS

A. Known Einstein manifolds with positive A

There are very few known nonflat examples of solu-
tions to

R ~p Ag~p (4.1)

with A) 0. Those known to use are (1) S, with the
round metric, (2) CP, with the Fubini-Study metric, (3)
S XS, with the product of two round metrics, (4)
CP g CP, with the Page metric, (5) CP g n CP,
3 n 8 with a Kahler metric (where
nCP =CP g gCP, n times), and (6) E3, with a
Hyper-Kahler metric. Of these, S and S XS have
been considered earlier. Of the rest, the Kahler examples
will not exhibit a reflection map. The remaining example
is the Page metric and this does admit a reflection map.
We shall discuss it in detail later. Before doing so, we
want to introduce a general class of Bianchi type-IX ex-
amples into which the Page metric falls.

B. Bianchi type-IX Einstein metrics

If we assume that X with its metric is homogeneous, it
follows from Einstein's equation that 2M~ will admit an
isometry group G with generically three-dimensional or-
bits. Such a metric is said to be of cohomogeneity-one
and X will be a homogeneous space with respect to G.
There are two cases to consider.

(1) The "Kantowski-Sachs" case in which G has no
simply transitive three-dimensional subgroup. This leads
us to the product metric on S XS so we discuss it no
further.

(2) The case when G has a three-dimensional subgroup
with a transitive action on X. This means that G must be
one of the Bianchi groups, and the metric on X is a left
invariant one for G. We shall now show that these lead
to Bianchi type-IX Einstein metrics. The three-Ricci sca-
lar R of X satisfies

R =2A (4.2)

(by 2.7) and hence is positive unless A =0. This is exclud-
ed since no nonflat compact Ricci flat four-metric admits
continuous isometrics. Of the Bianchi groups, only
type IX [i.e., G=SO(3) or SU(2)] has a left-invariant
metric with positive Ricci scalar so the only
cohomogeneity-one metrics to be considered are of Bian-
chi IX type. If o, , o.2, o.

3 are left-invariant one forms on
SU(2) such that

d (4.3)

and cyclic permutations, the metric may be cast in the
form

d$2 a 2b 2c 2d ~2+ a 2o 2+ b 2o 2+ c 2o 2

FIG. 3. The unique conception theorem shows that, when
the Euclidean rnatter action is positive, a real tunneling solution
cannot nucleate the disconnected Lorentzian spacetime pictured
here.

d~=abc dg . (4.5)

Evidently the metric (4.4) is of the form (2.10) provided a,

where a, b, and c are functions of the variable g which is
related to ~ by
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2jr' =a —( b —c )
—2Aa (4.6)

together with the equations resulting from cyclic permu-
tations of a, b, c and with the constraint:

b, and c are even functions of ~ and hence g.
If we let a =exp(a), b =exp(p), c =exp(y) and denote

differentiation with respect to g by an overdot, the Ein-
stein equation takes the form

tor of the U(1) factor has a fixed point set at the bolt; i.e.,
the bolt is of both the first and the second kind.

C. The Page metric

Page has examined all biaxial or Taub-NUT solutions
of (4.6) and (4.7) and finds that the only compact one oth-
er than S is given by

4(aP+Pj +j ct) =2a b +2b c +2c a a—
—b —c —4Aa bc4 4 2 2 2 (4.7)

a2=b2= 1 —v sin x
3+6v' —v4

3(1+v )

A
(4.12)

and

d —P=(a b)—(a +b c)— (4.8)

From (4.6) we can obtain by subtraction the equations c2—

where

3(1+v )

4A

3 —v —v (1+v }sin x
cos x

(3+v ) (1—v sin x)

(4.13)

a —j =(a c)(a —+c b) . — (4.9)

Metrics of the form (4.4) admitting a reflection map 8
have the property that on X, i.e., at g=~=0, the initial
values of a, b, c and their derivatives satisfy

' 1/2
3(1+v )

A

1 v sin x
3 —v —v (1+v )sin x

' 1/2

=d7

(4.14)

a=p= j =0, (4 10) and v-0. 281 701 56 satisfies

a +b"+c =2a b +2b c +2c a 4Aa b—c . (4.11)
v +4v —6v + 12v —3 =0 . (4.15)

Clearly there is a two-parameter family of initial data
satisfying (4.10) and (4.11). If, as functions of rt, no two
of a, b, and c are equal, we call the solution triaxial. Oth-
erwise it is called biaxial. (In analogous problems with
quadratic forms in optics the terms biaxial and uniaxial
are often used. However, this should cause no confusion
here. )

Proposition: The only solutions satisfying (4.10) and
(4.11) which give a compact Einstein metric are biaxial.

Proof: To have Mtt compact a, b, and c cannot all

remain nonzero, we must "close off the space. " This can
be done if one or three of a, b, and c vanish. This is be-
cause the orbits of SU(2) must collapse in dimension. The
collapsed orbits are still homogeneous spaces of SU(2).
The only possibilities are zero-dimensional points (nuts)
for which a =b =c=0 or two dimensional subspaces
("bolts of the second kind") for which one of a, b, c van-
ishes and the other two become equal. The resulting bolt
is thus either an S or an RP .

Now, let us suppose that a, b, and c are all unequal on
X. With no loss of generality we may then assume
a b) a —c )0.—The right-hand sides of (4.8) and (4.9)
are thus initially strictly positive. It follows from (4.8)
and (4.9) that a —p and a —y are both initially positive
and for all subsequent times strictly positive. Thus, if a,
b, and c start unequal they will remain unequal and no
nut or bolt can arise. Thus, we must have a =b or a =c
(or both) at ~=0. But then a =b or a =c (or both) will be
true for all time and the metric is biaxial.

Biaxial Bianchi type-IX metrics have an extra Killing
vector, i.e., they are invariant under a group
homomorphic to U(1) X SU(2}. If a =b and c vanishes at
a bolt with a =b&0 and da/d~=O=db/d~ the genera-

Clearly, the Page metric admits the orientation reversing
isometry

t9: x~ —x (4.16)

so that E; =0 on the surface x=0. The surface x =0 is

thus the nucleation surface, X, of a real tunneling solu-
tion of the Einstein equation for which Mz is the part of
the Page geometry bounded by X. On X, i.e., at x =0, we
have

a 2/c 2 =3.742 759 8 (4.17)

so that X is a squashed three-sphere.
To obtain the Lorentzian section of the Page metric,

MI, we take x to be pure imaginary. We obtain an ever
expanding universe in which ultimately a and c grow ex-
ponentially as exp(r&3/A). The ratio a /c (which pro-
vides a measure of how squashed the three-spheres are)
tends to the limiting value of approximately 0.803 68249.
This is consistent with the general ideas associated with
the ideas of cosmic baldness and the cosmic no-hair
theorem as we shall show in the next section.

The Page metric exhibits a number of other interesting
features. First it does not admit a spin structure which
may make it difficult to incorporate into a "no-boundary"
sum over histories where integra1 of realistic spinor
matter fields are included. Second, like the round prod-
uct metric on S XS, the closed Euclidean Page metric
possesses a negative-eigenvalue mode of the Lichnerowiz
operator for transverse-traceless metric perturbations.
Its action is therefore not a local minimum in a real
direction which is distinct from that associated with the
conforrnal mode. Such extrema could be the dominant
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contributions to a steepest-descents approximations to
functional integral (1.1) only if the defining contour C can
be distorted to pass through the extrema in complex
directions such that the action is a local minimum. In
the absence of a compelling argument fixing this con-
tour, ' especially on manifolds with nontrivial topology,
we shall consider this possibility. Third, the surfaces at
constant time in the Page metric do not themselves admit
an orientation reversing isometry, or put in more physical
terms are not invariant under spatial parity. There are,
thus, two distinct Page universes which could be created
via tunneling —a right-handed and a left-handed one.
This phenomenon is also related to the property of spec-
tral asymmetry: the spectrum of the instantaneous Dirac
equation Hamiltonian on surfaces of constant time (in the
Lorentzian regime) is not symmetric with respect to the
sign of the energy eigenvalues. This might have some
relevance to the production of particles after
tunneling —more fermions than antifermions might be
created, for example. We do not wish to discuss this
point further in the present paper but simply remark that
a more detailed examination of the Page metric would
seem to be called for. We will return to a discussion of
tunneling via the Page metric in Sec. V.

D. Cosmic baldness

There have been a number of studies of cosmological
models driven by a positive cosmological term motivated
in part by the inAationary scenario. Two important
points have emerged which are relevant to the concerns
of this present paper:

First, if the universe continues to expand forever one
expects the metric to settle down to an asymptotic de
Sitter-like state. However, this settling down is a local re-
sult within the cosmological event horizon of any given
observer. It is definitely not a global result over all of
space since a gravitational-wave perturbation may be
shown to freeze in and persist at late times. The Page
metric is an explicit illustration of this. In the Lorentzian
regime a and c tend to the same universal exponential
form exp(2r&3/A) but the ratio a /c does not tend to
unity, but rather to the ratio 0.80368249. This means
that the surfaces of constant time never become round.
This is also consistent with the general asymptotic
analysis of Starobinsky.

The second point concerns static solutions. The only
static solution which is nonsingular inside a single cosmo-
logical horizon is de Sitter spacetime. (More precisely,
the results refer to static metrics for which
X=X+ AB AX is topologically S, X+ and X being
homeomorphic to a three-ball and B to a two-sphere. )

Proofs of this result have been presented by Boucher
and Friedrichs. ' In fact the regularity condition on the
cosmological horizon (the constancy of the surface gravi-
ty a') ensures that on Wick rotation we obtain an Einstein
metric on S with an hypersurface orthogonal Killing
field. It is believed that the only Einstein metric on S is
the standard round metric although no rigorous proof is
known. Thus, if the surface X is homeomorphic to S, it
seems rather plausible that the only static tunneling solu-

tion is de Sitter space. If however we allow different to-
pologies the situation is less clear. We know of at least
one other static solution —the Nariai metric for which
X=S'XS'.

If one relaxes the condition that the Riemannian sec-
tion is compact and nonsingular then there are probably
very many static solutions containing many black holes
in unstable equilibrium inside a cosmological event ho-
rizon. It is possible that some of these do have a non-
singular Riemannian section. However, even if such
solutions do exist their significance for tunneling is dubi-
ous because (as we shall explain in detail in the next sec-
tion) they must have larger action than the S solution.

V. THE GRAVITATIONAL ACTION AND THE
LARGE-SCALE TOPOLOGY OF SPACETIME

As we have described in the Introduction, if the topol-
ogy and metric of spacetime are quantum variables, then
any theory of the initial condition should yield a predic-
tion for the ensemble of geometrices (manifolds+metrics)
possible for the late universe. We are now in a position
to analyze something of predictions of the "no-
boundary" proposal for this ensemble. Recall that an en-
semble of possible classical spacetimes is predicted when
the Euclidean sum over histories defining the wave func-
tion of the universe can be approximated semiclassically
and the Lorentzian part of the action at the dominant
stationary point varies much more rapidly with three-
metric and matter field than the imaginary part [cf. Eq.
(1.3)]. If, for a given three-geometry and spatial matter
field configuration (h, y, BM) there are several different
stationary points (g, P, M) contributing to the semiclassi-
cal approximation for 4, they contribute with the weight

v(M)A [h,g, BM;g, P, M]exp( I [h,g, BM—;g, P,M]).

(5.1)

Here, AwK& is the usual WKB prefactor and we have
written out the ~hole dependence on boundary data and
classical solution. By examining (5.1) we can determine
which large-scale geometries of the universe the "no-
boundary" proposal favors. Such a program, of course,
says nothing about the topology of spacetime on scales
near the Planck scale where the semiclassical approxima-
tion is unlikely to be valid. Computing a distribution just
of the possible manifolds M would involve assigning a
distribution to (h, y, BM) and integrating these out of
(5.1)—a task which involves some unresolved issues in

the theory. Some idea of the distribution of manifolds,
however, can be obtained by fixing a fiducial (h, y, BM ),
allowing (g, P,M) to range over the remaining possibili-
ties, and comparing their relative weights according to
(5.1). This is the course we shall follow here.

All three factors in (5.1) contribute to the overall
weight of a manifold. However, because of its exponen-
tial dependence, it is a not unreasonable conjecture that
for fixed (h, y, BM) the classical geometry and matter field
configurations most favored by the "no-boundary" pro-
posal are those with the least real action, Iz. We shall as-
sume this in the following.
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I„=I[Ma ]= ,'I[2M~ ]=——AV
(5.2)

where V is the total volume of 2M+. Clearly, I~ is least
when V is greatest. We may now invoke Bishop' s
theorem which states that if

Z.~V V~&CV. V

with C )0 the four-volume V is bounded below by

(5.3)

( 24~
C2 (5.4)

with equality if and only if the metric is the round metric

With these assumptions, the problem of predicting the
large-scale geometry of the universe reduces to finding

those solutions (g, P,M) that contribute to the steepest-
descents approximation with the least real action.
Whether a solution contributes or not depends on wheth-

er the steepest-descents distortion of the contour C in

(1.1) passes through it. ' Indeed, since the analytic prop-
erties of the action imply that every solution corresponds
to two extrema, one with Re&g &0 and the other with
Rev'g & 0, there is, more precisely, the issue of which ex-
tra corresponding to a given solution contribute. Howev-
er, it was argued in Ref. 13 that only solutions with
Re&g &0 give physically sensible predictions for field
theory in the implied curved classical background. We,
therefore, consider only Re&g & 0 extrema in what fol-
lows and this fixes the sign of the action for a solution.

The predictions of the "no-boundary" proposal for the
large-scale geometry of the universe are particularly easy
to extract if one restricts attention to the real tunneling
solutions discussed in this paper, even if one considers all
of them as potential contributors to the steepest-descents
approximation. This is because for a real tunneling solu-
tion the real part of the action comes entirely from the
part of the manifold M„on which the geometry is
Riemannian. For the examples discussed here, IR is in-

dependent of (h, g) and depends only on M. In this case,
assuming the strong form of cosmic censorship which im-

plies that topology cannot change classically, we predict
that the large-scale Lorentzian geometry has the topology
R X X with a weight proportional to exp( Ia ). —

The unique conception theorem shows that there are
no real tunneling solutions for which the Lorentzian
spacetime is disconnected if Euclidean matter energy is
positive. Were this the case, the first conclusion would,
therefore, be that the "no-boundary" proposal predicts
that the large-scale topology of spacetime is connected.
There would be no "other" universes nucleated by a real
tunneling mechanism. One might have thought that the
existence of such other universes was beyond the power
of observational check. However, Hawking has sug-
gested that, because we cannot distinguish which
universe we are in, there might be an effect on the dy-
namics which is in principle observable at early times.

In the absence of matter, but the presence of a positive
cosmological constant, it is possible to identify the real
tunneling solution with least real action. For a solution
to (4.1) the action is

on S . This is confirmed by the actions for the explicit
solutions we have exhibited in view of (4.1):

S: IR= —24m /h A,

S XS I = —16m/l A

Page: I = —0.95534486X16~ /I A .

(5.5)

(5.6)

(5.7)

Thus, among the class of real tunneling vacuum solutions
with positive cosmological constant, that on S has the
least real action. Were real tunneling solutions driven by
positive cosmological constant the dominant extrema of
the action, the "no-boundary" proposal would predict
RXS for the most probable topology of Lorentzian
spacetime with de Sitter geometry as the most probable
metric.

The possibilities in competition with R XS in our ca-
talog of explicit examples would be the following. (1) Nu-
cleation via the Page metric would yield a Lorentzian
geometry with a topology of RXS but a metric different
from the de Sitter metric. This metric can be thought of
as the de Sitter metric with a gravitational wave of the
longest possible wavelength frozen in. (See Ref. 45 for a
detailed discussion of this phenomenon. ) Because of
cosmic baldness it would be difficult to distinguish such a
solution locally from de Sitter space, but, were global in-
formation available the two cases could be distinguished.
(2) Nucleation via the S XS solution would yield a
Lorentzian spacetime with a geniunely different topology
R XS' XS and a different metric. For the present values
of the cosmological constant, I A-10 " these possibili-
ties of long-wavelength gravitational waves and different
spatial topologies are very heavily suppressed despite the
modest differences in the numerical coefficients in
(5.5)—(5.7).

The real world contains matter. The inclusion of
matter will generally make the tunneling solutions com-
plex even in situations with high symmetry. ' In the ab-
sence of an extension of Bishop's theorem to complex
cases or a greater catalog of explicit examples, it is
difficult to draw general conclusions for the prediction of
large-scale topology. However, the fact that the real tun-
neling solutions are local minima of the real part of the
action except for conformal modes' lends some support
to the idea that the arguments given here may generalize.
Were that the case, among the many topologies and
metrics which contribute to it, the "no-boundary" propo-
sal may overwhelmingly predict the simplest topology
RXS with the metric of greatest symmetry on the larg-
est scales of the universe.
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