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The extrema of the Euclidean Regge gravitational action are investigated numerically for some 
closed, compact, four-dimensional simplicial manifolds with topologies S 4, CP 2, and S 2 X S 2. 

I. INTRODUCTION 

Sums over geometries such as occur in the Euclidean 
functional integral approach to quantum gravity may be giv-
en a practical meaning through simplicial approximation. In 
this approximation sums over smooth geometries are re-
placed by sums over simplicial geometries built up out offtat 
simplices by the methods of the Regge calculus. 1 Simplicial 
geometries are specified by the way the simplices are joined 
together and by the squared lengths of their edges. A sum 
over different topologies is approximated by a sum over dif-
ferent ways of putting simplices together. A sum over me-
trics on a given manifold is approximated by a multiple inte-
gral over the squared edge lengths of a collection of simplices 
which triangulate the manifold. 

Simplicial approximations to sums over geometries 
were discussed in general in the first paper in this series2 

(Paper I) where some references to the extensive earlier liter-
ature may be found. The expectation value of some physical 
quantity A in the state of minimum excitation for closed 
cosmologies provides a typical example of such a sum. This 
might read 

(A) = Se A (sj)exp[ - /(sJ] 
Se exp[ -/(Sj)] , 

(1.1) 

where / is the Euclidean Regge gravitational action for a 
closed compact simplicial geometry. For simplicity we have 
illustrated only a sum over metrics on a fixed simplicial 
manifold. Both / and A are functions of the squared edge 
lengths So i = 1, ... ,n). The integral is a multiple integral over 
the space of squared edge lengths along some appropriate 
contour C with some appropriate measure. As throughout 
we use units where Ii = c = 1 and write the Planck length as 
1= (161TG)1/2 • 

In suitable limits the integral (1.1) can be evaluated by 
the method of steepest descents. This is the semiclassical 
approximation. The value of the integral is dominated by the 
contribution near one or more stationary points through 
which the contour can be distorted to pass. At these, 

aI =0. aS j 

(1.2) 

These are the simplicial analogs of the Einstein field equa-
tions. Even when not quantitatively accurate the semiclassi-
cal approximation often yields qualitative insight into the 
behavior of the integral in a straightforward way. 

The important quantities for constructing a simplicial 

sum over geometries and evaluating it in the semiclassical 
approximation are the Regge action and its stationary 
points. Methods for evaluating the action and the Regge 
equations (1.2) were reviewed in Paper I. In this paper we 
shall illustrate these methods by numerically evaluating the 
action and locating its stationary points for a few simple 
simplicial manifolds. We make no attempt to be exhaustive. 
We consider only the Regge gravitational action with posi-
tive cosmological constant. In the continuum limit this is the 
action of Einstein's theory. We shall confine attention to 
compact simplicial manifolds which have no boundary. 
These are the important nets for evaluating expectation val-
ues such as (1.1) (Paper I). We shall consider only real (Eu-
clidean) edge lengths. Even if the contour of integration in 
( 1.1 ) is complex, the real stationary points seem likely to play 
a significant role in any semiclassical evaluation of the inte-
gral. 3 Within this limited scope, however, we shall be able to 
illustrate how the Regge action approximates the continuum 
action, to display its values in a number of interesting cases, 
and to solve for the stationary points on simple manifolds 
with differing topologies. 

To evaluate the action one must first have a simplicial 
manifold. That is, one must specify a set of vertices, edges, 
triangles, tetrahedra, and four-simplices which make up a 
manifold with the desired topology. The specification of a 
simplicial manifold is discussed in Sec. II. Quoting largely 
from the mathematical literature we shall exhibit simplicial 
manifolds which are triangulations of S 4, CP 2, S 2 X S 2, and 
S)XS 3• 

In Sec. III we illustrate the evaluation of the action us-
ing families of geometries on S4 and CP2. We compare the 
action of the most symmetric simplicial geometries with that 
of the most symmetric continuum geometries on these mani-
folds. In less symmetric cases we illustrate the behavior of 
the action for homogeneous, anisotropic geometries and for 
geometries which are conformal deformations from the most 
symmetric cases. We shall recover features familiar from the 
continuum theory such as arbitrarily negative actions aris-
ing from conformal deformations. 

Section IV is concerned with the solution of the Regge 
equations on S 4 and CP 2. Solutions are found by imposing 
symmetries. The eigenvalues of the matrix describing the 
second variation of the action at these stationary points is 
also calculated. A more systematic approach to solving the 
Regge equations is discussed in Sec. V and the difficulties for 
this method arising from the approximate diffeomorphism 
group of a simplicial geometry are illustrated. 
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II. SOME SIMPLICIAL MANIFOLDS 
A four-dimensional simplicial manifold is a collection of 

vertices, edges, triangles, tetrahedra, and four-simplices 
joined together such that a neighborhood of every point can 
be smoothly and invertibly mapped into a region of four-
dimensional Euclidean space R4. In more mathematical ter-
minology, a simplicial manifold is a simplicial complex 
which is a piecewise linear manifold.4 

A complex may be described by labeling its simplices 
and specifying how they are contained in one another. (Here 
and from now on we shall omit the qualification "simplicial" 
from manifold, complexes, etc., it being understood that the 
objects of interest in this paper are constructed from sim-
plices.) A complex which is a four-manifold is homogeneous-
ly four-dimensional. That is, every simplex of dimension 
k < 4 is contained in some four-simplex. Homogeneously 
four-dimensional complexes may be specified by labeling 
their k-simplices by integers from 1 up to the total number 
nk and then listing the vertices ofthe four-simplices. Such a 
list defines the vertex matrixj4(i,}} which gives the five ver-
ticesj = 1, ... ,5 of the ith four-simplex. From this the vertices 
of the edges, triangles, and tetrahedra of the complex can be 
computed and in particular the matricesjk(i,}} which give 
the verticesj = 1, ... ,k + 1 of every k-simplex i. 

An alternative way of specifying a complex is to give its 
incidence matrices. We assign numbers 1, ... ,nk tolabelthek-
simplices of the complex. The incidence matrixs ik(i,}) for 
j = 1,2, ... gives the labels of the k-simplices contained in the 
(k + 1 I-simplex i. Clearly the incidence matrices can be com-
puted from the vertex matrices and vice versa. Given the 
matrix j4(i,)! which specifies the vertices of the four-sim-
plices of a complex we can compute all the other ik andjk' It 
is not true, however, that given the matrix io(i,}}, which 
specifies which vertices are connected by edges, one can 
compute the rest of the complex. For example, there might 
be a complex with no> 5 vertices in which every vertex is 
connected to every other (we shall display some subsequent-
ly), so that io(i,}} is always 1 for i :j:j. This io is the same as the 
io for the (no - I)-simplex. To be a four-dimensional com-
plex the five-simplices, which could be constructed from the 
given edges, and the four-simplices in which they intersect 
must be left out and fo does not say which they are. 

Not every matrix j4(i,)} which specifies a four-dimen-
sional complex specifies a manifold. A complex is a manifold 
if every point (including the interior points of the simplices) 
has a neighborhood which is homeomorphic to a ball in R4. 
A necessary and sufficient condition for a complex to be a 
manifold may be stated in terms of the star and link of a 
simplex. The star of a simplex u is the collection of all sim-
plices which have u as a face together with all of their faces. 
The link of a simplex u consists of all simplices in its star 
which do not have u as a face. (See Paper I for some illustra-
tions.) A complex is a four-manifold if and only if the link of 
every k-simplex is a (3 - k )-sphere.6 This is not a condition 
which translates very straightforwardly (if at all) into an al-
gorithm for deciding whether a complex is a manifold or 
not.7 However, necessary conditions which are easy to test 
can be derived. For example, for the link of every tetrahe-
dron to be a zero-sphere (two vertices), two four-simplices 
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must intersect in exactly two tetrahedra or not at all. This is 
the analog of two triangles intersecting in exactly one edge in 
a two-manifold. In particular this implies that the total num-
ber of tetrahedra and four-simplices are related by 

5n4 = 2n3 • (2.1) 
Another condition on the total number of simplices may be 
derived8 by fixing attention on a vertex u and considering the 
collection of simplices N (u) which is the star of u less its link 
and less the vertex u itself. The Euler number of any homo-
geneously n-dimensional complex with mk k-simplices is 

n 

x= L (- Wmk' (2.2) 
k=O 

Since the link of a vertex of a four-manifold is a sphere with 
X = 2, and since the star of a vertex is a four-ball with X = I, 
the Euler number of N (u) vanishes. Summing this relation 
over all vertices of the manifold one finds 

2nl - 3n2 + 4n3 - 5n4 = 0 . (2.3) 
This is an example of a Dehn-Sommerville relation. 

Neither (2.1) nor (2.3) is sufficient to guarantee that a 
complex is a manifold. The absence of a straightforward 
combinatoric check of whether a complex is a manifold 
means that finding explicit simplicial manifolds with inter-
esting topology is a challenging mathematical problem. In 
the literature (to quote a review of the three-dimensional 
problem9) "explicit triangulations of topologically nontrivial 
three-manifolds have been observed only very rarely" and 
their construction by and large has been by special tech-
niques. Given this situation we cannot attempt a systematic 
survey of four-dimensional simplicial manifolds. Rather in 
this section, drawing almost entirely on the mathematical 
literature, we shall exhibit a few examples. We shall classify 
them by the customary name of their topological space. The 
specific complex is then said to be a specific triangulation of 
the space. 

A.S4 
The surfaces of the tetrahedron, octohedron, and icoso-

hedron are triangulations of the two-sphere. They are regu-
lar in the sense that no vertex or edge is distinguished from 
any other. The analog regular triangulations of S4 are the 
surfaces of the regular solids in five dimensions, which are 
composed entirely of four-simplices. There are only two. 10 

The first is the surface of the five-simplex as obtained by 
joining each of six vertices in five-dimensional Euclidean 
space to every other vertex. Thus, no = 6, n l = IS, n2 = 20, 
n3 = 15, and n4 = 6. The second is the surface of the five-
dimensional cross polytope {is. This may be constructed by 
taking five orthogonal axes, locating two vertices on each 
axis on opposite sides of the origin, and connecting each 
vertex to every other except its opposite. For /3s, no = 10, 
n I = 40, n2 = 80, n3 = 80, and n4 = 32. The vertex matrices 
of as and /3s are given in Table I. The regular nature of the 
triangulations as and/3s can be expressed concretely by giv-
ing their symmetry groups expressed as operations on the 
vertices. I I The symmetry group of as is the permutation 
group on the six-vertices S6' In the context of the construc-
tion described above the symmetry group of /35 consists of 
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TABLE I. Four-simplices of a" /3s, and CP . 

I 234 5 
I 2 346 
12356 
I 245 6 
I 345 6 
2 345 6 

I 234 5 
I 234 6 
12357 
12367 
12458 
1 246 8 
12578 
1 267 8 
1 3 4 5 9 
1 346 9 
1 357 9 
1 367 9 
14589 
14689 
15789 
16789 
234510 
234610 
235710 
236710 
245810 
246810 
2 5 7 8 10 
267810 
345910 
346910 
357910 
367910 
458910 
468910 
578910 
678910 

no= 9, n4 = 36 

12456 
2 3 564 
3 164 5 
12459 
2 3 5 6 7 
3 164 8 
2 3 649 
3 1 4 5 7 
12568 
3 1 569 
1 2 6 4 7 
2 3 4 5 8 
4 5 789 
5 6 8 9 7 
64978 
4 5 7 8 3 
5 689 1 
64972 
5 6 9 7 3 
6 4 7 8 1 
4 5 892 
6 4 8 9 3 
4 5 971 
56782 
7 8 123 
89231 
97312 
7 8 126 
89234 
97315 
89316 
9 7 124 
7 823 5 
9 723 6 
7 8 3 1 4 
8 9 125 

permutations of the five orthogonal axes and the reflections 
in each. In more mathematical terminologyl2 it is the wreath 
product of the permutation groups 8 2 and 85 written 
8 2 wr 85, Less regular triangulations of 8 4 could be obtained 
by subdividing as or /35 in a systematic fashion or by subdi-
viding the faces ofthe only other regular solid in five dimen-
sions-the cube. 

B.Cpz 
A highly symmetric triangulation of CP 2 has recently 

been given by Kiihnel and Lassmann 13 and many of its beau-
tiful properties explained in a lucid article by Kiihnel and 
Banchoff. 14 Their triangulation, which they denote by CP 
has no = 9, nl = 36, n2 = 84, n3 = 90, and n4 = 36, so that 
the Euler number is indeed 3. They found their triangulation 
by a series of arguments that suggested nine vertices and 
then a computer search to see how a known list of eight 
vertex triangulations of the sphere could serve as links of a 
nine vertex manifold. Their vertex matrix for CP is given in 
Table II. There is an edge connecting every pair of vertices 
and a triangle filling in every triple of vertices. The symmetry 
group of CP is of order 54 and is generated by the permuta-
tions 
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TABLE II. The action for equal-edged triangulation of S4 and CP2. 

Manifold Triangulation 

as 
/3s 

round sphere 

Fubini-Study 

a = (123)(465), 
/3 = (147)(258)(369), 
1" = (12)(45)(78) . 

a 

107.9 
81.1 
61.6 

50.4 

37.7 

The authors of Ref. 14 denote this by H S4 ' 

C. T4 

4.90 
2.80 

2.14 

(2.4) 

The most straightforward way to triangulate a two-
torus is to represent it as a rectangle with opposite sides iden-
tified, divide the rectangle into a sufficient number of smaller 
rectangles, and triangulate each one. An example is given in 
Fig. I(a). In four dimensions, an analogous triangulation of 
the four-torus T4 may be constructed by joining together 
triangulated hypercubes. This construction has been given 
in detail by Rocek and Williamsls and used by Hamber and 
Williams 16 in explicit calculations. The minimum number of 
hypercubes is 81. This triangulation has 81 vertices and 1944 

(a) 

(b) 

FIG. 1. Two triangulations of a two-torus. The identification of the opposite 
sides of a rectangle without twist produces a two-dimensional torus T2. Di-
vision of this rectangle into triangles such that the conditions for a simplicial 
complex are satisfied produces a triangulation of T2. Two nine-vertex trian-
gulations are shown. The triangulation (a) builds the torus out of standard 
squares and has two translation symmetries. Viewing the torus as S I xS I 
and applying the product construction described in the text to the product 
of two triangles produces the triangulation shown in (b). It is not as symmet-
ric as (a). 
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four-simplices. The symmetry group clearly contains the 
symmetry group of the hypercubic lattice which makes T4. 

The straightforward triangulation of T2 shown in Fig. 
l(a) is not the one with the minimum number of vertices. The 
minimum numberis 7. Similarly, triangulations of T4 can be 
found with a smaller number of vertices than the hypercubic 
triangulation. KUhnel17 has exhibited a 31 vertex triangula-
tion of T4. The vertex matrix for its four-simplices is generat-
ed by taking the four-simplices (0,1,3,7,15), (0,1,3,11,15), 
(0,1,5,13,15), and (0,4,5,13,15) and applying the group 
x----+ox + 1, x----+o - x, x----+o2x to all the entries considered as 
elements of Z31' There results a triangulation with 704 four-
simplices. 

D.S2XS2 
The product of two simplices is not another simplex but 

a cell. For example, the product of two edges is not a triangle 
but a quadrilateral. Cells, however, can always be divided up 
into simplices and furthermore in a way which does not in-
troduce any new vertices. 18 In this way a triangulation of a 
product manifold can be generated from triangulations of its 
products. The simplest example is the construction of a 
triangulation of a two-torus T2 = S I xS I from the product 
of two "triangles," which are the simplest triangulations of 
S I. The result is a nine vertex triangulation of the torus (e.g., 
Fig. 1). 

The process of triangulating the cells can be system-
atized as followsI8.19; Consider the cell a'"Xo" which is the 
product of an m-simplex with an n-simplex. Number the 
vertices of a'" in some ordered fashion io < i I < ... < im and do 
similarly for 0", jo <jl < ... <jn' The vertices of the cell 
a'"Xo" are the pairs (ia,jp). The ordering of the vertices 
establishes a partial ordering on the pairs. We say (i,J1 < (k,/) 
if i <k, j d, or if i< k, j<l. A triangulation of the cell 
a'" X 0" is given by the k-simplices spanned by vertices 
(io,jo), ... ,(ik ,jk) such that 

(io,jo) < (il,jtl < ... < (ik,jd . (2.5) 
A triangulation of a product manifold may be obtained by 
triangulating the products of simplices in its factors in this 
manner. In the case of the torus described above this syste-
matic procedure yields the rather unsymmetric triangula-
tion shown in Fig. l(b). 

Applied to the product of two tetrahedra, the above pro-
cedure yields a triangulation of S 2 X S 2. There are 16 vertices 
formed by the products (i,j) of the four vertices of each tetra-
hedron, i = 0, ... ,3;j = 0, ... ,3. The four-dimensional cells are 
the products of the form u2xu2. The k-simplices of the 
triangulation are spanned by all sequences of the form (2.5) 
in which not all four vertices occur either in the sequence 
io, ... ,ik or in the sequencejo, ... ,jk' This condition arises be-
cause the triangles in the factors of u2 X u2 have three ver-
tices so that no more than three different vertices occur in 
any cell. This triangulation of S 2 xs 2 has no = 16, n I = 84, 
n2 = 216, n3 = 240, and n4 = 96. Like the triangulation of 
the torus exhibited in Fig. l(b), it is not very symmetric. 
There are 25 independent edge lengths. It is an interesting 
question whether there are more symmetric triangulations 
ofS 2 XS 2• 
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FIG. 2. The action for some homogeneous, isotropic, simplicial four-geo-
metries on S·. The figure shows the action for the four-geometries which are 
the boundaries of the five-simplex (as) and the five-dimensional cross poly-
tope ( Ps) (the five-dimensional generalization of the octohedron). In these 
triangulations no edge is distinguished from any other. The action for the 
geometries of highest symmetry with all edges equal is plotted against the 
total four-volume V for the value of the cosmological constant correspond-
ing to H 2 = 1. Also plotted is the "continuum" action for the round four-
sphere. The actions are negative for small Vbut become positive at large V 
due to the cosmological constant term in the action. At the minimum there 
is a solution of the Regge equations with all edges equal. The triangulation 
Ps is more refined than as and better approximates the continuum action. 

E. S8XS' 
An 11 vertex triangulation of S 3 X S 1 has been construct-

ed by Kuhne!. 20 It is generated by taking the four-simplices 
(0,2,3,4,5), (0,1,3,4,5), (0,1,2,4,5), and (0.1,2,3,5) and apply-
ing the operation x----+ox + 1 to all vertices of each considered 
as elements ofZII . There result 44 four-simplices. 

III. EVALUATING THE ACTION 
The Regge action for a simplicial manifold consisting of 

collections of k-simplices l:k' k = 0,1, .... 4, is 
6H 2 

12/ = - 2 > V2(U)O(U) + -2 L Vir). (3.1) 
1 TEl:. 

Here, we have written 3H 2/12 for the cosmological constant, 
Vk is the volume of a k-simplex, and 0 (u) is the deficit angle 
of triangle u. This is defined by 

O(u) = 211' - L o (u,r) , (3.2) 
... :::>0' 

where the sum is over the four-simplices r. which contain u, 
and 0 (u.r) is the dihedral angle between the two tetrahedral 
faces of r, which intersect in u. The volumes Vk and dihedral 
angles 0 (u.r) may all be expressed in terms of the squared 
edge lengths of the geometry through standard flat space 
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formulas. (How to do this was reviewed in detail in Paper I, 
Sec. III.) In this way the action becomes a function of the 
squared edge lengths ofthe simplicial geometry. 

For even the simple triangulations displayed in Sec. II 
the number of edge lengths is large enough that the func-
tional form of the action can be readily displayed only on 
slices through the space of edge lengths. The symmetry of 
the triangulation often suggests suitable slices. In this section 
we display some numerical calculations of the Regge action 
on some obvious slices of the triangulations of S 4 and CP 2 

described in Sec. II. 
The edges of the triangulations as and /3s of S 4 are equi-

valent in the sense that anyone edge is transformed into 
every other by the action ofthe symmetry group. It is there-
fore interesting to investigate the action of the triangulations 
when all their edge lengths are equal; this turns out to be an 
interesting case for CP as well. Equivalently one can quote 
the action as a function of the total volume of the closed 
geometry since the total volume of n4 four-simplices of equal 
squared edge lengths s is 

'" '" o u 

V = n4($196)r . (3.3) 

Lit 

FIG. 3. The action for distorted five-simplices. The figure shows a contour 
map of the action (divided by 100) for a two-parameter family of five-sim-
plices in which all the edges are oflength L except for those emerging from 
one vertex which have the value L /(2 cos a). The cosmological constant has 
the value corresponding to H 2 = 1. As shown in Fig. 6, values of cos a near 
zero correspond to long thin five-simplices while small values of a corre-
spond to nearly tlat five-simplices. The solid contour lines are spaced by 
units of 200 in I while the dotted ones are spaced by units of 2000. The 
contour lines become too closely spaced for clear display in the hatched 
areas at bottom and right. Contour lines are not shown for very small values 
of cos a because the author's calculation was not very accurate there. There 
are no five-simplices with a value of cos a greater than 0.81 because the 
four-simplex inequalities are not satisfied for larger values. The action is 
well behaved at this boundary of the space of edge lengths. The contour map 
shows the negative gravitational action associated with inhomogeneous 
conformal distortions. There is an extremum corresponding to all equal 
edges with a value of 4.9/. This extremum is a saddle point not a maximum 
or minimum. The action generally becomes positive at large L because of 
the positive cosmological constant term. For large L and cos a near 1, how-
ever, the action does not become positive but remains negative. These values 
correspond to large but nearly zero volume four-geometries. They are direc-
tions along which the sum over geometries evaluated along a real contour 
will not be exponentially damped. 
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On dimensional grounds the action at equal edge lengths 
must take the form 

1= - o(V 1/4)1/2 + 6H 2 V 1/4. (3.4) 

Table II shows the dimensionless parameter 0 for the trian-
gulations as and /3s of S 4 and the triangulation CP of CP 2. 

For the case of as and /3s this parameter agrees with that 
calculated analytically by Hamber and Williams. 16 Its agree-
ment is thus a check of the numerical algorithm. 

Table II also shows the continuum value of the param-
eter 0 for the metrics of highest symmetry. This is the round 
sphere metric on S 4 and the Fubini-Study metric21 on CP 2. 

The equal edged as, /3s, and may be considered as ap-
proximations to these most symmetric continuum geome-
tries. The simplicial actions lie below the continuum action 
for given V. In the case of S4, as one proceeds from as to the 
more refined triangulation/3s, the approximation to the con-
tinuum action improves, as is shown more graphically in 
Fig. 2. The actions are negative for small Vas a consequence 
of the dominance of the curvature term and positive at large 
Vbecause of the cosmological constant term. The minimum 
of the action corresponds to a solution of the Regge equa-
tions (1.2) as will be discussed in Sec. IV. 

Figures 3, 4, and 5 show the Regge action for S 4 evaluat-
ed on some two-dimensional slices of the space of edge 
lengths. Figure 3 shows the action on a family of distorted 
five-simplices. All edges have the value L except for those 
emanating from one particular vertex which have the value 
L 1(2 cos a). A two-dimensional analog is shown in Fig. 6. 
For fixed L, as cos a increases from zero, the five-simplex 
ranges from "long and thin" to "short and squat." Beyond a 
value cos a e = (5/8)1/2, where it becomes degenerate, it is no 
longer possible to embed the five-simplex in five-dimension-

'" o u 

o 2 
Lit 

3 4 5 

FIG. 4. The action for distorted l1;s. This figure shows the action (divided 
by 100) for a two-parameter family of geometries which are the surface of a 
five-cross polytope. All edges have the value L except those emerging from 
one vertex which have the value L /(2 cos a). The family of geometries is 
thus essentially the same as that displayed in Fig. 3 but with a more refined 
triangulation of S4. The qualitative features of this map are essentially the 
same as those of Fig. 3 to whose caption the reader is referred for a descrip-
tion. 
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Lit 

FIG. S. The action for some homogeneous anisotropic five-simplices. Iffour 
of the five edges emerging from anyone vertex of a five-simplex are assigned 
a value L and the remaining edge is assigned the value f L, there results a 
simplicial geometry which is homogeneous in the sense that any vertex is 
equivalent to any other, but anisotropic in the sense that not all directions at 
a given vertex are equivalent. A contour map of the action (divided by 100) 
for these geometries is shown here for the vlaue of the cosmological constant 
corresponding to H 2 = 1. Solid contour lines are spaced by intervals of 100 
in action and dotted lines by SOO. In the shaded regions the contours are too 
close together for clear display. The four-simplex inequalities are violated 
for sufficiently large f so that there is a boundary to the space of edge 
lengths. The action has a saddle point extremum at the isotropic (all edges 
equal) geometry previously shown in Fig. 2 and 3. 

al flat space even as it is impossible to embed the two-dimen-
sional analog of Fig. 6 in three-dimensional flat space be-
yond cos a e = (3/4)1/2. Embedability in a 
higher-dimensional flat space, however, is not a physical re-
quirement for a four-geometry. The physical range of a ex-
tends beyond a e to the value acrit where cos acrit = (2/3)1/2 
at which the volume of the four-simplices vanishes and the 
four-simplex analog of the triangle inequalities are no longer 
satisfied. 

One may think of the sequence of five-simplices generat-
ed by varying a as produced by a conformal deformation of 
the equal-edged five-simplex. Following Rocek and Wil-
liams, 16 a conformal transformation of a simplicial geometry 
may be defined by giving a function 0; on the vertices and 
then transforming the edge lengths as 

sij = O;Oj"fij . (3.5) 
Ifwetakesij =L,foralliandjandO; = 1,0nallverticesbut 
one where it equals 1/(2 cos a), we recover the sequence of 
distorted five-simplices. 

A contour map of the action for the two-parameter fam-
ily (L,cos a) of distorted five-simplices is shown22 in Fig. 3. A 
similar family of distorted cross polytopes can be construct-
ed by singling out the edges extending from a particular ver-
tex. The contour map for this family is shown in Fig. 4. The 
two cases have essentially the same features: The action be-
comes positive for large L where the cosmological constant 
term dominates. There is one extremum which has all edges 
equal (cos a = !). It is not a minimum or a maximum but a 
saddle point. In the directions of conformal deformation 
away from the extremum the action becomes significantly 
negative. This is a simplicial example of the nonpositivity of 
the gravitational action in the continuum theory.23 
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FIG. 6. A family of distorted three-simplices. The figure shows two-dimen-
sional analogs of the distorted five-simplices whose action is displayed in 
Fig. 3. All the edges are equal except those emanating from the top vertex. 
The ratio of the two types of edges is controlled by the angle a. As a de-
creases from 1T/2 to 0 one moves from a long and thin three-simplex, 
through shorter and squatter ones. Eventually at a value a. the three-sim-
plex degenerates. For values of a smaller than a. the geometry is no longer 
embeddable in ftat threcHlimensional space. It remains a well defined two-
geometry, however, since the triangle inequalities are not violated until 
a=O. 

The distorted as's and,8s's described above are inhomo-
geneous in the sense that one vertex is distinguished from 
among all others. A class of homogeneous but anisotropic 
simplicial geometries may be produced by treating all ver-
tices equally but by allowing different length edges to eman-
ate from each vertex. For example, we can consider the five-
parameter family of surfaces of the five-simplex obtained by 
allowing the five edges meeting in each vertex to take on 
different values. A simple example is the two-parameter 
family in which four edges have equal values and the remain-
ing edge a distinct value. The action for such a two-param-
eter family is shown in Fig. 5. The familiar saddle point ex-
tremum is seen again on this new slice. 

While all the vertices of the triangulation CP; of the 
manifold CP 2 are equivalent, all the edge lengths are not. 
The edge lengths fall into two classes. For any pair of edges 
of a given class there is an element of the symmetry group 
HS4 which carries one edge into the other. With the labeling 
of the vertices used in Table I, one class (class I) consists of 
the edges (12), (13), (23), (45), (46), (56), (78), (79), and (89), and 
the other (class II) consists of all the rest. It is therefore inter-
esting to plot the action when all the edge lengths of class I 
have the value LI and all those of class II the value Ln . Such 
a plot is shown in Fig. 7 for H 2 = 1. Again the familiar saddle 
point extrema of the action is observed at a point where 
LI = Ln· 

IV. SOLUTIONS FOR SIMPLICIAL GEOMETRIES WITH 
HIGH SYMMETRY 

Two things are important for the exploration of the se-
miclassical approximation to a sum over geometries such as 
that of Eq. (1.1). First, one needs the extrema of the action, 
that is the solutions of the Regge equations 

aI =0, i= 1, ... ,n l • (4.1) 
as; 

Second, one needs the eigenvalues A;, i = 1, ... ,n l of the sec-
ond derivative matrix of the action 

James B. Hartle 292 
 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.111.16.22 On: Thu, 14 Nov 2013 22:24:45



FIG. 7. The action for the triangulation CP; of the manifold CP 2 plotted as 
a function of the edge lengths of the two types of edges. Here CP has two 
classes of edges which are carried into each other by the action of its symme-
try group. The action (divided by 10) is plotted here for H 2 = I against the 
two values of the edge lengths L) and L II' Solid contour lines are spaced by 
units of 10 and dotted lines by units of 50. The simplicial inequalities are 
violated in the shaded region to the left. Contours become too dense for 
display in the shaded region at the upper left. There is a saddle point extre-
mum when L) =L II =2.14. 

1(2) = (4.2) 
IJ aS

j 
aSj 

evaluated at the extrema. The extrema determine where the 
action is to be evaluated in constructing the semiclassical 
approximation. The determinant of Ie) gives the contribu-
tion from the integration over quadratic fluctuations about 
the extremum [see, e.g., Eq. (4.1) of Paper I]. This determi-
nant is the product of the eigenvalues A j' 

For simplicial geometries in which the typical edge 
length is small compared to the curvature scale, there will be 
local regions containing many vertices in which the geome-
try is essentially flat. Variations in the edge lengths corre-
sponding to those induced by motions of these vertices in flat 
space will leave the geometry and hence the action approxi-
mately unchanged. These variations are the analogs of the 
diffeomorphisms of the continuum theory.2,15 Their pres-
ence is signaled by small eigenvalues Aj , which may require 
special treatment to evaluate the semiclassical approxima-
tion accurately. The values of the individualA j are therefore 
of interest. 

In constructing the semiclassical approximation, solu-
tions of(4.1) with both real and imaginary Sj are of interest, 
but the real solutions are easiest to find. One would expect to 
find real solutions for triangulations of manifolds for which 
real solutions of Einstein's equation 

RaP = (3H2//2)gap (4.3) 
exist in the continuum theory. There could also be "spur-
ious" extrema of a simplicial action which do not correspond 
to continuum solutions; some have been reported. 24 The 
Euler number of a manifold for which there is a real solution 
ofEq. (4.3) must satisfy 

X>Q 
Thus, for the catalog of simplicial manifolds described in 
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TABLE III. Eigenvalues and multiplicities of a 21/ as, aSj at the stationary 
point. 

as {35 
[4H- 2A PA. [4H- 2A PA. /4H- 2A PA. 

-0.27 9 -0.39 4 -0.72 6 
-0.11 5 -0.36 15 -0.67 2 
+0.11 1 -0.34 5 -0.37 5 

-0.30 10 -0.25 6 
-0.15 5 -0.16 6 
+0.23 1 -0.048 2 

-0.047 2 
-0.012 6 
+0.29 1 

Sec. II, we do not expect to find real solutions for triangula-
tions of T4 andS I X S 3 whose Euler number vanishes. We do 
expect to find solutions for S4, Cp2, and S2XS2 for which 
continuum solutions exist. 

For simplicial manifolds of high enough symmetry that 
no edge is distinguished from any other, it is easy to find the 
solutions of (4.1) with all edges equal if they exist. With all 
equal edges, all the aI/ aS j are equal and one can easily calcu-
late this one number and see where it passes through zero. 
We have carried out such a procedure for the triangulations 
a 5 andP5 of S4. As described in Paper I, aI/ aS j was comput-
ed from 

J;=/2 aI = -2 L O(u)aV2 + L aV4(1') =0. 
aS j O'E l:, aS j / TEl:. aS j 

(4.5) 
The value of the edge length Lex! for which the action is 
extremized is shown in Table II for a 5 and P5 • These corre-
spond to the extrema located graphically in Sec. III. 

Figure 7 suggests that the extrema for CP is found 
when all the edge lengths of the simplicial geometry are 
equal. We have verified numerically that all the J; are equal 
when all the edge lengths are equal by evaluating (4.5). The 
value of the edge length Lext' which extremizes the action, is 
quoted in Table II. 

The matrix I at the stationary point can be straightfor-
wardly computed by numerical differentiation of Eq. (4.5) 
and its eigenvalues and eigenvectors can be computed by 
standard numerical methods. The resulting eigenvalues A 
and their multiplicities p;., are shown in Table III for as, Ps, 
and CP These eigenvalues and eigenvectors are classifiable 
by the irreducible representations of the symmetry group of 
the triangulation. Not all irreducible representations will oc-
cur. Those that do occur and the corresponding multiplic-
ities can be predicted as follows: The matrix I may be 
viewed as the matrix elements of a linear operation on an n 1-

dimensional vector space in a basis in which there is a corre-
spondence between the basis vectors and the edges in some 
standard order. We shall call this the edge vector space. A 
permutation of the vertices induces a permutation of the 
edges and thus a linear operation in the edge vector space. 
Since the symmetry group G of a simplicial complex is a 
subgroup of the permutation group on no vertices Sno' its 
elements p can be represented as matrices on the edge vector 
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space. These matrices give a representation of G which is 
reducible. The irreducible represenations that it contains are 
the irreducible representations that label the eigenvalues of 
I and the dimensions of these irreducible representations 
are the multiplicities with which the eigenvalues occur. 

To find the irreducible representations of G, which are 
contained in the reducible representation on the edge vector 
space, one can analyze the characters of the reducible repre-
sentation 1T(p) into the characters of the irreducible represen-
tations i" (P) of G. That is, one forms 

(1r, i") = 2. L 7r(p)i"(P), (4.6) 
g pEG 

where g is the order of G. An irreducible representation i 
occurs (1r, i" ) times in 1r. 

The characters 1T(p) are easily seen to be 
1T(p) = (number of edges left unchanged by pl. (4.7) 

The characters X(I) are determined by the group G. For as 
the symmetry group is S6' For /35 it is S2 wr Ss as discussed 
in Sec. II. Character tables for these groups can be found in 
Ref. 12. A character table for the group HS4 of CP was very 
generously computed for the author by Dr. J. Sax!. The re-
sults of the above analysis are as follows: The IS-dimensional 
reducible representation of S6 splits as 15 = 1 + 5 + 9, 
where the factors are the dimensions ofthe irreducible repre-
sentations. The 4O-dimensional reducible representation of 
S2 wr Ss splits as 40 = I + 4 + 5 + 5 + 10 + 15. The 36-di-
mensional reducible representation of HS4 splits as 
2(1 + 1 + 1) + 4·6 + 2 + 2 + 2 where multiplication indi-
cates an irreducible representation which occurs more than 
once. The multiplicities of the eigenvalues calculated nu-
merically shown in Table III are consistent with this analysis 
although there is an unaccounted for degeneracy among five 
of the eigenvalues for CP 

In each ofthecasesas,/3s, and eigenval-
ues is positive and all the rest are negative. The eigenvector 
of the positive eigenvalue shows that it corresponds to a uni-
form increase or decrease in the lengths of all edges. This 
reflects the fact that the stationary configuration is a mini-
mum of (3.4). In all other principle directions the action is a 
maximum. Thus with these small number of vertices there 
are not enough degrees of freedom to represent the true 
physical degrees offreedom of the continuum theory. 

V. ITERATIVE SOLUTIONS 
Simplicial manifolds with a large number of vertices 

should not be expected to also possess high symmetry. Only 
for very special manifolds, therefore, can one expect to be 
able to use symmetry to find extrema of the action. In gen-
eral one must simply solve the nl algebraic equations 

J; =12 a1 =0 (5.1) 
as; 

for the sets of n 1 squared real or complex edge lengths which 
extremize the action. 

The numerical problem of extremizing the action is a 
difficult one. One cannot use the familiar algorithms to 
search for maxima or minima because, as the examples in 
Sec. III show, the extrema are, in general, saddle points. 
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There appears to be no better way of locating saddle points 
than solving Eqs. (5.1) directly. 

The Newton-Raphson method is conceptually the sim-
plest technique for solving a system of algebraic equations. 
Introducing vector notation in the edge vector space, one 
chooses an assignment of edge lengths s and attempts to 
solve for the displacement As to an assignment which will 
make f(s + As) = O. Expanding this requirement to first or-
der in As one finds 

As = - [1(2)(s)] -I. f(s), (5.2) 

where 1(2) is the matrix of first derivatives of the field equa-
tions or second derivatives of the action 

1 \2) = a/; 
') . aSj as; as] 

(5.3) 

In the usual Newton-Raphson method one picks intelligent-
ly a starting s, iterates Eq. (5.2), and hopes to converge to a 
solution. 

For simplicial manifolds with small numbers of vertices 
the Newton-Raphson method works well. For example, we 
have located the equal-edged extremum of as by starting 
with significantly differing edge lengths and iterating Eq. 
(5.2) less than ten times. 

For simplicial manifolds with larger number of vertices, 
the Newton-Raphson method is doomed to work poorly. It 
requires the inversion of the matrix 1(2). As has been dis-
cussed in Sec. IV, one expects the approximate diffeomor-
phisms of a manifold with a large number of vertices to mean 
that the matrix 1(2) will have near-zero eigenvalues corre-
sponding to the directions along which the action is approxi-
mately constant. In the limit of large no it is increasingly 
difficult to invert 1(2) and increasingly less to find a 
predicted As of reasonable size which does not violate the 
simplicial inequalities. We have verified this the hard way by 
attempting to solve the field equations for the 16 vertex 
triangulation of S 2 X S 2 described in Sec. II. This triangula-
tion has 25 inequivalent edges. Evaluated at a typical point, 
approximately four of the 25 eigenvalues were near zero. We 
were unable to locate an extremum in a short time. 

Of course, there are many better algorithms for solving 
algebraic equations than the naive one (5.2) and some have 
been applied to the Regge calculus with success by Sorkin.2S 
It would be of interest to apply them here. 

The difficulty encountered in the Newton-Raphson 
method is generic. For large no, the extrema of the action lie 
in long "troughs" in the space edge lengths along which the 
action is nearly constant. There is an extremum, but it will be 
difficult to distinguish it from other configurations in the 
trough. This is no surprise and is in fact a familiar problem in 
general relativity. Einstein's equation does not possess a 
unique continuum metric for a solution but rather a family of 
metrics equivalent under diffeomorphisms. To pick out a 
unique solution one must specify a coordinate system or "fix 
the gauge." There are no exact diffeomorphisms of the gen-
eral simplicial geometry but approximate diffeomorphisms 
produce an approximate ambiguity in the solution of the 
Regge equations in approximately the same way. 
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