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The sums over histories which specify the quantum state of the
universe may be given concrete meaning with the methods of the
Regge calculus. Sums over geometries may include sums over
different topologies as well as sums cver different metrics on
a given topology. In a simplicial approximation to such a sum,
a sum over topologies is a sum over different ways of putting
simplices together to make a simplicial geometry while a sum
over metrics becomes an integral over the geometry's edge
lengths. The role which decision problems play in several
approaches to summing over topologies is discussed and the
possibility that geometries less regular than manifolds -
unruly topologies - may contribute significantly to the sum

is raised. In two dimensions pseudomanifolds are a reasonable
candidate for unruly topologies.

1. INTRODUCTION

The proposal that the quantum state of the universe is the
analog of the ground state for closed cosmologies is a compelling
candidate for a law of initial conditions in cosmology.l Ian Moss
and Jonathan Halliwell and Stephen Hawking have reviewed elsewhere
in these proceedings how the correlations and fluctuations in this
state can explain the large scale approximate homogeneity,
isotropy and spatial flatness of the universe as well as being
consistent with the observed spectrum of density fluctuations.
The model calculations they review explore the wave function of
the quantum state of the universe on regions of its configuration
space which are close to the observed universe. To explore this
proposal further one would like to calculate, and calculate in a
systematic way, the wave function on increasingly exotic regions
of the configuration space. For example, one would like to know
it on the three geometries appropriate to large inhomogeneities,
black holes, and complex topologies. It is Jjust as important for
the wave function of the universe to be small on these regions as

it is for it to be large in the regions near what we observe.
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One might also imagine extending the proposal for the quantum
state of the universe to ask questions which are not the tradi-
tional issues of cosmology but are observabie properties of
geometry nevertheless. Why is spacetime four dimensional on large
scales? Why does it have Euclidean topology locally on all scales
which have been experimentally investigated? Are the familiar
large scale topologies of the Friedmann universes in some sense
preferred in the theory of initial conditions? To ask such
gquestions one must be able to calculate the amplitudes in the
quantum state of the universe, not only for different metrics, but
also for different manifolds. Bryce DeWitt has stressed the great
departure from the framework of traditional field theory needed to
ask such questions2 but I think they are of interest to pursue
nonetheless.

In this lecture I would like to describe one approach to making
systematic calculations of the sums over histories in quantum
cosmology needed to investigate both the more traditional questions
described above and the less traditional ones. It is not a new
approach. It is the nearly twenty five year old invention of

Tullio Regge called the Regge calculus™.

2. SIMPLICIAL QUANTUM GRAVITY

A simplicial geometry is made up of flat simplices joined to-
gether. A two dimensional surface can be made out of flat
triangles. A three dimensional manifold can be built out of
tetrahedra; in four dimensions one uses 4-simplices and so on.

The information about topology is contained in the rules by which
the simplices are joined together. A metric is provided by an
assignment of edge lengths to the simplices and a flat metric to
their interiors. With this information one can, for example,
calculate the distance along any curve threading the simplices.

A two dimensional surface made up of triangles is in general
curved as, for example, the surface of the tetrahedron in Figure
1. The curvature is not in the interior of the triangles; they
are flat. It is not on the edges; two triangles meeting in a
common edge can be flattened without distorting them. Rather, the
curvature of a two dimensional simplicial geometry is concentrated
at its vertices, because one cannot flatten the triangles meeting
in a vertex without cutting one of the edges. If one does cut one
of the edges and flatten, then the angle by which the separated
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Figure 1. The surface of a tetrahedron is a two dimensional
surface whose curvature is concentrated at its vertices. To
flatten the three triangles meeting at vertex A one could cut
the tetrahedron along edge AC. The angle 9§ by which the
edges AC fail to meet when flattened is a measure of the
curvature at A called the deficit angle.

edges fail to meet is a measure of the curvature called the deficit
angle. (See Figure 1.) It is the angle by which a vector would be

rotated if parallel transported around the vertex. Concretely, the
deficit angle is 27 minus the sum of the interior angles of the
triangles meeting at the vertex. It can thus be expressed as a
function of their edge lengths.

In four dimensions the situation is similar with all dimensions
increased by 2. The geometry is built from flat 4-simplices.
Curvature is concentrated on the two dimensional triangles in
which they intersect. There is a deficit angle assocciated with
each triangle which is 27 minus the sum of the interior angles
between the bounding tetrahedra of the 4-simplices which intersect
the triangle.

As Regge showed, Einstein's familiar gravitational action may be
expressed as a function of the deficit angles and the volumes of
the simplices. For example, the Euclidean Einstein action with
cosmological constant for a connected closed manifold in n-dimen-

sions is,

g 1" %1, = - Ja"x(g) /% (r-20) (1)

PP 1 : ; § ;
Here, 4 = (lbﬂG)'/Z is the Planck length and g, 1s a dimensionless
coupling. We use units where # = ¢ = 1 throughout. On a simplic-

ial geometry (1) becomes exactly
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gn& .= -2 b vn_zen_2 +220 D vn 5 (2)
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k
is defined by

Here, Z, is the collection of k-simplices and V., is the volume of

a k-simplex. The deficit angle 0.0

8, plg) =20 . =5 ek(o,r) ' (3)

TD2CO

where the sum is over all the n-simplices 7 which meet ¢, and the
en_z(c.T) are their interior angles at g. Both Vv, and en_z(o,T)
are simply expressible in terms of the edge lengths through
standard flat space formulae. By using these expressions in (2)
the action becomes a function of the edge lengths. As Hamber and
Williams have shown4 other gravitational actions, such as curva-
ture squared Lagrangians, may be similarly expressed y in an
approximate form which becomes exact in the continuum limit.

Sums over geometries may be given concrete meaning by taking
limits of syms of simplicial approximations to them. This is
analogous to defining the Riemann integral of a function as the
limit of sums of the area under piecewise linear approximations
to it. Consider, by way of example, the sum over four geometries
which gives the expectation value of physical quantity A[G] in the
quantum state of the universe,l

. A[G Jexp(-1[G])

CEG
s zqexp(—ITQ] sl

The sum is over compact, closed Euclidean four geometries. We are
accustomed to think of a geometry as a manifold with a metric, and
one might therefore want to think of the sum in (4) as a sum over
closed manifolds and a sum over physically distinct metrics on
those manifolds. Simplicial approximation could be used to give a
cancrete meaning to such a sum as follows: (1) Fix a number of
vertices Ng- (2) Approximate the sum over manifolds as the sum
over the number of ways of putting together 4-simplices so as to
make a simplicial manifold with ng vertices. (3) Approximate

the sum over physically distinct metrics by a multiple integral
over the squared edge lengths S5 - (4) Take the limit of these

sums as ng goes to infinity. In short, express (A) as
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v [ dE.A(s,,Mexp[-I(s,,M) ]
M(n,) “C R -
@A) = lim " B (5)
T [ diexp[-I(s;.M) ]

Dt M(ng) *C

There remains the specification of the measure dEl and the contour
¢ for the integral over edge lengths. Of course, today we under-
stand little about the convergence of such a process but it is at
least definite enough to be discussed.

Figures 2 and 3 show a few simple numerical calculations5 of
the Regge action which enters into the sum (5). In Figures 2 and
3 the manifold is the four sphere, 84. The simplest triangula-
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Figure 2. The action for some homogeneous isotropic four
geometries as a function of volume. The figure shows the action
for the 4-geometries which are the boundary of a 5-simplex (og)
and the 5-dimensional cross polytope (f.) (the 5-dimensional
generalization of the octohedron) when all of their edges are
equal. Also plotted is the "continuum” action for the 4-sphere.
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Figure 3. The action for distorted 5-simplices. The figure shows
the action (divided by 100) for a two parameter family of 5-
simplices in which all the edge lengths are L except for the edges
emerging from one vertex which are L/(2coso0). o near T/2 corre-
sponds to long thin 5-simplices. «a near O corresponds to nearly
flat 5-simplices. There are no 5-simplices with cosa greater
than .81 because the 4-simplex inedqualities would be violated.
There is a saddle point corresponding to equal edges of value
about 4.9. This is a solution of the Regge equations. The figure
displays the negative gravitational action arising from conformal

distortions.

tions of 84 are the four dimensional surface of a 5-simplex (a5)
and the four dimensional surface of the 5-cross polytope (BS) -
the 5 dimensional generalization of the octohedron. These are the
only regular solids in five dimensions. The 5 simplex has 6
vertices, 15 edges, 20 triangles, 15 tetrahedra and 6 4-simplices.
The cross polytope has 10 vertices, 40 edges, 80 triangles, 80
tetrahedra and 32 4-simplices. Figure 2 shows the action for
these triangulations as a function of four volume when all their
edges are equal and the cosmological constant is A = H2/3 with H
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equal to unity in Planck units.4 The action is always lower than
the "continuum" value corresponding to the round four sphere but
becomes closer to it as we move from the coarsest triangulation O
to the finer Bs-

Figure 3 shows a family of distorted S5-simplices. All the
edges have the value L except those leading to a particular vertex
which have the value L/(2cosq). coso near 0 thus corresponds to
“long and thin" 5-simplices while large cosa 5-simplices are
“short and squat." cosq cannot be too large because the analog of
the triangle inequality for 4-simplices would not be satisfied.
The two parameter family shows the characteristic saddle behavior
of Einstein's action. There is an extremum when all the edges are
equal to about 4.904 /H. This is a solution of the discrete field
equations corresponding to Euclidean de Sitter space. At this
solution the action is neither a maximum nor a minimum but a

saddle point.

For Figure 4 the manifold is CP2 in the beautiful triangulation
of Kuhnel and Lassmanne, CP;. This has 9 vertices, 36 edges, 84
triangles, 90 tetrahedra and 36 4-simplices. Under the symmetry
group of the triangulation the edges fall into two classes - 9 in
one class (class I) and 27 in another (class II). Figure 4 shows
the action when all the class I edges have a value LI and all the
class II edges a value LII' There is a solution of the Regge
equations at the saddle point Ly =Ly = 2.14(4/H) .

3. SUMMING OVER TOPOLOGY

Summing over metrics is only one of two parts of a sum over
geometries even as the metric is only one of two parts in the
specification of a geometry. The other part might be loosely
called the "topology" and it is therefore of interest to investi-
gate sums over topologies. Simplicial approximation is a natural
framework in which to do this, because the topological and metrical
aspects of a simplicial geometry are very clearly separated. The
topological information is contained in the rules by which the
simplices are joined together. The metrical information is
contained in the assignment of edge lengths. In particular, it
is possible to have geometries with complicated topologies but
with relatively few edges. With the Regge calculus one can study

topology cheaply.
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Figure 4. The action on a triangulation of CP2. The nine vertex
triangulation CP2 has two classes of edges which transform among
themselves under the action of its symmetry group. The figure
shows a contour map of the action (divided by 100) when all the
edges of the first class have the value LI and all of the second
class have the value LII' The cosmological constant has the value

specified by H2 = 1. In the shaded region at upper left the sim-
plicial inequalities are violated. There is a saddle point extre-
mum and a solution of the Regge equations when LI = LII = 2.14L/H2.

To sum over the topologies of simplicial geometries with ny
vertices is to sum over some collection of simplices with a total
of ng vertices. The widest reasonable framework in which to dis-
cuss such collections is provided by the connected simplicial
complexes. A connected simplicial complex is a collection of
simplices such that if a simplex is in the collection then so are
all its faces, and such that any two vertices can be connected by
a seqguence of edges. What connected complexes should be allowed?
A natural restriction is to sum only over complexes which are
manifolds -~ that is, such that each point has a neighborhood which
is topologically equivalent to an open ball in R", 1In classical
general relativity, geometries on manifolds are the mathematical
implementation of the principle of equivalence. That principle
tells us that locally spacetime is indistinguishable from flat

space, and this is the defining characteristic of a manifold. It
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would, therefore, seem reasonable to consider geometries on mani-
folds in the quantum regime although it is less clear that on the
scale of the Planck length the principle of equivalence should be
enforced in this strong way.

It is not straightforward to carry out a sum over manifolds.
To do so in the framework of simplicial quantum gravity there must
be a rule for stating which simplicial complexes with ny vertices
should be included in the sum (5) and with what weight. One might
think that one should first classify all manifolds and include one
triangulation of each different type in the sum. The sum would
then include one 84, one T, one SZXSZ, one S3xSl, one K3, and so
on. However, in four dimensions the classification problem for
manifolds is unsolvab1e7. That is, roughly speaking, there does
not exist a computer program which given any two simplicial mani-
folds will run, halt and print "yes" if the two manifolds are the
same and "no" if they are not.

This mathematical result does not rule out the proposed sum as
a testable law of physics. After all to compare with observations
we will only need the sum (5) to some accuracy e. It could be the
case that to evaluate (5) to an accuracy € only complexes with

no < N{e) vertices are needed. Nothing in the unsolvability of
the classification problem prevents one from devising an algorithm

for deciding whether two simplicial manifolds with ny < N vertices
are the same. The theorem only shows that a universal algorithm
which will work for any N does not exist. What the result does
show is that ever more novel mathematical ideas will be needed to
devise algorithms to carry out the sum (5) to even smaller levels
of accuracy. In this respect, this enterprise in theoretical
physics would be more like those of experimental physics.

Were each manifold to contribute once in the sum over topologies
it seems likely that there would be measurable numbers of the
theory (the expectation values which result) which would not be
computable in the mathematical sense. Although, as described
above a theory with this property could still be tested, it would
be of a radically different type than those encountered previously
in physicsB This perhaps is motivation enough for asking whether
the sum over topologies might be reasonably defined on another
class of simplicial complexes in such a way that there is a
universal algorithm for carrying out the sum. There are several
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possibilitiesg'lo. Of these the most radical is the idea that
one should abandon manifolds and, therefore, the principle of
equivalence at the Planck scale and sum over "unruly topologies".
In the sum over histories formulation of quantum mechanics we
are familiar with the idea of "unruly histories". These are
histories which contribute significantly to the sums for quantum
amplitudes but which are less regular than the classical histories.
For example, in particle gquantum mechanics the dominant paths are
non-differentiable while the classical path is always differen-
tiable. In the quantum theory of spacetime we expect to sum over
unruly metrics. It seems only reasonable to suppose that we shall

have to sum over unruly topologies as well.

The majority of complexes are not manifolds. Some two dimen-
sional examples can be seen later in this paper in Figures 5b, 6
and 7. Some idea of the numbers in two dimensions can be gained
from Table 1. A suitable class of simplicial complexes for de-
fining a sum over topologies in quantum geometry must be such that

(1) the action for general relativity can be defined,

(2) there is an algorithm for listing the members of

the class,
(3) manifolds are the dominant contribution to the
sum over histories in the classical limit.
The last condition is the important one . It guarantees that the
principle of equivalence is recovered in the classical limit.

In the laboratory of two dimensional quantum gravity the
question of a suitable class of unruly topologies is easily
addressed. This is because two dimensional Einstein gravity
has no metric degrees of freedom. It is not, however,
topologically trivial.

The Regge action extends naturally to any simplicial complex
in two dimensions. Recall that

g,I, = -2 T o) + 20 T V,(7) , (6)

0€Zy re22

where the first sum is over the vertices and the second is over
the triangles. Insert the definition (3) in this expression,
interchange orders in the resulting double sum over vertices and
triangles and note that the sum of the interior angles of a

triangle is 7. One finds
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Table 1. Two Dimensional Labeled Simplicial Complexes*

ngy Number of Spheres RPZ s Tori
Complexes X = 2 X =1 X=0
a4 16 1 0 0
5 1,024 10 0 0
6 1,048,576 195 12 0

*This table shows the number of complexes of homogeneous
dimension 2 which can ke made with n vertices and the

number of manifolds among them. The complexes are neither
necessarily connected nor closed. No attempt has been

made to eliminate redundancies so that two complexes which
differ only by permutations of the vertices are both counted.

i i hi y
g212 4ﬂ(no n2/2) + 2AA N (7)

where ng is the number of vertices, n, the number of triangles and
A is the total area. The curvature part of the action is indepen-
dent of the edge lengths and is therefore metrically trivial. The
action, however, does depend on how the simplices are joined
together, that is, on the topology. This clean separation of met-
ric and topology makes two dimensional Einstein gravity less
interesting than the higher dimensional cases but it also makes
topological guestions easier to analyze.

Let us start with simplicial complexes which are two manifolds
and enlarge the class by giving up as little as possible until a
larger class is found which satisfies our criteria (1), (2) and
(3). If a complex is going to fail to be a manifold it must fail
on some collection of points. We give up least if we allow fail-
ure only at some discrete number of vertices of the complex and
do not permit failure along the edges. This means we require
every edge to be the face of exactly two triangles as in the
complex in Figure 5a. We thus exclude complexes like Figure 5b
which branch on an edge but permit those like Figure 6 which fail
at vertices. For non-branching complexes, 3n2 = 2nl and the action
is

9212 = 47X + 2AA (8)
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(a) (b)

Figure 5. Branching and non-branching complexes. Non-branching
two dimensional complexes like that in (a) have exactly two
triangles intersecting at any one edge. The complex in (b) has
four triangles intersecting along the more heavily drawn edge and
is therefore a branching complex., Branching complexes fail to be
manifolds at the edges on which they branch.

Figure 6. A two dimensional non-branching complex which fails to
be a manifold at three vertices. This complex is not strongly

connected and is thus not a pseudomanifold. It has Euler number
X = 3.
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where X = ny - n; + n, is the Euler number, a topological invariant.

0
If we were to stop here we could easily violate our criterion

that a manifold have the smallest action. Compare the sphere in
Figure 5a which has x = 2, with the complex in Figure 6. It has
¥ = 3 and so a smaller action. This is because it consists of
almost disconnected pieces. To prevent this we require that the
complexes be strongly connected in the sense that any pair of
triangles can be joined by a sequence of triangles connected along
edges. The resulting complexes are called pseudomanifoldsll. The
complex in Figure 7 is a pseudomanifold whereas the one in Figure
6 is not. In two dimensions, pseudomanifolds have X < 2, and the
pseudomanifold with X = 2 is the sphere. Thus the pseudomanifold
with the smallest action is a manifold and we recover manifolds
in the classical limit.

Most importantly for us, however, pseudomanifolds are easily
enumerable. Their defining properties in n dimensions are

Figure 7. A pseudomanifold which fails to be a manifold at one
vertex. The complex is two dimensional, non-branching and
strongly connected. It is thus a pseudomanifold. It may be
thought of as a sphere with two points identified. The complex
has Euler number ¥ = 1 so that its action is larger than a sphere
of equal area. For pictorial clarity some of the edges triangula-
ting guadralaterals have been omitted but they should be imagined
as in the example at lower right.
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(1) Homogeneous dimension - a simple of dimension
k < n is contained in some n-simplex.

{2) Nonbranching - an (n-1)-simplex is the face of
exactly two n-simplices.

(3) Strongly connected - any two n-simplices can be
connected by a sequence of n-simplices connected

along (n-1)-simplices.

These defining properties are essentially combinatorial. Given 2
vertices one can imagine listing all the possible collections of
n-simplices and checking to see which are pseudomanifolds and
which are not in a finite number of steps.

In two dimensions pseudomanifolds satisfy all three criteria
for a class of complexes with which to define a sum over topologies.
The Regge action is defined for them, there is an algorithm for
enumerating them, and the pseudomanifold of least action is a
manifold. In higher dimensions, finding a class which meets
these criteria is a deeper question. Finding the configurations
of least action, is now not only a question of topology but also
of metric, that is, of solving the Regge equations. The possi-
bilities for pseudomanifolds are so varied in higher dimensions
that one must restrict the class of complexes further in order to
have manifolds dominate in the classical limit. If however a
suitable class can be found then by relaxing the principle of
equivalence at the guantum level we will have an attractive class

of geometries with which to define a sum over topologies in quan-

tum gravity.

4., CONCLUSIONS

In familiar physical problems the state of a system is deter-
mined by dynamical evolution and by initial conditions. Evolution
is fixed by dynamical laws applied to the system and the initial
conditions by observations of it and the rest of the universe.
Cosmology, however, requires a law of initial conditions. If this
law is a specification of the quantum state of the universe, then
both dynamical evolution and initial conditions are fixed by this
state. The problems of finding dynamical laws and their initial
conditions become one. In such a law we hope to find an explana-
tion for the large scale regularities of cosmological spacetime.

Tt is also possible that explanations can be found for some of the
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smaller scale familiar features of spacetime such as the topologi-
cal properties we have discussed. Simplicial techniques provide a
general but concrete approach to such questions. It will be

interesting to see how far one can go.
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