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The sums over histories which specify the guantum state of the
universe may be given concrete meaning with the methods of the
Regge calculus. Sums over geometries may include sums over
differ:ent topologies as u'ell as sums cver different metrics oil
a given topology. In a simplicial approximation to such a sum,
a sum over topologies is a sum over different ways of putting
simplices together to make a simplicial geometry while a sum
otrer rretrics becOmes an integral over the geome*,ry's ec{gt:
lengths. The role whlch decision problems play in several
appioaches to summing over topologies 1s discussed and the
possibifity that geomeLries less regular than manifolds -
unruly topologies - may csntribute significantly to the sum
is raised. In two dimensions pseudcrnanifolds are a reasonable
candidaLe for unrulY toPologies.

I. INTRODUCTION

The proposal that the quantum state of the universe is the

analog of the ground state for closed cosmologies is a compelling

candidate for a l-aw of initial conditions in cosmology.l fan Moss

and Jonathan HalliwelI and Stephen Hawking have reviewed elsewhere
j-n these proceedings how the correlations and fluctuations in this
state can explain the large scale approximate homogeneity,

isotropl' and spatial flatness of the universe as well as being

consistent with the observed spectrum of density fluctuations.
The model calculations they review explore the wave function of
the quantum state of the universe on regions of its configuration
space which are close to the observed universe. To explore this
proposal further one would like t-o cal-culate, and calculate in a

systematic way, the wave function on increasingly exotic regions

of the configuration space. For example, one would i-ike to know

it on tlie three geometries aPproPriate to large inhomogenei-ties,

black holes, and complex topologies. It is just as important for
the wave function of the universe to be small on these regions as

it is for it to be large in the regions near what we observe.
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one might aLso imagine extending the proposar for Lhe quantum
state of the universe to ask questj-ons which are not the tradi-
tional issues of cosmology but are observable properties of
geometry nevertheless. why is spacetime four dimensional on large
scales? why does it have Euclidean topology localry on all scales
which have been experimentally investigated? Are the familiar
large scale topologies of the Friedmann universes in some sense
preferred in the theory of initial condi.tions? To ask such
questions one must be able to calculate the amplitud.es in the
quantum state of the universe, not only for different, metrics, but
also for c{ifferent manifolds. Bryce DeWitt has stressed the great
departure from the framework of traditional field theory needed t,o
ask such questions2 brrt I think they are of interest to pursue
nonetheless.

In this lecture I would like to describe one approach to making
systematic calculations of the sums over hj-stories in quantum
cosmology needed. to investigate both the more traditional questions
described above and. the less traditi-onal ones. It is not a new

approach. ft is the nearly twenty five year o1d invention of
Tullio Regge called the Regge calcu1us3.

2. SIMPLICTAL OUANTUM GRAVITY

A simplicial geometry is made up of flat simplices joined to-
geLher. A two diniensional surface can be made out of flat
triangles. A three dimensional manifold can be built out of
tetrahedra; in four dimensions one uses 4-simplices and so on.
The information about topology is contaj-ned. in the rules by which
the simplices are joined together. A metric is provided by an

assignment of edge lengths to the simplices and a flat metric to
their interiors. With this information one can, for exampJ-e,

calculate the distance along any curve threading Lhe simplices.
A trvo dimensional surface made up of triangles is in general

curved as, for example, the surface of the tetrahedron in Figure
1. The curvature is not in the interior of the Lriangles; they
are flat. ft is not on the edges; two triangles meeting in a

common edge can be fi-attened. without disLorting them. Rather, the
curvaLure of a two d.imensional simpl-icial geometry is concentrated
at its vertices, because one cannot fl-atten the trj-angles meeting
in a vertex without cutting one of the edges. ff one does cut one

of the edges and flatten, then the angle by which the separated
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Figure 1. The surface of a tetrahedron is a two dimensional
suiface whose curvature is concentrated at its vertices. To
flatten the three t,riangles meeting at vertex A one couLd cut
the tetrahedron al-onq edge AC. The angle 0 by which the
edges AC fail to meet when flattened is a measure of the
cuivature at A called the deficit angle.

edges fail to meet is a measure of the curvature called the deficit
angle. (See Figure 1.) It is the angle by which a vector would be

rotated if paralleJ- t.ransported around the vertex. Concretely' the
deficit angle is 2n minus the sum of the interior angles of the
triangles meet-ing a-t the vertex. It can thus be expressed as a

function of their edge lengths.
fn four dimensions the situation is similar with all dimensions

increasecl L',y 2. The geometry is built from flat 4-simplices.
Curvature is eoncentrated on the two dimensional triangles in
which they intersect. There is a d,eficit angle associated with
each triangle whi-ch is 2n minus the sum of the interior angles

between the bounding tetrahedra of the 4-simpJ-ices which intersect
the triangle.

As Regge showed, Einstein's familiar gravitational acti-on may be

expressed. as a function of the deficit angles and the volumes of
the simpJ-ices. For example, the Euclictean Einstein action with
cosmological constant for a connected closed manifold in n-dimen-

sions is,

9rr&n-2rr, = - Jonx (sll/2 (R-24) (1)

Here, | = (16lic) t/2 is the Pl-anck length and gn is a dimensionless
coupling. we use units where h = c = I throughout. on a simplic-
ial geometry (1) becornes exactlY
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Here, Ei. is the collection of k-simplices and Vn is the volume of
a k*simplex. The deficit angle 0r,_2 is defined by

en-r(o) = Zfi - E O*(o'r) t

T)O

where the sum is over all the n-sinplices t which meet o, and the
err_r(o,r) are their interior angles at o. Both Vk and grr_r(o,r)
are simpl\, expressible in terms of the edge lengths Lhrough
standard flat space formulae. By using these expressions in (2)

the action becomes a function of the edge lengths. As Hamber and

williarns harze shovrn4 other gravitational actions, such as curva-
ture squared Lagrangians, ftdy be similarly expressed y in an

approximate form which becomes exact jn the continuum limit.
Sums over geometries may be given concrete meaning by taking

limits of syms of simplicial approximations to them. This is
analogous to defining ..he Riemann inlegral of a function as the
limit of sums of the area under piecewise linear approximations
to it. Consider, by way of example, the sum over four geometries
which gives the expectation vafue of physical quanti-ty a[Q]:-n tne
quantum state of the universe,

E^A Iq ]exp ( -T Iq ])(A)=W (4)

The sum is over compact, closed Euclidean four geometries. We are
accustomed to think of a geometry as a manifold with a metric, and

one might therefore v/ant to think of the sum in (4) as a sufti over
closed manifoLds and a sum over physically distinct metrics on

those manifolds. Simplicj-al approximation could be used to give a

cqncrete meaning to such a sum as follows: (1) Fix a number of
vertices nO. Q) Approximate the sum over manifolds as the sum

over the number of ways of putting together 4-simplices so as lo
make a simplicial manifold with nO vertices. (3) Approximate
the sum over physically distinct metrics by a multiple integral
o.rer the squared edge lengths sr. (4) Take the lj-mit of these
sums as nO goes to infinity. rn short, express (A) as
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D I' dtrA(s.,M)exp[-r("i,m) ]
I',r (no) 'c ' '

.E . ,i_aDrexp[-r (s'u1 ]
trr (no) 'c
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(A) = lim
to--

(5)

There remains the specification of the measure dEt and the cont.our

C for the integral over edge lengths. Of course, today we under-

stand little about the convergence of such a process but it is at
leasl- ciefinite enough to be discussed.

Figures 2 and 3 show a few simple numerical calculationss of
the Regge action which enters into the sum (5). In Figures 2 and

3 the manifold is the four sphere, s'. The simplest triangula-

o loo 2o,0 300 400
v/f

Figure 2. The action for some homogeneous isotropic four
ge6metries as a function of volume. The figure shows the action
ior tfre 4-geometries which are the boundary of a S-simplex (oS)

and the 5-dimensional cross polytope (F^) (tne 5-dimensional
generalization of the octohedron) when itt of their edges are
Jquat. Also plotted is the "continuum" action for the 4-sphere.
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Figure 3. The action for distorted 5-simplices. The figure sho!.ts
the action (divided by 100) for a two parameter family of 5-
simplices in rvhiclr al-l the edge lengths are L except for the edges
emerging from one vertex which are L/(2cosc). o near tt/2 corre-
sponds to long thin 5-simplices. d near O corresponds to nearly
flat 5-simpJ-ices. There are no S-simpl-ices with cosc greater
than .81 because the 4-simplex itrequalities would be vj,olated.
There is a saddle point corresponding to equal- edges of value
about 4.9. This is a solution of the Regge equations. The figure
displays the negative gravitational action arising from conformal
distortions.

. -^4tions of S' are the four dimensional surface of a 5-simplex (%)

and the four dimensional- surface of the S-cross poJ-ytope tFS)

the 5 dimensional generalization of the octohedron. These are the
only regular solids in five dimensions. The 5 simplex has 6

vertices, 15 edges, 20 triangles, 15 tetrahedra and 6 4-simplices.
The cross polytope has IO.rertices,4O ectges, BO triangles, BO

tetrahed.ra and 32 4-simplices. Figure 2 shows the action for
these triangulations as a function of four volume when all their
edges are equal and the cosniological constant is l, = u2/3 with H

d
U\
o
C)

ilt{iT',i/31it..'
L/l
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equal to unity in Planck units.4 The acLion is arways lower than
the "continuum" value corresponding to the round four sphere but
becomes closer to it as we move from the coarsest triangu3-ation A
to the finer pU.

Figure 3 shows a family of distorted 5-simplices. Al1 the
edges have the value L except those leading to a particular vertex
which have the value f/(2cosa). cosd near 0 thus corresponds to
"long and thin" 5-simpliees while large cosa 5-simplices are
"short and squat. " cosc cannot be too large because the analog of
the triangle inequality for 4-simplices would not be sat,isfied.
The two parameter family shows the characteristic saddle behavior
of Einstein's action. There is an extremum when all the edges are
equal to about 4.90L/H. This is a solution of the discrete field
equations corresponding to Euclidean de Sj-tter space. At this
solution the action is neither a maximum nor a minimum but a

saddle pcint.
For Figure 4 the manifold is cp2 in the beautiful trianguLation

of Kiihnel and Lassm.r,r,6, cel . This has 9 vertices, 36 edges, 84
triangles, 90 tetrahedra and 35 4-simplices. Under the symmetry
group of the triangulation the edges fall into two classes - 9 j-n

one elass (class f) and 27 in another (class II). Figure 4 shows

the action when all the class I edges have a value L, and aII the
class II edges a value Lrr. There is a soluLion of the Regge

equations at the saddle po.int LI = LII = 2.L4(L/H).

3. SI'MMING OVER TOPOLOGY

Summing over metrics is only one of two parts of a sum over
geometries even as the metric is only one of two parts in the
specification of a geometry. The other part night be loosely
called the "topology" and it is therefore of interest to investj.-
gate sums over topologies. SimpJ-icial approximation is a natural
framework in whj-ch to do this, because the topological and metrical
aspects of a simplicial geometry are very clearJ-y separated. The

topological information is contained in the rules by wiricll tlie
sj-mptices are joined together. The metrical information is
contained in the assignment of edge lengths. rn particular, it
is possibLe to have geometries with compLicated topologies but
with rel-ativeJ-y few edges. With the Regge caLculus one can study
topology cheapLy.
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o1234
Ln/l

a
Figure 4. The action on a triangulation of CP'. The nine vertex
triangulation CP! has two classes of edges which transform among
themselves under-the action of its slzmmetry grcup. The figure
slrows a conLour map of the action (divided by 100) when all the
edges of the first class have the value L, and all of the second
class have the value Lrr. The cosmological constant has the value)specified by H" = 1. fn the shaded region at upper left the sim-
plicial inequalities are violated. There is a saddle point extre-
mum and a solution of the Regge equations when L, = Ltt = 2.14L/H2

To sum over the topologies of simplicial geometries with nO

vertices is to sum over sorne ccllection of simplices wj-th a total
of nO vertices. The widest reasonable framework in which to dis-
cuss such collections is provided by the connected simplicial
complexes. A connected simplicial complex is a collection of
simplices such that if a simplex is in the collection then so are
all its faces, and such that any two vertices can be connected b]'
a seguence of edges. What connected complexes should be allowed?
A natural restriction is to sum only over complexes which are
nranifclds - that is. such that each point has a neighborhood. which
is topologicatly equivalent to an open baII in IRn. In classical
general relativitlr geometries on manifolds are the mathematical
implementation of tire principle of equivalence. That principle
te1ls us that locally spacetime is indistinguishable from flat
space, and this is the clefininq characteristic of a rr-ranifold. It

)
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would, therefore, seem reasonable to consider geometries on mani-
folds in the quantum regime although it is less clear that on the
scaie of the Pranck length Ule principle of equirralence shourd be
enforced in this strong way.

rt is not straightforward to carry out a sum over manifo.lds.
To do so in the framework of simplicial quantum gravity there must
be a rule for stating which simplicial complexes with no vertices
shoulcl be included in the sum (5) and wirh whar weighl_. one might
think that one should first classify all manifold.s and include one
triangulation of each d.ifferent type in the sum. The sum would
then include one 54, one T4, one S2xs2r oee S3xs1, one K3, and so

on. However, in four dimensions the classification problem for
manifclds is unsolvable7. That is, roughly speaking, there does
not exist a computer program which given any two simplicial mani-
folds will run, hal-t and print "yes" if the two manifolds are the
same and "no" if they are not.

This mathematical result does not rule out the proposed sum as
a teslable law of physics. After all to ccrrnpare wiih observations
we will only need the sum (5) to some accuracy €. ft could be the
case that to evaluate (5) to an accuracy e only complexes with
n^ < N ( e) vertices are needed. Nothing ln the unsolvability of

U

the classification problem prevents one from devising an algorithm
for deciciing rvhether twc simplicial manifolds with *O . N verlices
are the same. The theorem only shows that a universal algorithm
which will work for any N does not exist. What the result does

show is .that ever more novel mathematical ideas will be needecl to
devise algorithms to carry out the sum (5) to even smaller levels
of aecu,racy. In this respect, this enterprise in theoretical
physics would be more like those of experj-mental physics.

Were each manifold to contribute once in bhe sum over topologies
it seems iikeilr that there would be measurable numbers of the
theory (the expectation values which result) which would not be

computable in the mathematical sense. Although, as described
above a theory w.ith this property could still be tested, it r.;ould
be of a radically different type than those encountered previously

o
in physics". This perhaps is rrloLivation enough for asking whether
the sum over topologies might be reasonably defined on another
class of simplicial complexes in such a way that there is a

universal algorithm for carrying out the sum. There are several
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possibiliti."9'10. of these the most radical is the idea that
one should. abandon manifolds and, therefore, the principle of
equivalence at the PLanck scale and sum over "unruly topologies".

In the sum over histories formulation of quantum mechanics we

are familiar with the idea of "unruly histories". These are
histories which contribute significantly to the sums for quant,um

amplitudes but which are less regular than the classical histories.
For example. in particle quantum mechanics the dontinant paths are

non-differentiable while the classical path is always differen-
tiable. fn the quantum theory of spacetime we expect to sum over
unruly metrics. It seems only reasonable to suppose that we shaLl
have to sum over unruly topologj-es as wel-l.

The majority of complexes are not manifolds. Somc two dimen-
sional examples can be seen later in this Paper in Figures 5b, 6

and 7. Some idea of the numbers in two dimensions can be gained
from Tab1e l. A suitable class of simplicial complexes for de-
fining a sum over topologies in quantum geometry must be such that

(1) the action for general relativity can be d,efined,
(21 there is an algorithm for listing the members of

the class,
(3) manifolds are tire dominant contribution to the

sum over histories in the classical limit.
The l"ast condition is the important one . ft guarantees that the
principle of equivalence is recovered in the classical limit.

In the laboratory of two dimensional- quantum gravity the

question of a suitable class of unruly topologies is easily
addressed. This is because two dimensional Einstein gravity
has no metrj-c degrees of freedom- ft is not, however,

topologicallY trivial.
The Regge action extends naturall-y to any simpJ.icial complex

in two dimensions. Recall that

9rr, = -2 E e (o) + 2L Dvt(r) '
o €Eo r eE,

where the first sum is over the vertices and the second is over
the triangles. Insert the definition (3) in this expression,

interchange orders in the resulting double sum over vertices and

triangles and note that the sum of the interior angles of a

triangle is fl. One finds

(6)
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Two Dimensional Labeled Simplicial complexes*
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Table I.

to Number of
Complexes

Spheres
X=2

RP2's
X =1

Tori
X=0

16 I 0 0

5 L,o24 10 0 o

6 L,O48 ,576 195 L2 0

This table shows the number of complexes of homogeneous
dimension 2 which can be made with n vertices and the
nunrber of manifolds among them. The complexes are neither
necessarily connected nor closed. No attempt has been
made to eliminate red.undancies so that two complexes which
differ only by permutat,i-ons of the vertices are both counted.

g2I2 = -4n(no-n"/2) + 2AA (7)

where nO is the number of vertices, n, the number of triangles and

A is the total area. The curvature part of the action is indepen-
dent of the edge lengtlrs and j-s therefore metrically trivial. The
action, however, does depend on how the simplices are joined
together, that is, on the topologlt- This clean separation of met-
ric and topology makes two dimensional Einstein gravity less
interesting than the higher dimensional cases but it also makes

topological questions easier to analyze.
Let, us start with simplicial complexes which are two manifolds

and enLarge the cl-ass by giving up as little as possible until a

larger class is found which satisfies our criteria (1), (2) and
(3). If a complex is going to fail- to be a manifold it must fail
on some ccllection of points. We give uP least if we all-ow fail-
ure only at some discrete number of vertices of the compLex and

do not permit failure al-ong the edges. This means we require
every edge to be the face of exactly two triangles as in the
complex in Figure 5a. we thus exclude complexes like Figure 5b

which branch on an edge but permit those like Figure 5 which fail
at vertices. For non-branching complexes, 3n2 = 2n1 and the action
is

9212=-ATtx+zLA (8)
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Figure 5. Branching and non-branching complexes. Non-branching
two dimensional- complexes like that in (a) have exactly two
triangles intersectj-ng at any one edge. The complex in (b) has
four triangles intersecting along the more heavily drawn edge and
is therefore a branching complex; Branching complexes fail to be
manifolds at the edges on which they branch-

(b)(o)

Figure 6. A
be a manifold
connected and
., _ ?
X - J.

Lwo
at
is

dimensional non-branching complex which fails to
three vertices. This complex is not strongly
thus not a pseudomanifold. It has Euler number
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where X = n0 - .1 * n, is the Euler number, a topological invariant.
If we were to stop here we could easily violale our criterion

that a manifold have the smallest action. Compare the sphere in
Figure 5a which has 1 = 2, with the complex in Figure 6. rt has

X = 3 and so a smaller action. This is because it consists of
almost disconnected pieces. To prevent this we require that, the

complexes be strongly connected in the sense that any pair of
triangles can be joined by a sequenee of triangles connected along

edges. The resulting complexes are called pseudomanifoldsll. The

complex in Figure 7 is a pseudomanifold vthereas the one in Figure

6 is not. In two dimensions, pseudomanifolds have X < 2, and the
pseudomanifold with X = 2 ls the sphere. Thus the pseudomanifol-d

wi th the smallesl action is a manifold and we recover manifolds
in the classical limit.

Most importantly for us, however, pseudomanifolds are easily
enumerable, Thei.r defining properties in n dimensions are

Figure 7. *1 pseudomanifold which fails to be a manifold at one
vertex. The complex is lwo dimensional, non-branching and
strongly connected. It is thus a pseudomanifold. It niay be
thought of as a sphere rr'ith tr'ro pcints identified. The complex
has Euler number X = I so that it,s action is larger than a sphere
of equal area. For pictorial clarity some of the edgies trj-angu1.a-
ting quadralaterals have been omitted but they should be lmagj.ned
as in thc cxamplc at lorver right.
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(i) Homogeneous dimension - a simple of dimension
k < n is contained in some n-simplex.

(21 Nonbranching - an {n-L)-sinplex is Lhe face of
exactly two n-simplices.

(3) Strongly connected - any two n-simplices can be

connected by a seguence of n-simplices connected,

along (n-1) -simplices.
These defining properties are essentj-alIy combinatorial-. Given nO

vertices one can imagine listing all the possible collections of
n-simplices and checking to see which are pseudomanifolds and

I'hich are not in a finite number of steps.
In two dimensions pseudcrnanifolds satisfy all three criteria

for a class of complexes with which to clefine a sllm over topologies.
The Regge action is defined for them. there is an algorithm for
enumerating them, and the pseudomanifold of least action is a

rnanifold. fn higher cl-imensions, finding a class which meets

these criteria is a deeper question. Finding the configurations
of least action, is now not only a guestion of topology but also
of metric, that is, of solving the Regge equations. The possi-
bilities for pseudomanifolds are so varied in higher dimensions

that one must restrict the class of compJ-exes further in order to
have mani-folds dominate in the classical limit. If however a

suitable class can be found then by relaxing the principle of
equivalence at the quatrtum level we will have an attractive class
of geometries with which to define a sum over topologies in quan-

tr-r,m gravity.

4. CONCI,USIONS

In famitiar physical problems the state of a system is deter-
mined by dynamical evolution and by initial conditions. Evolution
is fixed by dynamical laws applied to the system and the initial
conditions by observations of it and the rest of the universe.
CosmoJ-ogy, trowever, requires a law of initial conditions. ff this
law is a specification of the quantum state of the unj-verser LLr€11

both dynamical evolution and initial conditions are fixed by this
state. The problems of finding dynamical laws and their initial
conditions become one. In such a law we hope to firrd an explana-

tion for the large scale reguJ-arities of cosmological spacetime.

Tt is also pcssible that expl-anations can be found for some of the

I
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smaller scale familiar features of spacetime such as the topologi-
car properties we have discussed. simplicial techniques provide a
generaL but concrete approach to such questions. It will be
interesting to see how far one can go.
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