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The use of the simplicial methods of the Regge calculus to construct a minisuperspace for 
quantum gravity and approximately evaluate the wave function of the state of minimum 
excitation is discussed. 

I •. INTRODUCTION 
In the search for a conceptually clear and computation-

ally manageable quantum theory of gravity, the sum-over-
histories formulation of quantum mechanics has proved to 
be a powerful tool. For the investigation of conceptual is-
sues, this formulation provides a direct route from classical 
action to quantum transition amplitude, and in a way which 
is easily accessible to formal manipulation. 1 Furthermore, 
the basic elements of the theory are often most clearly for-
mulated in terms of the functional integrals which imple-
ment the sum-over-histories formulation. For example, a 
natural prescription for the wave function describing a 
closed cosmology in its state of minimum excitation is to 
take2-4 

'Po [three-geometry] = L exp( - I [g ]Iii). 
fourwgeometries,l 

(1.1) 
Here I is the Euclidean gravitational action including cos-
mological constant and the sum is over all compact Euclid-
ean four-geometries which have the three-geometry as a 
boundary. It has been conjectured that this is the wave func-
tion of our universe. 3.5.6 

To investigate the consequences of a proposal like (1.1) 
or other consequences of a theory formulated in terms of 
integrals over four-geometries, one needs to evaluate these 
sums approximately. One can construct approximations to 
the sum by singling out a family of geometries described by 
only a few parameters or functions and carrying out the sum 
only over the geometries in this family. As the family of 
geometries is made larger and larger, one can hope to get a 
better and better approximation to the functional integral. 

A restriction on the four-geometries which are included 
in the sum (1.1) will imply a restriction on the three-geome-
tries which can occur as arguments of the resulting wave 
function. This is because the three-geometries must be em-
beddable in the four-geometries. The restriction thus re-
duces the configuration space on which the wave function is 
defined from the superspace of all three-geometries to a 
smaller space of three-geometries-a minisuperspace.7 For 
this reason we call such approximations to the functional 
integral "minisuperspace approximations." 

One way of constructing a minisuperspace approxima-
tion is to restrict the family of four-geometries to be only 
those with some symmetry. For example, one might restrict 
the four-geometries in (1.1) to have four-sphere topology and 
three-sphere symmetry and the three-geometries to be three-
spheres of radius ao• A single function of a single variable-
radius as a function of polar angle-then describes these 

four-geometries. The sum over geometries reduces to a func-
tional integral over this function. The wave function, which 
generally is afunctional of the six components of the three-
metric, reduces to afunction of a single variable ao. The mini-
superspace is just half the real line. 

Minisuperspace models based on symmetry have been 
used to explore quantum cosmology in the canonical theory 
of quantum gravity. 7.8 Minisuperspace approximations 
based on symmetry have been applied to the computation of 
the ground state wave function (1.1) in the functional inte-
gral formulation.2•3•5•6 Minisuperspace approximations 
based on symmetries are simple to implement and generally 
easy to interpret. They do not, however, offer the possibility 
of systematic improvement because a general four-geometry 
is not well approximated by a symmetric one. It is therefore 
of interest to consider minisuperspace approximations 
which are not based on symmetries. The Regge calculus9 

provides an avenue to such approximations. 
A general two-surface may be approximated by a sur-

face made up of a net of flat triangles. The net of triangles is 
itself a two-geometry whose curvature is concentrated at the 
vertices where the triangles meet. The geometry of the sur-
face is specified by the edge lengths of the triangles. Analo-
gously, a general four-geometry may be approximated by a 
net of flat four-simplices. This net is a four-geometry speci-
fied by the edge lengths of the simplices. Its curvature is 
concentrated on the triangles in which these four-simplices 
intersect. Any geometrical quantity such as the curvature or 
the action can be expressed in terms of the edge lengths of the 
net. The conditions for the action of general relativity to be 
an extremum, with respect to variations of the edge lengths, 
give the simplicial analogs of Einstein's equations. 

The simplicial methods adumbrated above were intro-
duced into general relativity in a seminal paper by Regge.9 

These methods are usually called the "Regge calculus." 
They have been used in a number of interesting investiga-
tions in the classical theory of gravity. (See, for example, 
Refs. 10-19.) As Regge calculus is the natural lattice version 
of general relativity, it has also been extensively applied to 
the investigation of quantum theories of gravity (see, in parti-
cular, Refs. 20-26). 

Simplicial approximation is a natural starting point for 
constructing a minisuperspace approximation to the func-
tional integrals of quantum gravity. In this approximation 
one obtains the family of geometries integrated over in two 
steps. First fix a simplicial net, that is, specify the vertices of 
the net and the combinations of them that make up the one-
simplices (edges), two-simplices (triangles), three-simplices 
(tetrahedra), and four-simplices. Second, assign lengths to 
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the edges and allow these lengths to range over values consis-
tent with their making up the flat simplices of the net. There 
results a family of four-geometries parametrized by the n I 
edge lengths of the net. Suppose that m I of these edges lie in 
the boundary of the net. These edges define a simplicial 
three-geometry. The minisuperspace is that portion of lRm

, 

swept out as the m I squared edge lengths of the boundary 
range over values for which the simplicial inequalities for 
triangles and tetrahedra are satisfied. The functional integral 
(1.1) is approximated by an (nl - mtl-dimensional multiple 
integral over the interior edge lengths. Schematically it has 
the form 

. ( [ - I(Sj)] 
qto(Sol E a.Itl = J/.II exp Ii . (1.2) 

Here, a.I I denotes the edge lengths of the boundary, I is the 
Regge action, and d.I I denotes an integration over the interi-
or edge lengths on a contour C. 

Simplicial minisuperspace approximations have a num-
ber of significant advantages over those constructed from 
symmetry. 

(1) To represent the sum over the four-metrics on a giv-
en manifold there is a different simplicial minisuperspace 
approximation for each triangulation of the manifold. This is 
a much larger class than can be generated by symmetry. In 
particular, as the number of vertices no is increased one ex-
pects an arbitrary four-geometry to become closely approxi-
mated by some simplicial geometry. Thus the simplicial 
minisuperspace approximations in principle permit an in-
vestigation of the continuum limit. 

(2) The simplicial minisuperspace approximation leads 
directly to a numerical evaluation of the functional integral 
as a multiple integral. Approximations based on symmetry, 
by contrast, generally require a further discretization for ex-
plicit evaluation. 

(3) The simplicial minisuperspace approximation al-
lows a simple and direct discussion of the role topology may 
play in quantum gravity. Topological information is con-
tained in an elementary way in the simplicial net. The simpli-
cial approximation allows one to investigate different topo-
logies efficiently with simple geometries by investigating 
different simplicial nets with small numbers of edge lengths. 
In general, the simplicial minisuperspace approximation 
permits the investigation of global questions with crude geo-
metries. Moreover, it does this in a way which is accessible to 
systematic improvement of the approximation. At a time in 
the development of quantum gravity when qualitative re-
sults are often more instructive than precise quantitative cal-
culations, this is an important advantage. 

In this paper we shall begin an investigation of the use of 
simplicial minisuperspace to approximately evaluate the 
state of minimum excitation in quantum gravity constructed 
according to the prescription (1.1). The methods we shall 
discuss are certainly applicable to computations of other 
quantities in the theory,27 but we shall focus on this one to 
obtain concreteness and because of its important role in the 
theory. 

In Sec. II we shall discuss the minisuperspace approxi-
mation in greater detail and in particular the form of the 
action, the issues involved in the choice of the measure, and 
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those issues connected with the choice of integration contour 
C. The implementation of the Regge calculus to evaluate the 
action in (1.2) requires a certain amount of algebraic technol-
ogy. We shall collect and describe the necessary technology 
in Sec. III. In Sec. IV we shall discuss the semiclassical ap-
proximation to the integral in (1.2) and in Sec. V we shall 
describe how the diffeomorphism group of general relativity 
should be recovered in the limit of larger and larger simpli-
cial nets. Section VI describes how sums over different topo-
logies might be implemented in the simplicial minisuper-
space approximation. 

II. THE FUNCTIONAL INTEGRAL FOR THE WAVE 
FUNCTION 

The Euclidean functional integral prescription for the 
wave function of a closed cosmology in its state of minimum 
excitation assigns an amplitude qto to each possible compact 
three-geometry. The general compact three-geometry con-
sists of disconnected compact connected three-manifolds 
aMI"'" aMn each without boundary, each perhaps with 
nontrivial topology, and three-metrics hI' h2,. .. ,hn on these 
pieces. The wave function qto is a functional of these metrics, 
given by2 

qto [ h l,aMI;h2,aM2;···;hn ,aMn ] 

= Iv(M) (8gexp( -I[g,M)). 
M Jc (2.1) 

The sum is over a class of compact four-manifolds, each with 
boundary aM consisting of the pieces aMI, ... ,aMn and each 
contributing with weight v(M). The functional integral is 
over physically distinct metrics on M which induce the me-
trics hl, ... ,hn on aMI'"'' aMn. I is the action for general rela-
tivity 

F/[g,M) = -2( d 3xh1l2K_ (d 4xg1l2(R_2A). JaM JM 
(2.2) 

Here and for the rest of the paper we use units where 
Ii = e = 1. Thus, 1= (16trG)112 is the Planck length. To 
complete the prescription, four further specifications are 
needed: the class of manifolds summed over, the weight v(M) 
to be given each one, the measure on the space of metrics, 
and the contour of integration in the space of metrics. 

If the transition amplitUdes of quantum gravity can be 
constructed as integrals over Euclidean four-geometries on 
different manifolds, then the weight given each manifold and 
the measure on the space of metrics must be consistent with 
the composition law for quantum amplitudes: (alb) 
= l:c (ale) (elb). For example, if one admits disconnected 

three-geometries, then one expects multiply connected four-
geometries will be required for consistency. The composi-
tion of an amplitude with two disconnected three-geometries 
in its final state together with an amplitUde with two discon-
nected three-geometries in its initial state would be repre-
sented by a sum over a multiply connected four-geometry. 
The measure must also be consistent with the composition 
laws. It may be that the class of manifolds, v, and the mea-
sure are determined by these restrictions and in the case of 
the measure there are calculations to this effect.28 The con-
tour C must be chosen so that the integral correctly repre-
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sents a complete sum over compact geometries and so that 
the integral is convergent. 

To begin a discussion of these specifications in a simpli-
cial approximation to (2.t), let us restrict attention until Sec. 
VI to the sum over metrics on a fixed manifold M with a 
single boundary. Suppressing the labels M and aM we write 

I/Io[h] = r5gexp( -I[g]). (2.3) 

The simplicial approximation to (2.3) as described in Sec. I is 

= exp[ - I(Si)]' (2.4) 

Here, we are considering a specific triangulation of M with 
vertices edges triangles tetrahedra and four-

The simplices of the boundary and the interior 
we denote by and respectively. 

The action I is the Regge action9 modified by the 
boundary term required by the composition law for quan-
tum amplitudes and the classicallimif9 

1= - 2 (u)¢(u) - 2 OEi*z,A (u)O (u) 

+ 2A L V4(T), 
1'E.E. 

(2.5) 

where A (u) = V2(u) is the area of triangle u and V4(T) is the 
volume of the four-simplex T. The angle 0 (u) is the deficit 
angle for triangle u. It is given by 

o (u) = 21T - LO (U,T), (2.6) 
T 

where the sum is over all the four-simplices which contain u. 
o (U,T) is the dihedral angle between the two tetrahedra of T 
which have u as a common face. [For a two-dimensional 
picture see Fig. 1; for more details on how to compute 
A (u), V4(T), and 0 (U,T) see Sec. II!.] The angle ¢(u) necessary 
for calculating the boundary term is 

¢(u) = 1T - LO (U,T), (2.7) 
T 

where the sum is over all four-simplices which intersect the 
boundary triangle u. The surface term in (2.5) is just that 

FIG. 1. A two-dimensional simplicial geometry is a net of Hat triangles to-
gether with an assignment oflengths to their edges. The geometry includes 
both the interior points of the triangle as well as their edges. The distance 
between any two points can be determined in terms of the edge lengths. The 
curvature is concentrated at the vertices and is measured by the deficit an-
gIe. The deficit angle at a vertex u is the 217 minus the sum of the dihedral 
angles e (U,7) over all triangles 7 which have u as a vertex. 
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necessary to ensure that the conditions for the extremum of 
the action correspond to the Regge equations 

L O(u) aA (u) =A L aV4(T), (2.8) 
aein! z, aSi 1'E.E. aSi 

which are the simplicial analogs of Einstein's equation. 9 

There are as yet no completely satisfactory arguments 
for the measure and the contour needed to complete the spe-
cification of the integral (2.4). For the measure we shall as-
sume that the integration over edge lengths is restricted to 
values such that they define possible flat simplices. Thus the 
appropriate triangle, tetrahedral, and four-simplex inequal-
ities are satisfied. Necessary and sufficient conditions for this 
are that the squared volumes of all simplices be positive or 
zero when expressed in terms of the squared edge lengths. To 
go further we can only proceed by analogy with the contin-
uum case. There a number of possible measures have been 
put forward. DeWitt,30 for example, has argued that an ap-
propriate measure is 

II II dg/tv(x), (2.9) 
x /t<V 

Since the squares of edge lengths are linearly related to g/tv, 
the corresponding choice in the simplicial approximation is 
to take 

=P(Si) II dsj , 

where 

P= {
t, 
0, 

with simplicial inequalities satisfied, 
otherwise. 

(2.10) 

(2.11) 

In particular, this means that the measure does not vanish on 
zero-volume simplices. 

The remaining specification in (2.4) is the contour C. At 
a minimum this must be chosen so that the integral (2.4) is 
convergent. For real edge lengths the action is no more posi-
tive in the simplicial approximation than it is in the contin-
uum theory. For example, the action for the closed four-
geometry of volume V4 , which is the surface of a five-simplex 
with all edges equal, is (see Ref. 26 or Paper II) 

1(V4) = - 107.9(V4//4)1/2 + 2A V (2.12) 
For small V4 and at the extremizing volume, this is negative. 
In the continuum theory the action can always be made neg-
ative by an appropriate conformal deformation of the met-
riC.31 The same is true in the simplicial approximation.32 It 
seems likely that the action can be made arbitrarily negative 
by considering nets with near-zero four-volume but contain-
ing very-large-area triangles whose deficit angles are posi-
tive. If this is the case there is the presumption that the inte-
grals in (2.4) will diverge in some large edge-length 
directions. 

In the continuum theory of asymptotically flat space-
times the functional integral can be made convergent by de-
composing the integration over four-geometries into an inte-
gration over a conformal factor and one over conformal 
equivalence classes, and then rotating the conformal factor 
integration contour to complex values.28 The same proce-
dure applied in the linear theory of gravity does yield the 
correct ground state wave function33 and arises naturally 
from the parametrization of the Hamiltonian path integral 
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for that theory expressed in terms of the physical degrees of 
freedom. 34 One can exhibit analogous contours in the simpli-
cial approximation along which the integral is convergent. 
In the absence of a compelling argument for one or the other, 
we shall not pursue their discussion further. 

The information contained in the wave function 1//0 
might be determined by carrying out the multiple integral 
(2.4) for a sampling of the space of edge lengths. In practice, 
this will be too much data to deal with since the dimension of 
the space of edge lengths can be very large. Equivalently and 
more usefully the information in 1//0 can be summarized by 
computing interesting expectation values35 of 1//0 : 

( ) _ I d (a.II)I//O(Si)A (Si)I//O(Si) A - , 
I d(a.II)I//O(Si)I//O(Si) 

(2.13) 

where d(a.I l ) is the volume element on the boundary edge 
lengths analogous to (2.10). Certainly the information con-
tained in 1//0 can be extracted from (2.13) by letting A range 
over appropriate filters sensitive to particular regions of edge 
lengths. Indeed, one imagines that the interesting physical 
questions can always be phrased in terms of the expectation 
value of an appropriate A. Monte Carlo numerical calcula-
tions will generally be much more feasible for expectation 
values of slowly varying A 's than for the wave function itself. 
For these reasons we shall for the most part be concerned 
with calculating expectation values in what follows. 

Assuming that the choice of measures in d.I I and d (a.I I) 
is compatible, Eq. (2.4) may be inserted into (2.13) to give the 
following expression for (A ): 

( ) _ Ied.IIA (si)exp[ -I(si)] A - , 
Ie d.I1 exp[ - I(si)] 

(2.14) 

where the integral is now over the squared edge lengths of 
the compact, boundaryless, manifold formed by identifying 
M and a copy of itself at its boundary. At the risk of some 
confusion we shall also call this M in the following. The 
boundary term in the action may now be dropped so that 

/21= -(&fl-2Ar), (2.15) 
where &fl is the "curvature part" of the action 

&fl = 2 LA (u)O (u), (2.16) 

and r is the total four-volume 
r = L V4(u). (2.17) 

oel:. 
Here,.I I' .I2, etc., now refer to the whole compact manifold. 
If convenient, the contour C may be further distorted so that 
the Si on the joining boundary assume complex values. 

We have introduced the question of the convergence of 
the integral (2.4) at large edge lengths. A natural comple-
mentary question is its behavior at small edge lengths. In the 
form (2.13), when the contour runs along real edge lengths, a 
simple answer to this question can be given. The volume part 
of the action (2.5) is evidently well behaved at small edge 
lengths. The curvature part may be bounded as follows. In a 
flat four-simplex the dihedral angle 0 (u,r) always lies 
between 0 and 11'. From (2.6) it follows that the deficit angle 
o (u) is bounded by 

- 11'[k4(u) - 2] < 0 (u) < 211', (2.18) 
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where k4(u) is the number of four-simplices containing the 
triangle u. Thus for the curvature action we find 

-41T'd< -&fl<211'Kd, (2.19) 
where 

d= LA (u), (2.20) 

and 
K = max [k4(u) - 2]. (2.21) 

For any particular complex, K is a finite number (for exam-
ple, for the four-complex which is composed of the faces of a 
five-simplex, K = 1). The curvature action is thus bounded 
above and below by a multiple of d, and is well behaved as 
any of the edge lengths go to zero, or at zero-volume sim-
plices where the simplicial inequalities are saturated. This 
suggests, in particular, that, though one may recover short-
distance (ultraviolet) divergences in the continuum limit, 
they are not present in any finite simplicial approximation. 

III. PRACTICAL REGGE CALCULUS 
To implement a computation of a functional integral in 

the simplicial minisuperspace approximation as described in 
the preceding section, the action must be expressed in terms 
of the squared edge lengths of the simplicial net. In turn this 
means that one must be able to express areas, deficit angles, 
and four-volumes in terms of these squared edge lengths. 
Further, to evaluate the simplicial analog of the field equa-
tions one needs the derivative of areas and four-volumes, 
with respect to squared edge length. In this section we shall 
set out the formulas the author has found most useful for 
these calculations and briefly describe a method for deriving 
them. By and large both these formulas and the method of 
derivation have appeared elsewhere in the literature on the 
Regge calculus36 and one imagines that they could be 
tracked down in the older mathematical literature. We col-
lect them here with their derivation in order to have a com-
plete description of the tools with which to attack our prob-
lem. 

An n-simplex is specified by giving its n + 1 vertices 
(O,I, ... ,n) in flat space. Define the n vectors ei which start 
with the vertex 0 and proceed to the vertex i. The vectors 
el, ... ,en span the n-simplex. The volume n-form associated 
with the n-simplex may be defined as 

lUn =eI Ae2 A···Aen • (3.1) 
The formulas for volumes, areas, angles, etc., become simple 
to express and simple to derive when these n-forms are ma-
nipulated like vectors. To this end, we introduce a scalar 
product between two n-forms by the definition 

(3.2) 
Consider, for example, the squared volume of an n-sim-

plex, V;. The product lUn ·lUn must be proportional to V; 
because, up to sign, lUn is easily shown to be independent of 
the choice of the perf erred vertex 0 and there is no other 
symmetrical invariant with the correct dimension. Byevalu-
ating the constant of proportionality in any special case, one 
has 
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(3.3) 
A more direct derivation may be provided as follows: Con-
sider the n-simplex as made up of the (n-l I-simplex 
(O,I, ... ,n - 1) (the "base") and the vertex n. Evidently 

(3.4) 
Divide en into a part e! perpendicular to the base simplex 
and a part which lies in it. Insert this decomposition into (3.4) 
and this in turn in (3.2) to compute Wn ·Wn . One finds 

wn ,wn = (lIn2)(e! .e! )(wn _ 1 'Wn _ d, n> 1. (3.5) 
This formula can be used to prove inductively that 

= Wn ·Wn , because for each n this says Vn = n -I (height) 
X (volume of base). 

To be computationally effective a formula like (3.3) 
must be expressed in terms of the squared edge lengths. This 
can be done by reexpressing the scalar product of two-vol-
ume n-forms Wn =el/l.···/l.en and =ei in 
terms of the scalar products of the constituent vectors as 
follows: 

Wn = [lI(nWJdet(e;.ej). (3.6) 
In particular, for the squared volume one has 

= [1I(n!)2Jdet(e;.ej ), (3.7) 
where the n X n matrix of scalar products may be expressed 
in terms of the edge lengths S ij between vertices i and j by 

e;·ej = !(so; + SOj - sij)' (3.8) 
Equations (3.7) and (3.8) express the volumes of the sim-

plices of a net in terms of the squares of the edge lengths. 
Equations (3.7) and (3.8) do not show all the symmetries of 
the formula for fully expanded in terms of the edge 
lengths. This is because their construction involved a pre-
ferred vertex O. Manifestly symmetric formulas can be con-
structed in terms of (n + 2) X (n + 2) bordered determinants 
(see e.g., Ref. 10) and these can be derived from Eq. (3.7) by a 
few simple determinantal manipulations. The evaluation of 
these symmetric formulas, however, involves more opera-
tions than does Eq. (3.7), which is therefore preferred for 
explicit computations. 

The deficit angles are the remaining quantities needed 
to express the action in terms of the squared edge lengths. 
From Eq. (2.6) the computation of the deficit angle at a given 
triangle reduces to the computation of the dihedral angles at 
that triangle of the four-simplices which intersect it. We 
therefore consider this in detail and in slightly greater gener-
ality. Suppose we have an (n + I)-simplex which contains 
two n-simplices intersecting in a common (n - 1 I-simplex 
(the "hinge"). The dihedral angle () of the (n + 1)-simplex at 
the hinge is the angle between the normal to the hinge which 
lies in the first n-simplex and the normal to the hinge which 
lies in the second. It is given by 

(3.9) 

where W n , are the volume forms associated with the inter-
secting n-simplices and Vn , V are the volumes of these sim-
plices (the "lengths" of Wn and respectively). The correct 
sign for cos () will be obtained if W nand W are constructed as 
follows: Let Wn _ 1 be the volume form ofthe hinge. For the 
appropriate vectors e and e', write 
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(3.10) 
Alternatively, Wn and must be oriented oppositely in a 
consistent orientation for the (n + 1 I-simplex. 

Eq. (3.9) may be derived as follows: Decompose e and e' 
into parts orthogonal to and parallel to the hinge. Insert this 
decomposition into (3.10) and then into (3.9). One finds the 
right-hand side of(3.9) is This, by definition, 
is the cosine of the dihedral angle. 

Equation (3.9) may be expressed in terms of the edge 
lengths of the (n + I)-simplex through Eq. (3.6). Since each 
of the vectors e; and e; lies along some edge of the (n + 1)-
simplex, their scalar product may be expressed in terms of 
the edge lengths through formulas analogous to Eq. (3.8). 

A simple formula for sin () may be derived from the 
identity 

(n + 2fw2(w /I. a /I. b )2 

= (n + W { (w /I. a)2(w /I. b )2 - [(W /I. a)·(w /I. b W J, (3.11) 
valid for any n-form wand one-forms a and b. Here, w2 

means W·W. Written out with Wn _ I' e, and e' as in Eq. (3.10) 
for w, a, and b, respectively, decomposing e and e' into com-
ponents parallel and orthogonal to Wn _ I' and using Eq. 
(3.3), one finds for sin () 

sin () = [(n + l)1nJ[ V n _ 1 Vn+ I/(Vn (3.12) 
Here, Vn and V are the volumes of the n-simplices inter-
secting in the (n - 1 I-hinge, Vn _ 1 is the volume of the hinge, 
and Vn + 1 is the volume of the (n + 1 I-simplex spanned by 
the two n-simplices. This result for sin () is easily expressed in 
terms of the edge lengths of the (n + 1 I-simplex by express-
ing the volumes in terms of the edge lengths. From a compu-
tational point of view, however, it is not as useful as (3.9). The 
dihedral angle () ranges from 0 to 11". From a formula for cos () 
one can recover the angle itself whereas from a formula for 
sin () one cannot, and it is the angle which enters in the ac-
tion. 

Equations (3.3) and (3.9) and their expressions in terms 
of edge lengths are all that are needed to evaluate the action. 
To evaluate the simplicial field equations [Eq. (2.8)] one also 
needs as expression for the derivative of the volume of an n-
simplex with respect to one of its squared edge lengths, keep-
ing the other edge lengths fixed. One is straightforwardly 
worked out from Eqs. (3.3) and (3.2) by choosing the pre-
ferred vertex 0 so that it is not a vertex of the edge of interest 
and then considering the variation in the vectors e I produced 
by a variation in this edge length. One finds 

(3.13) 
where Wn _ 1 and _ 1 are the volume forms for the (n - 1)-
simplices formed by the vertices (O, ... ,f - 1, f + 1, ... ,n) and 
(O, ... ,j - l,j + 1, ... ,n), respectively. Equations (3.6) and (3.8) 
express this in terms of the squared edge lengths. 

To find the action or field equations for a simplicial net 
one would proceed as follows: First, the net must be speci-
fied. This means specifying the vertices, edges, triangles, te-
trahedra, and four-simplices of the net. One way of doing 
this is to give a list of all of the simplices in terms of their 
vertices. A second, and equivalent, way is to give the inci-
dence matrices which specify which (n - 1 I-simplices make 
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up an n-simplex. All the topological information is con-
tained in this specification of the net. 

With a net in hand one can now proceed to specify the 
squared edge lengths and calculate the action. Not every 
assignment of edge lengths is consistent with the simplices 
having flat interiors. The triangle inequalities and their ana-
logs for tetrahedra and four-simplices must be satisfied. Nec-
essary and sufficient conditions for this are that the squared 
volumes of all the triangles, tetrahedra, and four-simplices in 
the net must have a positive squared volume, i.e., 

(V2)2>0, (V3)2>0, (V4)2>0, (3.14) 
for the whole net. To see this in the case of triangles, for 
example, fix two of the edges and consider (V2)2 as a function 
of the remaining squared edge length, s. Ass is varied from a 
value where the triangle inequality is satisfied to one where it 
is saturated, (V2)2 ranges from a positive value to zero. Since 
(V2)2 is quadratic in s no further regions of positive (V2)2 exist 
outside the range where the triangle inequality is satisfied. 
The generalization to higher simplices is straightforward. 
The conditions (3.14) are independent. One can find, for ex-
ample, squared edge lengths for which (V3f is positive but 
the triangle inequalities are violated. 

For an assignment of squared edge length which does 
satisfy (3.14) one can compute the action and field equations 
by evaluating the necessary volumes and their derivitives 
using Eqs. (3.3), (3.9), and (3.13) and expressing these rela-
tions in terms of the edge lengths via Eqs. (3.7) and (3.8). 
From the specification of the net one can compute which 
four-simplices are incident on a given triangle. Their dihe-
dral angles at the triangle may be found from (3.9) and the 
deficit angle from the sum in (2.6). By doing this for all trian-
gles and performing the sums in (2.5) and (2.8), one arrives at 
the action and field equations for the net. 

IV. THE SEMICLASSICAL APPROXIMATION 
Considerable insight into the qualitative behavior of the 

ground state wave function and its expectation values may 
be obtained by evaluating these quantities in the semiclassi-
cal approximation. In the simplicial approximation this 
means carrying out the defining multiple integral (2.4) by the 
method of steepest descents. 

To apply the method of steepest descents, one first lo-
cates the stationary points of the action in the space of com-
plex edge lengths by solving the simplicial field equations 
(2.8). One then attempts to distort the contour of integration 
in (2.4) so that it runs through one or more of these stationary 
configurations and elsewhere follows a contour along which 
lexp( - 1)1 decreases as rapidly as possible away from these 
stationary configurations. The asymptotic behavior of 'Po as 

is then given by the integral (2.4) in the neighborhood of 
one or more of the stationary configurations or in the neigh-
borhood of the boundaries of the contour. It mayor may not 
be possible to distort the contour C to pass through any par-
ticular stationary point. The stationary point of smallest 
Re I therefore does not always give the semiclassical behav-
ior of the wave function. 37 Even if the dominant stationary 
point can be identified, one should still check whether it or 
the behavior near a boundary of the contour dominates the 
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integral. In the present case the contour has boundaries be-
cause of the simplicial inequalities (see Sec. III). Because of 
the necessity of a classical limit, however, it is a reasonable 
expectation that the semiclassical approximation will be giv-
en by one or more stationary configurations. If the station-
ary configurations have complex edge lengths they will con-
tribute to the semiclassical approximation in complex 
conjugate pairs since the original integral was real. 

To see the form of the semiclassical approximation let 
us consider for simplicity the case when a single real station-
ary configuration provides the dominant contribution. Let It 
be the squared edge lengths of the stationary configuration. 
Evaluate the measure on this configuration, expand the ex-
ponent in (2.4) to quadratic order in small deviations of the 
edge lengths from this configuration, and evaluate the result-
ing Gaussian integral to find 

'Po z Nf,l (It) [det ] -1/2 exp[ - I (It)] , 
aSj as] "=# 

(4.1) 
for some constant N. The expectation value of a quantity A 
will be A (s?) in this approximation. 

To make the further discussion of possible stationary 
configurations more concrete let us focus on the integrals 
over the boundaryless simplicial geometries which define the 
expectation values in the ground state [Eq. (2.14)]. The con-
tinuum theory gives some guide as to when one can expect 
stationary configurations with real edge lengths. There, the 
analogous problem is to solve the Euclidean Einstein equa-
tion 

Rail = Agall , (4.2) 
for real metrics gall on a compact manifold.38 For positive A 
there is the four-sphere metric on S4, the product of equal 
radii two-sphere metrics on S2 X S2, and the Fubini-Study 
metric on CP 2. For the case of S I xs 3, T 4 , andK 3 real solu-
tions with either sign of A are ruled out by the inequalities39 

X>O, (4.3) 
which are necessary conditions for solutions to (4.1) with 
A :;060. SlXS 3 and T4 have X = ° while K3 has X = 24 
andr= -16. 

One would expect the situation regarding the existence 
of solutions to the Regge equations to be similar to that for 
their continuum limit. The Regge equations offer the oppor-
tunity for approximately addressing questions still open in 
the continuum case (e.g., the existence of complex solutions) 
through an analysis of a finite number of algebraic equations. 

V. RECOVERY OF THE DIFFEOMORPHISM GROUP 
Diffeomorphisms are an invariance of general relativi-

ty. On a given manifold M, if two metrics g and g' are diffeo-
morphic they have the same physical consequences. The 
Einstein action which summarizes the theory is preserved by 
diffeomorphisms. This is analogous to the preservation of 
the action by the gauge group in a gauge theory40 and has 
important and well-known consequences for a formulation 
of the quantum theory in terms offunctional integrals. Con-
sider, for example, the expression for the ground-state expec-
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tation value of a physical quantity A fg] which is the natural 
generalization of those in field theories without gauge sym-
metries 

(A ) = f c8gA [g] exp( - I [g]) . 
f c8g exp( - I [g]) 

(5.1) 

By f 8g is meant the sum over all metrics on the manifold M 
in some class C. Two diffeomorphic metrics contribute iden-
tically in both numerator and denominator of(5.1) since both 
A and I are invariant under diffeomorphisms. Each integral 
is therefore the volume of the diffeomorphism group times a 
sum over physically distinct metrics. Since the volume of the 
diffeomorphism group is infinite each integral diverges. The 
divergent factor of the diffeomorphism group formally can-
cels between the numerator and denominator of (5.1) to give 
a finite answer for (A ), but to implement this cancellation in 
a practical way all the familiar techniques of gauge fixing 
and ghosts are required. 

Simplicial geometries are simplicial manifolds with a 
metric. By simplicial manifold we shall mean a piecewise 
linear manifold41 made up of simplices. We stress that by the 
manifold we mean the points interior to the four-simplices 
and on their boundaries, and not only the vertices of the net. 
A metric is determined by the edge lengths of the net and a 
flat metric in the interior of each simplex. With this informa-
tion the distance between two points on any curve threading 
the simplicial geometry could be computed. 

There are piecewise diffeomorphisms of simplicial 
manifolds exactly as there are diffeomorphisms in the con-
tinuum case. They are the one-to-one invertible maps from a 
simplicial manifold to itself42 which are smooth on each 
simplex. Relabeling the vertices and smooth diffeomor-
phisms of the interior of simplices are two trivial examples. 
The action of a piecewise diffeomorphism on a metric gives a 
new metric which is physically equivalent to the old one. For 
a general curved simplicial geometry one expects a diffeo-
morphism to leave the edge lengths unchanged or to change 
them only according to a trivial relabeling of the vertices. 
This is because a nontrivial reassignment of edge lengths will 
in general correspond to different curvatures and a different 
geometry. The example of flat space, however, shows that 
there can be cases where diffeomorphisms lead to nontrivial 
reassignment of edge lengths.43 Imagine a simplicial net ob-
tained by distributing vertices about flat space, connecting 
them to form a simplicial net, and assigning edge lengths . 
which are the flat distances between them. By moving the 
location of the vertices in flat space, one can find a different 
assignment of edge lengths on the same simplicial net which 
represents the same flat geometry. There is thus a 4no-pa-
rameter family of transformations of edge lengths in flat 
space which leads to different metrics on the simplicial mani-
fold which are piecewise diffeomorphic. 

It is not easy to give an algorithm for deciding when two 
simplicial metrics are piecewise diffeomorphic any more 
than it is in the continuum case. Necessary conditions are 
certainly that any curvature invariant be the same, and in a 
certain sense these conditions are sufficient as well.44 Intu-
itively, it seems reasonable to suppose that different assign-
ments of edge lengths correspond to different geometries ex-
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cept in the case of flat space. In this sense there are no gauge 
transformations in the Regge calculus.45 

If nontrivially different assignments of edge lengths 
correspond to different simplicial geometries we would ex-
pect the multiple integrals defining the expectation values in 
Eq. (2.14) not to diverge as do those in (5.1) . Thus in the 
simplicial approximation no additional gauge-fixing ma-
chinery should be needed to effect a sum over geometries. 
This is a considerable convenience. One would expect, how-
ever, to recover the divergence of these integrals associated 
with the diffeomorphism group in the continuum limit, that 
is, in the limit of large simplicial nets. In the following we 
shall describe how this comes about. 

A given continuum geometry may be approximated by 
a simplicial geometry on an appropriate net. Consider a fam-
ily of nets with an increasingly large number of vertices ob-
tained by repeatedly subdividing the original net. As the 
number of vertices no becomes large there will be more and 
more simplicial geometries (i.e., more and more assignments 
of edge lengths) which approximate the given continuum 
geometry to a fixed level of accuracy. For large no all these 
simplicial approximations contribute approximately equally 
to the multiple integrals in (2.14). As no becomes large, both 
numerator and denominator will, therefore, be approxi-
mately a large factor times a sum over physically distinct 
geometries. The factor should cancel between the numerator 
and the denominator. Thus, while the numerator and de-
nominator will diverge as no becomes large, (A ) should tend 
to a definite value. This behavior can be illustrated more 
precisely in the semiclassical approximation. 

By way of illustration let us suppose that one stationary 
configuration with squared edge lengths s? gives the domi-
nant semiclassical contribution to both numerator and de-
nominator. The classical approximation to the denominator 
of(2.14) would read 

where the s; are the deviations in the squared edge lengths 
from their stationary values. Suppose that as no becomes 
large the stationary simplicial geometries approach a contin-
uum geometry. Then, since we expect many different simpli-
cial geometries which approximate a given continuum geom-
etry we should expect to find directions A; in the space of 
edge lengths along which the action is approximately station-
ary, 

A. aI)] ;::::0. 
I as; aSj Sk='" 

(5.3) 

In fact, we can identify what these directions are. 
The curvature of the stationary configuration must be 

characterized by the only scale in the Regge equations (2.8), 
that set by the cosmological constantA. As no becomes large 
the characteristic squared edge length s? in the stationary 
configuration will become small compared to A -1 as 
A -1j2(no), where/is some rapidly decreasing function of no 
dependent on the subdivision process. On scales small com-
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FIG. 2. The origin of the approximate diffeomorphism group. The figure 
shows a two-dimensional simplicial geometry whose net is sufficiently re-
fined that the characteristic edge lengths are much smaller than the scale of 
the curvature. Local regions of this geometry will be approximately flat. 
Variations in the edge lengths which correspond to those induced by mo-
tions of the vertices in two-dimensional flat space and which are small on 
the curvature scale will leave the geometry approximately unchanged. For 
this net there are thus many different assignments of edge lengths which 
approximately correspond to the same geometry. 

paredtoA - 1/2 butlargeeventuallycomparedtoA -1/2/(no) 
the net will approximate flat space. In flat space there is a 
4no-parameter family of variations of the edge lengths which 
leave the geometry flat. In approximately flat space there will 
be a 4no-parameter family of variations of the edge lengths 
which leave the geometry approximately flat (cf. Fig. 2). We 
thus expcet 4no directions in which (5.3) is approximately 
satisfied. Put differently, if a geometry is approximated by 
increasingly subdivided simplicial nets we expect 4no of the 
n l eigenvalues of a 2] las; aSj to be a number near zero times 
A 112, while the rest are a number of order unity times A IP. 

The multiple integral in (5.2) is easily carried out along 
the 4no directions in which the action is approximately sta-
tionary. While the action is approximately stationary in 
these directions in the vicinity of the stationary configura-
tion, we expect it to remain stationary only for deviations s; 
which are of order of the curvature scale A - I. Beyond that 
the deviations represent physically distinct geometries. 
Thus, for increasingly subdivided simplicial nets we expect 
the semiclassical approximation (5.2) to behave as 

N (no,s?)exp [ -] (s?) ] 

X(/- 2A -1)4""{det' a]} -1/2, (5.4) as; aSj s. = s. 
where N (no,s?) is a slowly varying function of no. Here det' 
denotes the determinant over the n I - 4no directions in 
which the action is not approximately zero, i.e., the product 
of the nonsmall eigenvalues of a2] las; asj • 

While the above discussion has been illustrated using 
the integral in the denominator of(2.14) the situation is simi-
lar with the numerator. If A is a quantity which is not sensi-
tive to scales much smaller than the curvature scale, the inte-
gral for the numerator may be divided into a sum of pieces, 
each one of which locally behaves like (5.2). 

Equation (5.4) implies that for large no the integrals in 
both numerator and denominator of (2.14) will diverge as 
(/- 2A -1)4,..,. (/- 2A -I is greater than unity when the semi-
classical approximation is valid.) This is the degree of diver-
gence associated with the diffeomorphism group-four di-
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vergent factors for each point. These divergent factors cancel 
between the numerator and denominator of (2.14) to give a 
nondivergent expression for (A ) for those A 's which are not 
sensitive to arbitrarily small scales. Thus in the limit oflarge 
no we recover the behavior of the functional integrals arising 
from the diffeomorphism group of general relativity. 

VI. SUMMING OVER TOPOLOGIES 
Our discussion up to this point has proceeded as though 

the Euclidean prescription for the ground state wave func-
tion were to take a fixed and particular compact manifold 
and sum exp( - action) over the possible geometries on this 
manifold. This has been convenient for the exposition, but 
there is no compelling physical reason to make such a re-
striction and none is proposed. Indeed, to have the laws of 
physics fix the topology of the manifold but allow all possible 
geometries on it would seem to be assigning a very different 
status in physics to two closely related elements of geometry. 
Further, there are attractive physical reasons for considering 
four-geometries with different topology. In the set of ideas 
evoked by the words "space-time foam,,46 one would ask for 
quantum transition amplitudes between states specified by 
disconnected as well as connected three-geometries and mul-
tiply connected as well as simply connected ones. Unitarity 
would then suggest that the Euclidean functional integral 
prescription for these amplitudes contain a sum over the to-
pologically nontrivial four-geometries into which these to-
pologically nontrivial three-geometries can be embedded. 

In this section we shall discuss how sums over different 
topologies might be implemented in the simplicial minisu-
perspace approximation. What we want to give practical 
meaning to might be written schematically as 

(A) = l:Mv(M)l:gonMA [g,M]exp( -][g,M]). (6.1) 
l:Mv(M)l:gOnM exp( -I[g,M]) 

The first sum is over some class of compact four-manifolds. 
A weighting v(M) which depends on the topological invar-
iants of the manifold M, e.g., its Euler number, signature, 
fundamental group, etc., would be part of the prescription. 
The second sum is over physically distinct (i.e., nondiffeo-
morphic) metrics on M with the action] for general relativi-
ty. 

The first step in turning the schema (6.1) into a compu-
table procedure is to restrict the sum over four-manifolds to 
a sum of simplicial manifolds (i.e., simplicial complexes 
which are piecewise linear manifolds). The second step is to 
implement the sum over metrics by an integral over edge 
lengths. The latter sum has been the subject of the preceding 
parts of this paper. Including only simplicial manifolds is a 
restriction because not every four-manifold is triangulable. 
However, the author is not aware of anything physically in-
teresting lost by this. We now discuss the problems involved 
in implementing a sum over compact simplicial four-mani-
folds. We shall not be able to answer every question, but we 
will be able to provide a framework for discussion and some 
practical proposals to try out. 

To specify a sum over simplicial manifolds we must 
effectively have a procedure for listing those to be included in 
the sum. One way would simply be to list famous compact 

James B. Hartle 811 

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
128.111.16.22 On: Thu, 14 Nov 2013 22:22:04



four-manifolds, e.g.,S4, S 2 xS 2,81 xS 3, T 4 , CP 2,K 3, etc., 
to find triangulations of these, and to add together sums over 
geometries on these of the kind we have been discussing. 
This can hardly be the basis for a general principle. A better 
approach is to sum over all simplicial four-manifolds or 
some generally specified subclass. 

It is not possible to classify all four-manifolds. That is to 
say roughly, an algorithm for deciding when two four-mani-
folds are the same does not exist.47 Subclasses offour-mani-
folds may be classifiable. For example, simply connected 
four-manifolds with spin structure are classified by their 
Euler number and signature up to a finite number of con-
nected sums.48 That all four-manifolds are not classifiable 
does not mean that they cannot be enumerated. One can 
imagine a procedure (and we shall describe one below) which 
would generate an exhaustive list offour-manifolds. A given 
four-manifold would occur on the list more than once but 
there would be no universal algorithm to decide when two 
entries on the list are the same manifold. To implement the 
sum over simplicial manifolds one therefore has the follow-
ing choice: One can sum over a class off our-manifolds which 
are classifiable by virtue of having more structure and assign 
a weight to each. Alternatively, one can devise a procedure 
for listing all four-manifolds and accept the weighting im-
plied by the procedure. 

To describe concretely how a list of manifolds can be 
prepared let us first consider how a single manifold is speci-
fied.41 A simplicial complex is a collection of simplices such 
that whenever a simplex lies in the collection then so does 
each of its faces, and whenever two simplices of the collec-
tion intersect they do so in a common face. The dimension of 
a complex is the largest dimension of a simplex in it. A four-
dimensional simplicial complex may be specified by giving 
the vertices of each four-simplex in the complex. From the 
list off our-simplices the vertices of the edges, triangles, and 
tetraheda may be computed. These must be such that the 
conditions of the definition are satisfied. Figure 3 shows a 
two-dimensional example. 

Not every simplicial complex is a piecewise linear mani-
fold (Le., such that every point has a neighborhood which is 
piecewise linearly homeomorphic to an open subset of R 4 or 
a half-space of R 4). (From now on we shall omit the qualifica-
tion "piecewise linear" when referring to manifolds, homeo-

3 
5 

FIG. 3. A two-dimensional simplicial manifold. The six vertices are con-
nected as for an octohedron. The simplicial complex can be specified by 
giving a list of vertices of the triangles. In the present case the list would be 
123 134 236 346 
125 145 256 456. 
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FIG. 4. A two-dimensional simplicial complex which is not a manifold. 
This complex consists of the triangles 

125 147 346 
127 157 367 

134 256 467 
137 267 567. 

This complex is not a manifold because local neighborhoods of vertices 1,6, 
and 7 as wel1 as the edges (1,7) and (6,7) are not homeomorphic to a region of 
R 2. Neighborhoods of vertex 7, for example, are homeomorphic to regions 
in the intersection of two planes. The link of vertices 1 and 6 is the heavy 
curve and is not topological1y a circle. If edge lengths were assigned to the 
complex by embedding it in a flat three-dimensional space as suggested by 
the figure, then the deficit angle of vertex 7 would be - 2rr. The two-dimen-
sional gravitational action defined by - 2rr/ -2 I (deficit angles) is - 4rr/F 
for this complex. This is larger than the value - 8rr / /2 for manifolds which 
are topological1y two-spheres such as the example in Fig. 3. 

morphisms, etc.) A two-dimensional example is shown in 
Fig. 4. There is a necessary and sufficient condition for a 
complex to be a manifold. To state it we shall need the no-
tions of the star and the link of a simplex in the complex. 
They are illustrated in two dimensions in Fig. 5. The star of a 
simplex 0' is the collection of simplices which contain 0' to-
gether with all their faces. The link of a simplex 0' is the 
collection of simplices in the star of 0' which do not meet 0'. 

The necessary and sufficient condition that an n-dimension-
al complex be an n-manifold is that the link of every simplex 
of dimension k be a triangulation of (i.e., homeomorphic to) 
an (n - k - 1)-sphere.41 Given a complex, one might ima-
gine checking it to see if it is a manifold. Were space-time 

FIG. 5. Link and star of a vertex. The figure shows a portion of a two-
dimensional simplicial manifold. The star of a given vertex consists of the 
interior, edges, and vertices ofthose triangles which intersect the given ver-
tex. The star of vertex q consists of the four shaded triangles. The link of a 
vertex consists of those simplices of its star which do not themselves inter-
sect the vertex. The link of q is the heavily drawn edges and their vertices in 
the figure. The link of q is topologica\1y S '. 
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three-dimensional, this would in principle be possible to do. 
The one- and two-dimensional manifolds are classifiable by 
their homology groups and these are in principle computa-
ble. Were space-time five-dimensional, it would be in princi-
ple impossible to decide whether a complex was a manifold. 
In particular, one would need to decide whether the link of a 
vertex was a four-sphere and this problem is known to be 
unsolvable (i.e., roughly, it can be shown that there is no 
algorithm to do it).47 In four dimensions the difficult prob-
lem would be to decide whether the link of a vertex is a three-
sphere. Even assuming the Poincare conjecture one would 
still need a procedure for deciding whether the link was sim-
ply connected. It seems that at the time of writing both of 
these decision problems are still open.49 Thus one cannot list 
a family of manifolds to sum over by listing all the simplicial 
complexes with, say, a fixed number of vertices, and then 
discarding those which are not manifolds. There is no way to 
check. We must create the list by a different route. 

A natural way to generate a list of manifolds is to create 
simplicial complexes from smaller units, "building blocks," 
which are locally and explicitly known to be manifolds. We 
begin with a fixed number of vertices no with the idea of 
eventually allowing no to become large. In view of the ap-
proximate recovery of the diffeomorphism group discussed 
in Sec. V there is no purpose to be served in considering lists 
with different numbers of vertices. One expects the mani-
folds with the largest no to dominate both the numerator and 
denominator of (6.1) for large no. To create the list we start by 
enumerating all the four-dimensional simplicial complexes 
with no vertices. This is a matter of enumerating all possible 
lists of four-simplices and checking that when two intersect 
they do so in a common face. We now discard from the list all 
complexes for which the link of every vertex is not one of a 
finite list of known triangulations of a three-sphere. For ex-
ample, one might require that the link of every vertex be 
either the boundary of a four-simplex or of a 6OO-cell. The 
complexes remaining on the list are therefore known to be 
manifolds. If a sufficient number of basic building blocks is 
taken, lists containing all manifolds can be generated in this 
way. For example, in two dimensions it suffices to require 
the links to be five- , six- or, seven-gons. 

A procedure such as described above would generate a 
list of manifolds with which to define a sum over topologies. 
For each member the sum over geometries would be carried 
out as described in the previous sections of this paper. One 
could assign relative weights to the different members of the 
list on the basis of some computable topological invariant, 
but the simplest assignment would be the weighting generat-
ed by the procedure itself. It then becomes an interesting 
mathematical question to ask with what multiplicity a given 
manifold occurs on the list. In particular, for the procedure 
to make sense, the large multiplicities should be independent 
of the particular basic building blocks chosen out of some 
general class. 

We have described a procedure for summing over four-
dimensional manifolds which at least can be tried out. One 
could ask: "Why restrict attention to four dimensions?" or 
"Why consider only manifolds?" The familiar answers that 
space-time seems to be four-dimensional and that a manifold 
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is the mathematical implementation of the principle of 
equivalence are possibly too unadventurous. For example, 
the Regge action extends naturally to simplicial complexes 
which are not manifolds. (See the example in Fig. 4.) It also 
generalizes naturally to higher dimensions. One is thus invit-
ed to sum over complexes which are not manifolds and over 
other dimensions. The simplicial minisuperspace methods 
described here provide a framework for investigating such 
questions. Before embarking on such a journey, however, it 
would be useful to know if there is a way back to the familiar 
four-dimensional space-time on large scales. 
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