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1 INTRODUCT ION

The traditional enterprise of cosmology has been to
construct a model of the universe which agrees with our
observations on the largest scales and which, when evolved
backwards according to the laws of fundamental physics,
gives a consistent historical picture of how the universe
came to be the way it is today. Our observations tell us
that the universe consists of matter and radiation. The
matter that we see in galaxies is distributed roughly
homogeneously and isotropically on the largest scales.

The cosmic background radiation, in which we see a picture
of the universe at an early stage, is remarkably isotropic.
As a first approximation, we are thus led naturally to the
Friedman-Robertson-Walker cosmological models in which the
symmetries of homogeneity and isotropy are enforced
exactly. Evolved backward in time using Einstein's
gravitational theory and the laws of microscopic physics
these models provide a consistent history of the universe.
Among other things, they describe the evolution of the
background radiation, the origin of the primordial elements,
the evolution of the fluctuations which became the
galaxies, and perhaps the origin of the baryons. The
initial condition implied by the extrapolation is an early
state in which the matter is in thermal equilibrium with
high temperature and density, distributed homogeneously

and isotropically but containing the seeds of condensa-

tions later to become galaxies.



The Friedman-Robertson-Walker models are successful
and they are simple. Their success and simplicity raise
the issue of why does the universe have the properties it
does? Can we explain the Friedman-Robertson-Walker models?

This is a very different kind of issue from the essentially
descriptive questions traditionally asked in cosmology.

In effect one is asking for a theory of initial conditions.
These lectures are about one approach to this problem:

the search for a theory of initial conditions in the
application of quantum gravity to cosmology - in two words

they are about quantum cosmology.

The lectures are not intended as a review of all
models of the universe which involve quantum mechanics
or even of those which deal directly with the issue of
initial conditions. The subject, although already large,
is not yet connected enough to make such a review feasible
in the space available.l) Rather we shall explore a
specific proposal for the quantum state of the universe
developed by Stephen Hawking and his collaborators.z)

In the process we shall be able to review much about the

general issues.

To state the proposal for the quantum state of the
universe we shall need some of the framework of quantum
gravity. This we describe in Section 3. We shall
develop the idea and compare its predictions with ob-
servations in Section 6, but, in order to know where
we are going, we shall first review the observations

we hope to explain in Section 2.



2% THE UNIVERSE TODAY AND THE PROBLEM OF ITS INITIAL
CONDITIONS

2.1 Observations

The variety and detail of the observations now avail-
able which bear on the structure of our universe in the
large is one of the most impressive achievements of con-
temporary astronomy. The relationships between these
observations are complex and deriving an understanding of
the universe in the large from them is a complex theoretical
story. Emerging from this analysis, however, is a picture
of striking simplicity on the largest scales. In this
section we shall summarize this picture in a few "observa-
tional facts" and briefly indicate the nature of the
supporting evidence for each one. These are the facts
one seeks to explain in a theory of initial conditions.

We can only adumbrate the arguments for these observations
here and cannot hope to give a complete list of references
to them. For greater detail and references the reader is

3)

encouraged to consult the many reviews of this subject.

Fact (1). Spacetime is four dimensional with

Euclidean topology

This is so built into our fundamental physics
that we usually take it as granted. It is important to
remember however that all aspects of geometry have an

observational basis.

Fact (2). The universe is large, old and getting

bigger
At moderate distances galaxies recede from each

other according to Hubble's law

velocity = H, (distance apart) , (2.1)

of recession

where HO is somewhere between 40 and 100 (km/sec)/Mpc.



[A pc is 3.09 x lO18 cm. A Mpc is 106 pc.] 1Inverted,

Hubble's law gives us a connection between distance and

redshift. Since HO is uncertain distances are often

quoted as a multiple of h™1' where h is H/[100 (km/sec) /Mpe ].

The background radiation originates at distances of order

c/HO ~ 3000 h_l Mpc (the Hubble distance) from us and at

times of order l/HO ~ 1010 yrs. (the Hubble time) ago.
These are the largest scales which are directly accessible
to observation today. It is perhaps a trivial observation,

but these are not the scales of elementary particle physics.

Fact (3). The universe contains matter and radiation

distributed homogeneously and isotropically

on the largest scales

Direct evidence for the homogeneity of the
universe is hard to come by. Ideally one would like to
make a three dimensional map showing the distribution of
galaxies and this involves measuring distances. Such
surveys have been made but only out to limited distances
(~100 Mpc). The test that probes homogeneity on the
largest scales is the oldest - counts of galaxies vs.
limiting flux. One can easily show that if there are
several populations of objects distributed uniformly
in flat three dimensional space, then the number of
objects counted with flux f greater than some limiting

flux, £ should vary with £, as

o’ 0

-3/2
N(f > fo} = £, 2 (2.2)

with calculable corrections for spatial curvature. Modern
surveys4} which probe out to depths comparable to the

Hubble distance yield approximate agreement with this law.

If we accept the Copernican principle that we are nof
at a preferred position in the universe, and there is no

evidence that we are, then evidence for isotropy becomes
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evidence for homogeneity. Evidence for the isotropy of the

universe comes from angular surveys of its major constitu-

ents.

Most directly there are the galaxies. A plot on the
sky of the Shane-Wirtanen catalog of the 106 galaxies
contained in an effective depth of several hundred Mpc 1is
as close as we can come to a picture of the universe today.s)
It is roughly isotropic on large scales but clearly exhibits
structure. A guantitative measure of the isotropy is the
galaxy-galaxy angular correlation function. This is the
excess probability for finding a second galaxy at some
fixed angle from any given one. It is conveniently quoted
in terms of a spatial correlation function E(r) which would
produce the same result assuming homogeneity. ¢(r) is about
unity at 7 h_l Mpc and decreases to a few 1/10 ths by 20
ht Mpc. The galaxy distribution is thus essentially iso-

tropic at large scales.

Radio sources are distributed across the sky in an
essentially uniform way. The diffuse X-ray background is
isotropic to a few percent at angular scales of 5°. Since
a significant fraction of this radiation comes from distant

quasars this becomes a test of isotropy on large scales.

The temperature distribution of the 2.7°K cosmic back-
ground radiation provides the most accurate test of the
isotropy of the universe and the one which probes this
feature on the largest scales and therefore the earliest
times. The anisotropy in the temperature, AT/T, has been
well measured on a number of different angular scales.G)
There is a purely dipole anisotropy which is attributable
to the motion of our solar system with respect to the rest
frame of the radiation. If this is subtracted out no

anisotropy has been detected in the residual component on

any scale. The current best limit on the quadrupole aniso-
5

7, . k-
’ ’ < -
tropy for example, is [AT/T)quadrupole < 7x10



Figure 1 shows this graphically. It is a map of the sky

with the dipole anisotropy subtracted out, produced by
8)

Lubin and Villela at 3mm. where the background radiation

dominates all other sources. It is thus in effect a snap-

shot of the universe at an age of lO5 years when the

background radiation was emitted. It is essentially

featureless.

Figure 1. The sky at 3mm. This figure shows the map of
the sky at 3mm. observed by Lubin and Villela8) with the
dipole anisotropy removed. The shading in the rectangles,
each a few degrees on a side, indicates the temperature
deviation from the mean. Since the background radiation
is the dominant source of radiation at this wavelength,
this is essentially a picture of the universe 300,000
years after the big bang and it is remarkably isotropic.



The observed approximate homogeneity and isotropy on
large scales suggest that the Friedman-Robertson-Walker
models, in which these symmetries are enforced exactly,
should give a good first approximation to the dynamics of
the universe. The metric of a spacetime geometry with
homogeneous and isotropic spatial sections can, in suitable
coordinates, be described by the line element

2 2 2 dr? - I X
ds” = =dt” + a“(t) [———2—+ r dQ2J , (2.3)
1-kr
where dﬂg is the metric on the unit two sphere. The
spatial geometry is open with negative curvature if k= -1,
open and flat if k=0 and closed with the geometry of a
three-sphere if k=+1.

All the geometrical information about the dynamics
of the universe 1is contained in the scale factor al(t).
Einstein's equation for perfect fluid matter with energy

density p and cosmological constant A implies

312 k A 817G
A PEEYETE : (44

This equation plus the constituative relations of the
matter are enough to extrapolate the dynamics of the
universe forward and backward in time given the constants

k and N and the present values of a and p or equivalently
the present values of p and é/a. The present value of é/a

is the Hubble constant HO. It is uncertain because the

extragalactic distance scale is uncertain, but most

determinations fall in the range 40 - 100(km/sec)/Mpc.

Eq. (2.2) shows that, were A = 0, the density today

would have to be greater than the critical value
3H2

L
Perit = 871G o (2.5)



to have a closed (k=+1) universe. It has become conven-
tional to quote p and even A in terms of their dimensionless
ratios to this critical density. For example, the present
density Po defines the ratio QO = po/pcrit and the cosmo-
logical constant the ratio Qh = (A/BﬂG)/pcrit .  We now
briefly describe the obhservational evidence for each of

these quantities.

The density in luminous matter, found essentially by
counting galaxies whose redshifts and therefore distances
are known, corresponds to an (} of about .0l. There is
considerable evidence, however, that the universe contains
significant amounts of non-luminous matter. The rotational
velocity of a galaxy at a given radius from its center can
be used to estimate the mass interior to that radius.
These velocities do not fall with radius as would be pre-
dicted from the density of luminous matter in galaxies.
They remain constant as far out as can be measured indica-
ting the presence of a dark component perhaps 10 times
more massive than the luminous one. Dynamical analysis of
the infall of galaxies towards the center of the Virgo
supercluster (of which we are an outlying member) argue

for Qofu.3 if there is no dumped matter which is non-

luminous.g) Models of the nucleosynthesis of deuterium

in the early universe together with its measured abundance
today suggest that the () corresponding to the density of
baryons today is about .1l. These arguments suggest a
value of roxfa few tenths. They cannot rule out, however,
a larger‘(% if there is non-luminous, non-baryonic matter
which is not clustered with the galaxies or if there is

matter clustered like the galaxies but non-luminous.

It is difficult to measure Qh from anything other thar
direct observation of the cosmological expansion. However,
it cannot be many orders of magnitude larger than unity or

it would imply observable deviations from Newtonian dynamics
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0)

evidence that A = 0 today. Even an ﬂh of 1, however,

in clusters of galaxies. Thus there is no direct

corresponds to a cosmological constant which is very

small on the scale of the Planck mass mp = {ff*;c:/G)l/2
A~ 8.8x 10_122m§§}hh2 : (2.6)

The available information on the density of energy in
the universe is not enough to tell us whether the spatial
geometry of the universe is open or closed. It is, however,
close to the flat geometry which is the borderline between
the two. We might therefore summarize this information in

a fourth "observational fact":

Fact (4). The spatial geometry is approximately flat

Fact (5). The spectrum of density fluctuations

The universe is not exactly homogeneous and
isotropic. Matter in galaxies is very clumped as measured
by the ratio of the difference in their density to the
mean density, 0p/p. The evidence from the background
radiation is that earlier the universe was much smoother.
The present large scale structure arose from this earlier,
smoother distribution through gravitational attraction.

At present, direct observations of the background radiation
give only upper limits on fluctuations both as to amplitude
and spectrum. The amplitude required for those scales
where 0p/p ~ 1 now (superclusters of galaxies) may be found
by extrapolating backwards in time using linear perturba-
tion theory and is (0p/p) ~ lOﬁ4 at the time the background
radiation was emitted. This is consistent with the upper
limits. Information on the spectrum can be obtained by
assuming appealing candidates at decoupling and extrapola-
ting them forward non-linearly and comparing with the
existing large scale structure. The spectrum such that all

fluctuations have the same amplitude at the time their

= B



scales coincide with the Hubble scale, called the

Zel'dovich spectrum, is a popular candidate consistent

with all current observations.

Fact (6). The entropy of the universe is low and

increasing in the direction of expansion

Today, essentially all of the entropy of matter
is in the background radiation. The ratio of the density

of entropy s to the density of baryons ny is
s/knb m.109 5 (2.7)

so that the total entropy within a Hubble distance is

1087 (the word approximately refers

approximately S/k ~
to the exponent!). This is a large number but a small
fraction of the entropy which could be obtained by

clumping all the matter within the Hubble distance into
a black hole.ll)

4ﬂkGM2/(hc) so that with a reasonable estimate for the

A black hole of mass M has entropy

mass within the horizon

s/k ~ 10120 . (2.8)

The 33 orders of magnitude discrepancy between fact and
possibility is another way of saying that the universe

is still in a reasonably well ordered state. Entropy is
increasing and even on the largest scales we seem to see

a steady progression from order when the universe is small

to disorder when it is large.

We, of course, have more information about the large
scale features of the universe than can be summarized in
the above six cosmological facts. We observe specific
abundances for the elements, a baryon-antibaryon asymmetry,
the thermal spectrum of the background radiation and so on.
The above list, however, contains those features whose

origin is to be found in the earliest stages of our universe.

a T -



2.2 1Initial Conditions

In most problems in physics we divide the universe up
into two parts, the system under consideration and the rest.
We use the local laws of physics to solve for the
evolution of the system. For example we use Maxwell's
equations and Newton's laws of mechanics to predict the
evolution of a plasma. The local laws of physics
require boundary conditions: sometimes initial conditions,
sometimes spatial boundary conditions, sometimes radiative
boundary conditions, and often a combination of these.

These boundary conditions are set by the physical conditions
of those parts of the universe which are not part of the
physical system under consideration. There are no particu-
lar laws determining these conditions, they are specified

by observations of the rest of the universe. The situa-

tion is different in cosmology. Boundary conditions are
still required to solve the local laws governing the
evolution of the universe. They are needed, for example,
to solve Einstein's equation (2.2). There is, however, no
"rest of the universe" to pass their specification off to.
If there is a general specification of these initial con-

ditions it must be part of the laws themselves.

If we extrapolate the Friedman-Robertson-Walker models
packward in time we can find initial conditions which give
rise tothe present universe. What attitude are we to take to
these initial conditions? A number of attitudes have been
taken. Many of them are summarized in the following four

rough categories.

Attitude l: That's the way it is.

The universe might have been in any one initial state
as well as any other. It happens that the one it is in is
homogeneous and isotropic on the scales we observe. That's

as far as physics can go. Its not the proper subject of

0, i -



physics to explain these initial conditions only to dis-

cover what they were.

This is a reasonable but not very adventurous attitude.
It certainly has no predictive power concerning what we
will see when with increasing time we are able to observe
larger and larger regions of the universe. I believe we
will only be able to say it is correct when all attempts

to explain the initial conditions have failed.

Attitude 2: The conditions which determine the universe

are not initial conditions but the fact that we exist.

This attitude is related to the set of ideas called

2)

the anthropic principle.l The universe must be such as
to allow galaxy condensation, star formation, carbon
chemistry and life as we know it. This is indeed a
restriction on the structure of the universe. Perhaps,

if one were given a choice of three or four very different
cosmologies one could identify our own using the anthropic

1)

principle. As stressed by Penrose, however, the
anthropic principle does not seem strong enough to single
out the observed universe from among all possibilities.
Suppose, for example, the sun had been located in a cloud
near the galactic center and we had not been able to make
observations of the large scale structure. Would we have
been able to predict the large scale homogeneity and

isotropy using the anthropic principle?

Attitude 3: Initial conditions are not needed - dynamics

does it all.

The idea is that interesting features like the large
scale homogeneity and isotropy will arise from any reason-
able initial conditions through the action of physical
processes over the course of the universe's history. Even
if it started in an inhomogeneous and anisotropic state the
universe would evolve towards a homogeneous and isotropic

- T foe



one over the scales we can observe it. This is an attrac-
rive idea not least because we can achieve determinism with
the existing dynamical laws of physics. A variety of
physical mechanisms have been proposed to implement this

13)

idea beginning with the work of Misner and his co-workers.

14)

I'he most successful mechanism is inflation.”

Any dynamical explanation of the large scale structural

features has to confront the problem of horizons. We can
jllustrate this idea for a k = 0 model by rewriting the

line element (2.3) in terms of a conformal time coordinate
n such that dt = adn. Then

d32 = az(-q)[—dﬂ2 + dr2 + rzdﬂg] ' {2,9)
and radial 1light rays move on 45° lines in an (m,r) plane.
Two events are in causal contact if their past light cones
intersect each other before they intersect the big bang
(Figure 2). Only if two events are in causal contact
could they be both influenced by a common event in their
past. The horizon size at any time is the largest dis-
tance over which two events could have been in causal
contact up to that time. As measured in the comoving

coordinate r, the horizon radius is

ry = I dn = I a(t) - (2.10)

Clearly it grows with passing time.
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If we are to have a dynamical explanation of the remarkable
isotropy lO5 years after the big bang, then the different
regions from which the radiation was emitted must have been
in causal contact. Whether they were able to communicate
depends on the history of the universe prior to the time the
radiation was emitted i.e. whether there was time enough
since the big bang for them to do so. A prerequisite for
any dynamical explanation of the observed isotropy of the
background radiation is that the horizon size at decoupling

be larger than the size of the universe we can observe then.

The most naive extrapolation of the history of the
universe to times earlier than decoupling is to assume that
the spacetime geometry remains approximately homogeneous
and isotropic (the Friedman-Robertson-Walker model), that
the matter energy density is dominated by the density of
approximately free radiation, and that the evolution is
governed by Einstein's equation. With this early history
only regions at the time of decoupling now subtending a
few degrees on the sky could have been in causal contact
since the big bang and no dynamical explanation of the
observed isotropy would be possible. This extrapolation,
however, is too naive. The horizon can be much larger
than the observable universe in models where the geometry

5)

is significantly anisotropic before decoupling, as a
consequence of quantum effects at the Planck epoch16) or
as a consequence of an inflationary de Sitter-like expan-
sion arising from a matter phase transition at the GUT
time. Since this is an important idea it is worthwhile

digressing to discuss it briefly.

If the vacuum energy represented by the cosmological
constant dominated all other sources of stress energy in
Einstein equations the solution would be a geometry called

de Sitter space. In particular the solution is

x B =



2
2 ' 2
ds® = -qt® + SosRLEE daz,

H

{2.413)

where H2 = LA/3 and dﬁg is the metric on the three sphere.
de Sitter space is the geometry of the surface of a
Lorentz hyperboloid in a 5-dimensional flat, Lorentz sig-
natured spacetime. It contains neither a big bang nor a
big crunch. The geometry is non-singular. The spatial
three spheres collapse from infinite radius down to a

minimum radius

=t = 1/2 '
a ., =H = (3/1) P (2.12)

and then re-expand to infinity. The expansion is exponen-
tial - inflationary. During an inflationary expansion the
horizon grows at an exponential rate over what we would
have guessed from the naive extrapolation. For example,
suppose we extrapolate back to a time te according to the
usual history but before that replace the naive radiation
dominated history with an inflationary history back to
time £ - The comoving horizon grows in this epoch
according to (2.10) with the revised expansion law. The
ratio of the horizon size with inflation to that without

1s approximately

exp(H(te—t ))/(2Hte) ' (2.13)

b
for t. = tb' If 1/H is set by a particle physics

a
e
=

mass scale it is not difficult to overcome the horizon

problem.

In the inflationary history, with only conservative
assumptions on the matter physics, the horizon at decoup-
ling could be encormously larger than the observable
universe. There is thus opportunity for dynamical
processes to act to drive the universe towards isotrooy

and the inflationary expansion itself provides a mechanism



17) Further, the region that becomes the ob-

to do this.
served universe at decoupling is so much smaller than the
horizon size at the end of inflation that one might suppose
that any reasonable initial conditions which are
inhomogeneous on the scale of the horizon will appear
smooth on the scale of the observed universe. With an
inflationary history no special assumptions on initial
conditions are required to explain the observed isotropy.
We see the universe as homogeneous and isotropic simply

because we do not see a very big part of it.

If the universe is inhomogeneous on a large scale
eventually we will find this out. The size of the
universe we can observe grows with every second. No
dynamical explanation of homogeneity and isotropy can
thus ever be an explanation for all time. Eventually
we will see outside the horizon and have to face up
to the problem of initial conditions. However, if the
inflationary history is correct, under even the conservative
assumptions mentioned above, we may be able to postpone this

discussion for many times the present age of the universe.

Even in the limited region we can observe, no
dynamical explanation can ever be a complete explanation
for the features of the universe we see. We can always
imagine a present state of the observable universe which
is highly inhomogeneous. Whatever the laws of geometry
and matter, whether they be classical or quantum, whether
there are phase transitions or not, these laws can be
used to extrapolate this state backward in time and reach
some initial condition. No dynamical explanation can,
therefore, ever completely exclude a present state of
inhomogeneity without some restrictions on the initial
conditions. As impressive as they may be in broadening
our choice for initial conditions compatible with our

present observations, dynamical explanations of these

= M



observations can never be complete.

Attitude 4: There is a law of physics specifying the

initial condition.

Specification of the boundary conditions is just as
much a law of physics as are the dynamical equations
governing their evolution. In this view, the question
for physics is whether there exists a compelling, simple,
and predictive principle which will single out the initial
state of our universe. Any search for such a principle is
likely to involve the quantum theory of gravity in an

essential way.

Classical cosmological spacetimes can either be
singular (for example the Friedman model) or non-singular
(for example de Sitter space). Depending on the physics
of the matter there could either be a big bang or a small
bounce. If the past evolution were essentially classical,
it would be very difficult to see how to find a principle
for the initial conditions. The principle would neces-
sarily be a principle of classical physics and it is
difficult to see, for example, what classical principle
would single out the spectrum of density fluctuations we

are living with.

f there 1s a singularity in our past then gquantum
gravity will certainly be important for its structure.
Quantum gravity becomes important when the curvature
varies significantly over a Planck length,(%G/c3)lX2~lO~33:m.
and curvatures of arbitrarily large size are produced in a
classical singularity. The big bang singularity gives one
a natural place to make a theory of initial conditions,and
its quantum fluctuations are a natural starting point for

the present spectrum of density fluctuations.

18



Singularities are not difficult to arrange in general
relativity. They are not, for example, artifacts of high
symmetry. The singularity theorems of classical general

18) suggest that if we extrapolate the present

relativity
universe into the past we will generally encounter a
singularity provided the matter physics is such that a
positive energy condition is satisfied. (This condition
is satisfied, for example; in the radiation dominated,
pre—-phase transition era of the usual inflationary

uhiverse.)

It is in the quantum mechanics of the big bang that
we shall look for a law of initial conditions. We must

therefore now turn to gquantum gravity.

= 19 =



3. QUANTUM GRAVITY
3.1 The Problem of Quantum Gravity

We do not possess today a complete, manageable,
satisfactorily interpreted, and tested quantum theory of
spacetime for application to cosmology. The difficulties
with formulating such a theory occur not only at the level
of the traditional issues of quantum field theory: What
Lagrangian should be used, that of Einstein's well tested
classical theory or another with better short distance
behavior for which Einstein's theory emerges as a low
energy limit? How does one construct a covariant par-
turbation expansion for the theory? 1Is this expansion
renormalizable and is the resulting scattering theory
unitary? If it is not, can the theory still be sensibly
implemented through non-perturbative methods? In a
guantum theory of spacetime one also encounters difficul-
ties at a more elementary and more fundamental level.
What are the physical degrees of freedom of the theory?
What variable plays the role of time so central to
Hamiltonian quantum mechanics? How does one label the
states and what 1s their Hilbert space? What is the
probability interpretation of these states? 1Is a theory
formulated with one time= unitarily equivalent to one
formulated with another as general convariance would
require? These types of "quantum kinematics" issues whose
resolution is familiar in flat space quantum field theory
become serious problems in the quantum theory of space-
time. Finally, it is clear that in applications to
cosmology one will confront the interpretive issues of

guantum mechanics in a striking manner.

I cannot present to you a balanced discussion of all
these issues for two reasons. First, I believe that a
balanced discussion does not exist. Second, I believe

that if it did, I would be hard pressed to present it in
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the compass of a few lectures. What I shall do in this
section is the following: I shall assume that we want a
gquantum theory of spacetime and focus on the guantum
kinematics of such a theory. I shall by and large neglect
the issues of which theory is correct and those of inter-
pretation. The reasons are part prejudicial and part
tactical. It is certainly reasonable to explore at the
guantum level Einstein's beautiful idea that gravity is
geometry. I shall focus on the quantum kinematics of
spacetime theories both because it is possible to say
something about these questions and because they may be
less familiar to those coming from a particle physics
perspective. Where dynamics is needed, I shall for the
most part illustrate with the theory constructed on
Einstein's action both because this 1is the simplest
illustration and because most of the results in guantum
cosmology have been obtained in the semiclassical
approximation where the deficiencies of this theory are

not immediately present. Further, because it is the
correct low energy limit one can hope that some qualitative
features of any analysis carried out in Einstein's theory
would persist in the correct theory of spacetime. Finally,
I shall have little to say about what might be called the
"words problem" of gquantum mechanics. This is the phe-
nomenon that two scientists can agree on the algorithms in
gquantum mechanics for predicting the result of every
experiment, but disagree passionately on the "words" with
which they would like to surround these algorithms.

Because of this phenomenon it seems to me likely that
interpretative issues in quantum mechanics are in part
about the people making the interpretations as well as
about the real world. It is not that interpretative issues
are uninteresting. Like sex, religion, and politics almost

everyone likes to discuss them, and they are sometimes
crucial to motivation; it is just that they are difficult

to lecture about.



3.2 The Problem of Time

Hamiltonian quantum mechanics is the traditional
framework for constructing quantum theories of classical
systems. The procedure in this framework is familiar:
Construct the Hilbert space of physical states, identify
the operators corresponding to observables and the
Hamiltonian, then calculate dynamics by solving the
Schrodinger equation. There are many good reasons for
using this canonical framework, the most important being
that it is the most mathematically precise of the several

possible frameworks.

The canonical formalism has disadvantages. The most
important for the quantization of gravity is the special
role played by time. In canonical quantum mechanics time
enters as a parameter rather than an operator like other
observables. The operators correspond to idealized
measurements which take place at one instant of time. The
Hilbert space inner product is constructed on a surface of
constant time. Indeed, time plays such a distinguished
role in the theory that the first problem in constructing
a canonical guantum theory of a physical system is to

identify the time.

In non-relativistic quantum mechanics there is no
difficulty. A time is already singled out in classical
physics.

In special relativistic quantum mechanics there is no
difficulty but there is an issue. If one reads an elemen-
tary book on quantum field theory, one typically finds the
canonical quantum mechanics worked out using the time of a
particular Lorentz frame. Later, one finds a section
"proving the Lorentz covariance of the theory." This means
showing that if one had carried out the procedure in a

different Lorentz frame one would have obtained physically
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equivalent results because the corresponding state vectors
are connected by a unitary transformation. Thus despite
the special role played by time in canonical quantum mech-

anics it can be made consistent with special relativity.

In general relativity, however, one encounters a
crisis. The classical theory does not single out any
special set of spacelike surfaces whose labels can play
the role of time in canonical guantization. In spacetime
physics all spacelike slices are equivalent. There is thus
a potential conflict between canonical quantum theory and
general covariance unless the canonical quantum theory
constructed with one particular set of spacelike surfaces

turns out to be equivalent to any other.lg)

Because the problem of choosing a time arises so
immediately in canonical quantum theory of spacetime it
is useful to examine other frameworks in which this issue
is not as central. Feynman's sum over histories formula-
tion, while at present mathematically less precise, is a
useful alternative for "the assistance which it gives
one's intuition in bringing together physical insight and

mathematical analysis."zo)

3.3 Sum Over Histories Quantum Mechanics

The basic elements of a sum over histories formulation

of a quantum theory are the following:

(1) The possible histories. A history is a set of

observables {H} which can describe the results of all
possible experiments. The possible histories are the

possible histories of all experiments.

(2) The amplitude for a history: This is the joint

probability amplitude for the occurrence of a particular

history given as

#l{H}]= exp(is[{H}]) . (3.1)

where S is the real action functional for the history.
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(3) The construction of conditional probability

amplitudes by the principle of superposition. In physics

we are interested in the results of an experiment. In
every experiment the observables constituting a history

can be divided into three groups.

(a) The observables which are fixed by the
conditions of the experiment. We call

these the conditions {cC}.

(b) The observables which are measured. We

call these observations {0}.

(c) The parts of the history which are neither

conditioned nor observed {U}.
The conditional probability of observing {0} given {c] is

¢[{o} |{c}] = = &l{n}] A (3.2)
{u}

Typically, the conditions {C] define the preparation of

the system on which the observations {0} are later made.

(4) A probability interpretation. If one can find

a complete and exclusive set of observations [Ol},[Oz},...
such that, given the conditions {C}, one and only one of
the observations [Oi} is certain to occur, then the

probability that it occurs is
lelo) |(c] 11?
5. |elfo}1(c} 1|

p[{oi}\[c:}] = . (3.3)

(In order for this to make sense the conditions {C} must
be sufficiently complete to specify the system but this

point will become clear through examples.)

The sum over histories formulation of quantum mechanics
has been presented somewhat abstractly to emphasize its
generality. To apply this framework to a particular theory

we must specify (i) the possible histories, (ii) the action

T



functional, (iii) the rules for carrying out the sums in
(3.2) and (3.3), and (iv) the complete and exclusive sets
of observables. We can make this concrete by considering

a few examples:

A non relativistic particle. The histories are the

particle paths x(t) which move forward in time i.e. for
which dt/dx # 0. The action is

2

S x(t) ] = Idt[%m}.c -vix)] . (3.4)

A typical conditional amplitude is that for the particle
to be at x" at time t" given that it was at x' at time t'.
In this case the unobserved, unconditioned parts of the
history are the parts of the path other than at t' and t".
Thus,

&[x",t"|x',t' ] = 3 exp(iS|x(t) ]) . =T

paths

Where the sum is over all paths which intersect x' at time
t' and x" at time t" (Figure 3). (Of course the details of
how the sum is carried out - the measure on the space of
paths - is also important for the prescription but in this
focus on kinematics we are not spelling this out.) An
exclusive and complete set of observations are the
observations of x at a given t. All particle paths inter-
sect a t = constant surface at at least one x and at no
more than one x. Thus the probability (density) that the
particle is at x on a constant t surface and nowhere else
on that surface, given that it was prepared by passing it
at t' through a "slit" characterizedzo)

E(x') is

by a function

2
xl@ g }{',' {xl
Plx,t|f,t'] = Bl Jas) Sl . (3.6)
ot | fetse* @l b £ £ () |2
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Fig. 3. The conditional probability amplitude for a non-
relativistic particle to be at x" at time t", given that
it was at x' at time t' is the sum over paths which move
forward in time and which intersect the surface t=t' only
at x' and the surface t=t" only at x=x".



A relativistic charged particle in an external

electromagnetic potential: The histories are again

particle paths x%(w). The paths can't move forward
in some time t and be a Lorentz invariant class. We
therefore consider paths which move both forward and
backward in time and this leads to pair creation.

An action is

W

by 1 dx® axP dx®
W+2J‘dw['2—naﬁ el de. (3.7)
0

s [x®%(w) ] = -m?

where m is the particle's mass, e is its charge and Aa the
external vector potential. W is the total parameter time

equal on an extremal path to the proper time divided by m.
The propagator - the conditional amplitude to find the

' O

article at x"% given that it was at x is
P

@[xa"lxa'] = 5 exp(is[x%)) p (3.8)
paths

where, since the parameter time is unobserved, the sum
over paths includes not only a sum over the different
curves which connect x'® to x"% but also the different
ways in which the parameter time evolves along these curves.
Since the paths move forward and backward in time it is no
longer the case that the values of X at a given time t
constitute an exclusive and exhaustive set of observables.
A particle path might intersect a constant time surface
many times and one is thus led to a many particle inter-
pretation of this theory. That is, an exclusive and ex-
haustive set of observations are the number of particles

—

n on a constant t surface and their positions Xyrewer X o

A scalar quantum field in flat space: The histories

are the possible field configurations in flat spacetime,

w(x). An action is
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sle()] =1 j*x[- (v @? - n®® + V@] . (3.9

where V(y) is some polynomial interaction in ¢. A condi-
tional amplitude is that for the field to take one

configuration m"(;), on a spacelike g" surface given that

it was m'(;) on another spacelike surface ¢g'. This is

elp"(x).0" o' (x),0] = £ explisle]) . (3.10)
o (x)
where the sum is over all spacetime field configurations
which have the prescribed values on ¢g' and ¢g". The dif-
ferent field configurations on such a surface are a set

of exhaustive and exclusive observations.

A string: The histories are the world sheet of the
string specified by

A
X =XA(G:T) A=0rl:21""? (3.]_]_)
The action might be the area of the string. A complete
and exhaustive set of variables might be the transverse

directions of the string at one instant of time.

Spacetime: Einstein's idea was that gravitational

physics is spacetime physics. The histories for gravity
are therefore four dimensional geometries, by which one
means a four dimensional manifold M with a Lorentz (-,+,+,+)
signatured metric g _(x). Two metrics represent the same
geometry if they are diffeomorphic i.e. 1f they can be

connected by a coordinate transformation.

To keep our discussion simple I shall assume that we
are dealing with cosmologies which are spatially closed
and for which the topology is fixed to be M3}cﬂ{ where M3
is a closed manifold for space. In the closed Friedman

models M3 is the 3-sphere SB_ This is not the most general
class of histories to consider. One might want to consider
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the possibilities of open cosmologies, for example. One
might want to consider summing over manifolds with dif-
erent topology. Since spacetime is a manifold with metric
it seems artificial to sum over metrics but keep the mani-
fold fixed. In particular one might want to sum over
histories in which the topology changes, such as

that of Fig. 4. Such geometries cannot possess a smooth

SR )T

Fig. 4. Topology change in two dimensions. The twc-
dimensional surface portrayed emtedded in three-dimen-
sional flat space corresponds to a history in which the
topology of its spatial sections changes from that 37 a
single circle at A to two circles at B. It is not
possible to introduce a non-singular vector field
corresponding to time on such histories.



decomposition into spacelike slices, there are no non-
singular timelike vector fields. I see no particular
reason to leave them out, although arguments have been

21) However, we will be able to

advanced against them.
do all of what we want to do by making the simple

assumption described.

The action for Einstein's general relativity is

slgl = 2] k'L + [ R/Ga'x (3.12)

oM M

where oM is the spacelike boundary of the manifold M and R

is the scalar curvature. hij is the induced three metric
of the spacelike boundary and K is the trace of its

o

extrinsic curvature. That is, if n° is the unit outward

pointing normal to &M

K =y n% 2 (3.13)

The simplest conditional probability amplitude answers the
question: "Given there occurs in the spacetime a spacelike
surface with a three geometry described by a three metric
hi. what is the conditional amplitude that there occur a
second with a three geometry described by a three metric

hy. 2 (TER-is
1]

@lhgjlhij] = quxp(iS[QJ) : (3.14)
The sum stands for a sum over all physically distinct
metrics g which induce metrics hij and h;j on the two
pieces of the boundary. To implement the "physically
distinct" part of this prescription requires some "gauge
fixing" machinery essentially familiar from gauge theories.

The difficult task in constructing a sum over histories
quantum theory of spacetime is the identification of the com-

plete and exclusive sets of observables and the associated
probability interpretation. We shall return to these issues
in Section 3.5.



3.4 Wave Functions

In guantum mechanics we would like to capture the
classical notion of "the state of a system" - a specifica-
tion of the system at one instant of time. We can then
hope to use this information and dynamical laws to evolve
the state forward in time. When spacetime is a fixed, flat
background, it is straightforward to start with the sum over
histories formulation of quantum mechanics and identify the
correct notion of state. Suppose the system is prepared
by conditions which lie to the past of some spacelike
surface. Probabilities for future observations are
determined by sums of histories which cross this surface.
We may reasonably regard the state of the system on the
spacelike surface as specified by the collection of sums
over histories proceeding from the given conditions in the
past to a fixed value on the surface. This defines the

wave function on the surface.

For example, fixing the history of a non-relativistic
particle on a constant time surface means fixing its
position on the surface. Thus we write for the wave

function

o(x,t) = | ox (t)exp(is|x(t) ]) ‘ (3.15)
i

where the sum is over all paths to the past of t which
meet the conditions C. There is a wave function for each
set of conditions, that is, for each way of preparing the

system.

The probability interpretation for sums over histories
immediately assigns a probability interpretation for the
wave function. The values of x at a given t are a set of
complete and exclusive observations. The conditional

amplitude @[x,tlc] factors into a part from the sum over
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paths to the past of t (the wave function) and a part from
the sum over the paths to the future where there are no
conditions. The part from the paths to the future is not
very well defined mathematically and has to be assigned a
constant value for consistency. 1In any event it cancels in

the formation of probabilities and we have

¥ (%, t) |2

Plx,t|c] = : (3.16)

e |4, (x, £) |2

Fixing a field configuration on a spacelike surface
corresponds to fixing the value of the field on the surface.

Thus we write

I lp(x) 0] = | dgexp(is[ep]) (3.17)
=

where the sum is over field configurations which match the
configuration ¢(X) on the surface ¢ and satisfy the con-
ditions C to the past. The wave function can be assigned
a similar probability interpretation because the values of
®(X) on the surface are a complete and exclusive set of

possibilities.

The wave function is the quantum analog of the
classical motion of "state of the system at one time."
We would like to derive a dynamical equation for it.
Solving the equation would then be an alternative way
of calculating the wave function and a useful one
because we are more used to solving differential equations
than evaluating functional integrals. 1In theories with a
flat background spacetime we are familiar with how to do

20) In the quantum mechanics of a single particle

this.
for example, we calculate | (x,t+€¢) from | (x,t) by doing

the sum over histories to calculate the propagator between
infinitesimally separated slices. For small € the integrals

can be done by steepest descents and only the values of



y(x,t) for nearby values of x contribute to {(x,t+e). In
this way we recover the Schrodinger equation

% = e ke _d

TR==3 2m 2

_ + V(x) )y . (3.18)
ot dx

The derivation of guantum dynamics from the sum over
histories formulation and the assignment of a probability
interpretation to the wave function is straightforward when
spacetime is a fixed background. It is less straightforward
when spacetime is part of the dynamical variables as it is
in gravitational theories. To understand the issues in-

volved we begin by considering a simple model.

3.5 A Parametrized Model

Suppose we are presented with a classical theory in-
volving n+2 variables q% o =0,1,---n and L described
by an action

2 b

- v(@»&®] . (3.19)

O

s [q%1 ] =‘fdt[ﬂJ—% L
M

q }6abq

Here, M is a finite interval in t, V is a given function,
a,b range from 1 to n, and a dot denotes differentiation

with respsct to time. We shall now describe both the

3)

classical and quantum dynamics of this theory.

The theory described by (3.19) has a symmetry. If,
for arbitrary f equal to unity on the endpoints of M, we

make the transformation
L - £(£)L(f(t)) ; (3.20a)
q® - g®(£(t)) : (3.20b)

the action remains unchanged. One can easily see this by

simultaneously changing the variable of integration
t - £(t) ’ (3.21)

and for this reason the transformation (3.20) is called a

reparametrization of the time.
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The classical equations of motion found by varying

qa, qD and L are

wel 1l .2,0,-a V. -0 _
== L6 R A RO T i) R Rer o S (3.22a)
2q
d (Ll 2 .a-b a1 o
=[5 L76,,,37q * VigT) ] =0 ; (3.22b)
o= : (3.22¢)

From (3.22c) we learn that the theory has a constraint. We

- &, &%, L on

are not free to specify all the qa, q
some initial surface and integrate forward in time. First,
there is not even an evolution equation for L. With an
appropriate transformation of the form (3.20) we could,

in fact, pick L = 1 for all times. Second, éo is not
freely specifiable but must satisfy the condition (3.22).
This is the constraint. Only the qa are the true degrees
of freedom whose value and first time derivative are

freely specifiable at an initial time.

The constraint takes an interesting form if we re-
express it in terms of the momenta conjugate to gq%.

(There is no momentum corresponding to L because it is

undifferentiated in (3.19).) These momenta are
= L 2 sash a
P = -2 L 6,94 Vig) ' (3.23a)
p, = L(2-149)g" : (3.23b)

Then from (3.22c¢)
1 _ab a
= + = g
pp *+ I3 8 popy * V@) =0 . (3.24)
The left hand side of (3.24) is the total Hamiltonian
c o .
H = - & ’ (3.25)
Pug

multiplied by L (when (3.22c) is satisfied). Thus
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H =20 + (3.26)

This is characteristic of theories invariant under

reparametrizations of the time.

Working in the gauge where L = 1 and eliminating g
using the constraint we can see what this theory really

is. Then qo = t and the equation of motion (3.22a) is

G+ =0 ; (3.27)
le |

This is the equation of motion of a particle in a poten-

tial V. Eqg. (3.22b) is the associated conservation of

energy. Classically, the theory described by the action

(3.19) is the same as the theory of a non-relativistic

particle in a potential V, but written in a form where

the time appears as one of the dynamical variables qO.

Tt is instructive to construct the sum over his-
tories quantum mechanics of the theory with the action
(3.19) as if we did not know that it was the theory of a
non-relativistic particle. Recall that one needs the
action, the histories, the measure and the sets of complete
and exclusive observations. The action is (3.19). The
histories can be described by the functions qa{t), L(t).
Two sets of {q% L} which are equivalent under reparametriza-
tion of the time |[ed. (3.20) ] describe the same history
and are to be counted only once in the sum. If we restrict
the paths so that the qa move forward in qo the quantum
theory will correspond to non-relativistic quantum mechanics.
Other classes of paths could be investigated but lead to

different theories with pair creation and annihilation.

Wave functions of states in the quantum theory should
depend on the variables which describe the restriction of &
history to a spacelike surface. To see what this means

imagine a particle path crossing such a surface. We could
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describe this path by many different {q®%(t),L(t)} each
related to the other by a reparametrization transformation.
The values of g% by themselves describe a history restrict-
ed to a spacelike surface. To specify L in addition
would be to specify too much because we can always choose

a reparametrization gauge where L has an arbitrary value.

Thus we write
o= u(q® g (3.28)

We do not include an additional label "t" for two reasons:
(1) t is not a measurable physical variable but only a
parameter label. It can be changed by a reparametrization
transformation. (2) Even in a particular reparametrization
gauge to include t as a label would be redundant. The
value of qO already locates the particle along its tra-

jectory in time.

The path integral for the wave function determined by

some previous conditions C is

Yo(q® = jcaq%Ldet('i')a(qO-T(t))exp(iS[q“,L]}. (3.29)

Here, we have introducted a "gauge-fixing" §-function to
enforce the gauge condition qO = T(t) with T a monotomically
increasing function matching qO on boundary. This is the
simplest way to fix £ in (3.20). det (T) is the corre-

sponding "Faddeev-Popov" determinant.

The action (3.19) is quadratic in L. With an
appropriate choice of measure, the integral over L is
gaussian and can be carried out explicitly. The integral
over qO can be carried out using the §-function. The

result is familiar

G 1 -a-b
uc(qa) = jééqaexp(let[E ﬁabqaq -v]) . (3.30)

Thus with the choice of paths and measure described above

= ‘g, =



the wave functions of the quantum theory built on the
action (3.19) are those of the quantum mechanics of the

free non-relativistic particle.

It follows from (3.30) that the evolution equation
for wc(qa) is just the Schrodinger equation

2
-1 -2 6 —=—+v@ @ =0 . (3.31

agq Bqa qu

This is the operator form of the classical constraint

equation (3.24). We could write

Hy (g% =0 . (3.32)

Thus in quantum mechanics as in classical mechanics the
vanishing of the Hamiltonian does not imply the absence
of dynamics. In fact this condition becomes the dynamical
equation of the theory when expressed in terms of its true

degrees of freedom.

3.5 General Relativity
3.5.1 The classical theory in 3+1 form

The structure of the general theory of relativity is
similar in many ways to the model of non-relativistic
particle mechanics with parametrized time that was
discussed in the preceding section. Like this model,
general relativity is invariant under reparametrizations
of the time. If one singles out a family of spacelike
surfaces, labels them by a time coordinate, t, then the
action for general relativity [eq. (3.12) ] is unchanged
by a relabeling of these surfaces with a different t-coor-
dinate. Of course, general relativity is also invariant
under the larger group of diffeomorphisms corresponding to

general coordinate transformations.
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Because of its invariance under diffeomorphisms
general relativity is a theory with constraints - re-
strictions on the values of the metric and its first
time derivative that can be specified on an initial
value surface. To spell these constraints out we begin
by rewriting the classical action (3.12) in a form which
emphasizes spacelike surfaces. This is the 3+1 formula-

tion of Arnowitt, Deser and Misner (ADM).24)

Suppose that one has a family of spacelike surfaces
labeled by a time coordinate t. The metric can generally
be written as

ds® = —det2+hij(dxi+Nidt)(dxj+det) : (3.33)
The tensor hi' is t?e induced metric of the spacelike
sur face. N and N~ can be described as follows: Given
two neighboring spacelike surfaces, labeled by t and t+dt,
the displacement between a point in the first surface and
a point in the second be decomposed into a displacement in
the first surface and another displacement normal to it.
I1f the points are labeled by xi and xi+dxi respectively
then dxi+Nidt is the displacement vector in the surface
and Ndt is the length of the normal displacement. Ni is
therefore called the "shift vector" and N is called the

"lapse function."

The 3-metric hij specifies the intrinsic geometry of
a surface of constant t. With it we can associate a
spatial covariant derivative Di and compute the spatial

curvatures, 3R The lapse and shift can be thought

ijkd "
of as scalar and vector fields on this surface and tensor
operations carried out accordingly. The differential

change in the unit normal projected into the surface

K.. = — 9.n, z (3.34)
ij i3

is a measure of how the spacelike surface is curved in
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4-dimensional space. It is called the extrinsic curvature.

Explicitly, in terms of the decomposition (3.33) it is

3h. . .
. ol L B e B > (3.35)

The action for general relativity, eq. (3.12) can be

rewritten in terms of the decomposition (3.33) as

foe Id4xhl/2N(Ki_Kij—K2+3R—2ﬂ) . (3.36)
]

Here, K = Kii ; 3R is the scalar curvature of the surface
and tensor operations are carried out in the geometry of
the surface. To this must be added the action of the matter
fields, but for simplicity we shall consider pure gravity
until Section 5. Written in this ADM form it is clear that
general relativity is a theory with constraints because the
lapse N and the shift Ni occur 1in SE undifferentiated
with respect to t. The corresponding equations of motion
may therefore be expressed entirely in terms of the metric
hij and its conjugate momentum “ij’ They are thus con-
straints on initial data.

The momentum conjugate to hij is easily found from

(3.36) and (3.35) and is

12 = i

2
-h, .K » x
ij (Kij h:L ) (3.37)

J

The three constraints following from varying (3.36) with

respect to the N' are

Diﬂlj =0 . (3.38)

The one following from varying N may be written

s L
LzGijk{ﬂl]ﬂk + ¢ 2hl/2(_3R + 20) =0 ' (3.39)

where

-1 ,-172 + h. - 4
Cijra, = Z 0 T (hgehg iy Mg high ) - (340
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This constraint will be important for us. It is the con-
straint associated with the invariance of the theory under
a reparametrization of the spacelike surfaces. The model
of parametrized time particle quantum mechanics suggests,
and one can check, that this constraint implies the
vanishing of the total Hamiltonian density

ijﬂk&

-2
PPz P I

R+2A) = 0 « (3.41)
As in the model, this equation summarizes the dynamics of

classical general relativity without matter.
3.5.2 Quantum mechanics of closed cosmologies

To investigate the quantum mechanics of a closed
cosmology we must first describe correctly a quantum
state. Recall from the discussion of Section 3.3 that
a state is described by a wave function whose arguments
are the variables describing a history fixed on a space-
like surface. The histories are the 4-geometries on
M3 x R. Each may be described by a metric gaﬁ=={N,Ni,hij}
but there will be many metrics corresponding to the same
geometry. This complicates the identification of the
arguments of the wave function, as it did in the case of
parametrized time particle quantum mechanics, but we may
proceed in the analogous way. Consider the 4-geometries
in which a given spacelike surface with definite 3-geometry
occurs, but which are otherwise free to vary off this
surface. By a suitable choice of coordinates, say N=1 and
Ni==0, the metrics for all these geometries could be brought
to a standard form where hij is the only variable. Thus,
we may take the 3-metric hij as describing a history fixed
on a spacelike surface and write for the wave function of a

closed cosmology

v = wlh, . ] . (3.42)
ij
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There is no additional dependence on the coordinate t.
First, t is not a physical label but may be prescribed
at will. Second, the three geometry already carries
information about the location of the surface in time.

A generic 3-geometry will fit into a generic 4-geometry
in a locally unique way (and in particular at a unique
"time") if it fits in at all. The counting of variables
implied by this labeling of the wave function is correct.
There are 6 components of hij at each space point. Three
of these "are pure gauge," that is, could be chosen
arbitrarily by a suitable choice of spatial coordinates.
If one component corresponds to time there remain two.
This is the correct number of degrees of freedom of a

massless spin-2 field.

The sum over histories for the wave function corre-

sponding to a set of conditions C is

qh[hij] = j;ﬁg exp(iSE[g]) . (3.43)

The integration is over a class of 4-geometries defined on

the manifold which is that part of M = M> x R to the past

of a bounding M3 = d3M. (See Figure 5.) The class consists

of those 4-geometries which induce the metric hij on 3M

and which satisfy the conditions C to its past.

Wave functions constructed as sums over histories
should automatically satisfy the operator form of the
constraints of the theory as did the wave function for
the model of parametrized time particle quantum mechanics.
An operator form of the classical constraints may be ob-
tained by replacing ﬁij(x) by -iﬁ/ﬁhij(x) in egs. (3.39)
and (3.40). In the case of (3.39) we have

5
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Fig. 5. The sum over histories for a wave function

mh[h..] is a sum over geometries on the manifold

—

M3 X (-»,0] which induce the metric hij on the boundary

aM==M3 and which satisfy the conditions C to the past

of this surface.
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For the Hamiltonian constraint (3.40) there are many
possible operator equations depending on the choice of

factor ordering. They all have the form

(-2, % + 12020 (Prxw+20) ] =0, (3.44)
where
5 62 linear derivative
v term depending on .

= G
19k 4
% LR éhij(X)éhkL(x) factor ordering

(3.45)
Egs. (3.43) and (3.44) are an infinite set of equations -
one for each point on the spacelike surface at which V¥ is
defined. Eg. (3.44) is called the Wheeler-DeWitt equation.
Like its analog (3.31) in parametrized time particle quan-
tum mechanics, the Wheeler-DeWitt equation determines the

quantum dynamics of general relativity.

We shall not derive the Wheeler-DeWitt equation from
the functional integral (3.43) although it would be possible

to do so*,at least formally.25'26)

The formal derivation
of (3.43), however, is simple enough that we can give it
here to indicate the methods involved: Consider an
infinitesimal coordinate transformation on M which relabels

the spatial coordinates of each constant t surface in an

*
There should be a connection between the measure used

for the sum over histories and the factor ordering in

the Wheeler-DeWitt equation. This connection bears on

the long standing problem in the canonical theory27) of
whether there exists a factor ordering such that the
algebra of the constraints closes. Either the construc-
tion of wave functions by sums over histories resolves

this problem or there is a restriction on the permissible
measures in the sum arising from it. (See also Ref. 28.)
The absence of a clear understanding of the connection
cetween measure and the form of the Wheeler-DeWitt equation
is the reason we have not presented a detailed derivation.
As we intend to solve the equation for the most part in the
semiclassical approximation these ambiguities will not
affect our limited conclusions.
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identical fashion. Such a transformation has the form

t - t, ¥t oo xt o+ gltxk) ' (3.46)

for infinitesimal gl. The spatial metric transforms as

W, o = R Fo2D e -
ij ij (153) J A58

and the 4-metric as

Yo gaﬁ 2 zv(agﬁ) : (348)

with EO = 0. In eq. (3.43), shift simultaneously the
argument of the wave function on the left by the amount
in (3.47) and the integration variables on the right by
the amount in (3.48). There remains an identity. The
integral on the right hand side of this relation is
identical to what it was before because both action and
measure are invariant under coordinate transformations.

Thus we conclude

\If[hij + 2D(igj)] = m[hij] ; (3.49)

or equivalently

)
dex D(ig L =i 2 (3.50)

- 3) Ghij(x)
Integrating this relation by parts and noting that gi is
arbitrary, one recovers the operator form of the constraints
(3.43). This derivation shows that the physical content
of these three constraints is that the wave function does
not depend on the choice of coordinates in the spacelike

surface as it should not.

3.5.3 Superspace

As a consequence of the constraint (3.43) the wave
function may be thought of as a function on the space
of three geometries - the space of gauge inequivalent

metrics on M3 This is called "superspace." The quantity
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G"kf may be used to form a metric on superspace. If
ijkt

6hi_ and 6hij are the changes in 3-metric corresponding
to an infinitesimal displacement in superspace we may

define the inner product of these two displacments to be

RS W 8 | <3 ?
(6h,6n') = Jd xGlj 6hij6hkL (3.51)

Where GijkL is the inverse of Gijkt considered as a 6x6
matrix in the space of symmetric index pairs (ij). Other
metrics on superspace may be defined by inserting an
arbitrary function in (3.51). The metric (3.51) suggests
that an elegant way for choosing the factor ordering in
the Wheeler-DeWitt equation is to take sz to be the
"covariant Laplacian" in this metric. (For the issues

raised by such a choice see Ref. 28.)

At each space point the signature of the 6 x6 metric
Gijk& is (-,+,+,+,+,+). The Wheeler-DeWitt equation is
thus a kind of "hyperbolic" equation in superspace. We
recall that one of the six degrees of freedom in the
3-metric represents time in the sense of locating the
spacelike surface locally in a 4-geometry. We may think
therefore, of a fixed choice for this time as defining a
family of hypersurfaces in superspace and the Wheeler-
DeWitt equation as specifying the propagation of the wave
function from one hypersurface to another. It is in this
sense that the Wheeler-DeWitt equation implements quantum

dynamics.
3.5.4 Use of the wave function

In non-relativistic particle quantum mechanics
(Section 3.3) we were able to assign a probability inter-
pretation to the wave function because the values of the
particle's position at a given time constituted a complete
and exclusive set of observations. The identification of

a complete and exclusive set of observables in the quantum

A



theory of spacetime is a much more difficult problem. We
lack, by and large, the simple analyses of thought experi-
ments which guide our intuition in particle gquantum
mechanics. Even formally, the question is complicated by
the problem of the choice of time (Section 3.2). By
analogy with particle quantum mechanics one would expect

a complete and exclusive set of observables to be different
values of some part of the 3-metric "at one time" - but
which "time" should be used? The sum over histories
formulation of guantum mechanics may guide us to a
resolution of such questions but in the meantime we can
proceed qualitatively through an analysis of the corre-
lations in the wave function. We expect variables to be
correlated on those regions of superspace where the wave
function is large and anticorrelated where it is small.
This minimal interpretation will be enough to take the

first steps in quantum cosmology.

Of the four ingredients of a sum over histories
formulation of quantum cosmology - histories, action,
measure, observables - we have discussed the first two.
Discussions of the measure, not given here because they
are complex and will not bear directly on the semi-
classical approximations to the wave function we shall
mostly consider, may be found in Refs. 29. The
interpretation of ¥ at the level of correlations will
be sufficient for a first analysis of the proposal for
the quantum state of the universe that we shall now

discuss.



4., THE QUANTUM STATE OF THE UNIVERSE
4.1 A State of Minimum Excitation

The universe is in a state of low excitation. The
large scale distribution of matter and metric are nearly
homogeneous and isotropic. The entropy of the matter is
low compared to that of the highly clumped and irregular
configurations it might have had. Whatever the state of
the universe is, it is close in some sense to a state of
minimum excitation. We, therefore, begin a discussion
of the state of the universe with a discussion of the

state of minimum excitation for closed cosmologies.

In the quantum mechanics of a particle in a potential
there are two ways of calculating the wave function of the
state of minimum excitation. We can calculate it as the

lowest energy eigenfunction of the Hamiltonian (the ground

state)
H*O(XO) = Eowo(xo) : (4.1)

Completely equivalently, the wave function of the ground

state may be calculated as a Euclidean functional integral.

Vo (xy) = j'fm('r)exp(—I[X(T) D : (4.2)

Here, I|[x(1) ] is the Euclidean action functional

y iy
I[x(1)] = XdT[mez + V(x) ] 2 (4.3)
The sum 1s over all paths which start at X at time 7 = 0

and proceed in the infinite past to a configuration of

minimum action.

It is not difficult to sketch the demonstration of
the equivalence of (4.1) and (4.3). One begins with the
path integral for the propagator

(4SS A & 0 A Iﬁx(t)exp{iS[x(t)]) 2 (4.4)
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Here, S is the usual action (i.e. (4.3) with the opposite
sign for V(x)) and the sum is over paths which start at x'
at the time t' and wind up at x" at time t". Consider the
particular propagator (xO,O]O,t) and expand it in a complete

set of energy eigenstates as follows:

(x4.0|0t)

T,(%g:0|n)(n|o0,t)
iE t i (4.5)
e v, (xg) v, (0)

where wn is the wave function of the energy eigenstate
with eigenvalue E . Equate the last line of (4.5) to the
right hand side of (4.4) and rotate the time to imaginary
values, t - —-iT, on both sides of the equation. One has

E T
pe M v, (x )y, (0) = [ex(nexp(-I[x(n)]) . (4.6)

Then take the limit ¢+ - - . If one normalizes the energy
so that the lowest eigenvalue is zero, only the ground
state term survives in the sum on the left hand side of
(4.6) . The sum over paths on the right hand side becomes
the sum described above and one recovers after a normaliza-

tion eq. (4.2).

In the quantum mechanics of closed cosmologies one
does not expect to recover the wave function of the state
of minimum excitation as the lowest eigenvalue of a
Hamiltonian. This is because there is no natural notion

of energy for closed cosmologies.

In classical gravity, the principle of equivalence
shows us that there can be no definition of local energy
for the gravitational field. All gravitational effects
vanish locally in a freely falling frame. Alternatively
note that energy is the conserved quantity which arises
from time translational symmetries of spacetime and in a
general spacetime there will be no time translation

invariance. For spacetimes with special symmetries one

&g =



can define an energy. For example, asymptotically flat
spacetimes have a time translation symmetry "at infinity."
Correspondingly, we can define a total energy which is
conserved. For closed cosmological models, however, there

is no such symmetry.

One might pick arbitrarily a family of spacelike
slices, identify the generator which takes us from one
slice to the next, call that the Hamiltonian, and find
the lowest eigenstate. As the above argument suggests,

30) there is no

however, and has been shown by Kucha¥
slicing for which the resulting Hamiltonian is time
independent and thus none for which one could construct
a unique ground state.

While the construction of the wave function of the
state of minimum excitation as the lowest eigenstate of
the Hamiltonian fails for closed cosmologies the construc-
tion using a Euclidean functional integral can be
generalized.25) Schematically, including a generic matter

field w», one would write
\I,O[hij'r‘oo} = jﬁgﬁf@e:‘cp(—l[g,:ﬂ]) . (4.7)

The sum is over a class of Euclidean four geometries which
have a boundary on which the induced 3-metric is_hi' and
matter configurations which match the values mo(x) on the
boundary. (These are the analog of the paths starting at
Xq in (4.2)). The action is the sum of the Euclidean
action for the matter and the Euclidean action for general
relativity. On a manifold M with boundary 3M the latter
is

Kkl Yy 5. {R—2.’1)gl/2d4x

| | . (4.8)
3M “M

where, as in eq. (3.12), K is the trace of the extrinsic

curvature of the boundary. To completely specify the wave
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function ¥ it remains to complete the specification of
the class of geometries and field configurations summed
over (the analog of the paths going to minimum action at
T - - » in (4.2)). The proposal is that one should sum
over compact Euclidean four geometries and field con-
figurations which are regular on them. The remaining
boundary condition for geometries contributing to the
state of minimum excitation is that there is no other
boundary. In Section 5 we shall examine evidence for the

appropriateness of this choice.

The Euclidean construction of the wave function of
the state of minimum excitation does not change the form
of the constraints it satisfies. WO continues to satisfy
the generalizations of (3.43) and (3.44) to include matter.

These are
L

bh. .
1]

Iy . O
= 1 Tn(m,—lﬁm)w i (4.9a)

iD.
J

l/2(3 1/2

0
R-2A) ] = h™/°T (cp,—lﬁcp)‘p . (4.9b)

L142v 244720
2 X nn

Here TaB(m,ﬂ} is the stress energy of the matter expressed
in terms of the field and its canonical momentum. This
becomes the operators in (4.9) when projected appropriately
onto the direction n% normal to the constant t surfaces and
when 7 is replaced by -i6/8&p. One can derive (4.9a) simply
by following the derivitation sketched in Section 3.5.2.

The Wheeler-DeWitt eqn can be derived formally in a similar
fashion. {(See, e.g: Ref. 2.)

The Wheeler-DeWitt equation and the associated con-
straints (4.9) presumably have many solutions. The sum
over histories (4.7) singles out one of them. The Euclidean
functional integral prescription may therefore be thought
of as supplying boundary conditions for the Wheeler-DeWitt

equation and this will prove a useful approach to take when

actually solving for ¥y -
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4.2 The Conformal Factor
Some attention must be given to the meaning of the sum
in (4.7). The Euclidean Einstein action is not positive defi-

1)

nite. One can see this3 by considering the family of metrics
generated from a given one, 5, by conformal transformations

G =G (4.10)
uﬁ & gaﬁ - .

In terms of ( and g the Euclidean action becomes

oM (4.11)
. J‘d4x§1/2[§22ﬁ re(5a)? - 200%] .

By making () rapidly varying, the action can be made as
negative as desired. A sum over real geometries of the

form (4.7) will therefore not converge.

One might think that the indefiniteness of the
Euclidean Einstein action was an indication of some
instability in the quantum theory. There are such
situations in particle quantum mechanics.Bz) Consider,
for example, a particle moving in a potential V(x) of
the form shown in Figure 6 and its Euclidean propagator
(0,0|0,7y. From (4.6) it follows that the large negative
time behavior of this propagator is proportional to
exp(EOT) where EO is the energy of the ground state. Also
from (4.6) it follows that we could calculate this energy
by evaluating the path integral on the right hand side.
Let us do this by the method of steepest descents. There
are two stationary paths which satisfy the Euclidean
equations of motion (the usual equations with the sign of
V reversed) and the boundary conditions. There is first
the solution x(7) = 0. If V had risen monotonically with
increasing x this would be the only stationary path, the
action would be always positive, and quantum state associa-

o4 with the classical minimum would be stable. Since,

= 5% =



however, V(x) turns over and again intersects the X-axis
there is another "tunneling solution" Et(r) which proceeds
from x = 0 to the turning point and back again (Fig. 6).

The tunneling solution is not a true minimum of the action

ds one can see from the expression for the action of small
fluctuations about it.

(Seint ] X et o Ry 1
I, 10x(T) =3jdr m\ ar | (x (1)) (8x (1)) J .
0 (4.12)
Here, V" is the second derivative of V(x) . By choosing

0x(T) concentrated where V" < 0 the action can be made

negative and thus less than its value for tunneling

/\V(x)

\4

M
\%

Fig. 6. The minimum of this potential at x = 0 is
classically stable but quantum mechanically unstable
via tunneling. This is reflected in the indefinite-
ness of the action for fluctuations about the tunneling

motion from x = 0 to x = X and back again.
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solution.* Since the action is negative the path integral
over the fluctuations will not converge. To keep it con-
vergent the contour of path integration in x must be
distorted into the complex plane in a way which can be
justified by starting with a V(x) for which x = 0 is a
global minimum and smoothly distorting it to the shape

of Figure 6. In the process of this distortion the energy
E . acquires an imaginary part. The former ground state

0
thus becomes unstable when the action becomes negative.

Unlike the above example, the negative definiteness
of the gravitational action does not signal a tunneling
instability. One can see this clearly in the case of pure
gravity and asymptotically flat spacetimes where the total
energy is defined. Classically there is certainly a ground
state. This is flat space and it has zero energy. The
positive energy theorems guarantee that all other classical

3)

configurations have higher energy.3 Because flat space

is a global minimum of the energy we do not expect the
associated quantum state to be unstable and indeed Witten34)
has shown that there are no tunneling solutions. Yet, the

action is not positive definite.

The gquantum mechanics of the fluctuations about flat
space provides simple model in which the significance of
the indefiniteness of the gravitational action can be

understood. If we write

*
One might worry that the positive kinetic energy term

in (4.12) would defeat this argument. This is not the
case.32} An infinitesimal time translation of the

tunneling solution is a zero mode with zero action of
the quadratic operator defined by (4.12). It has one

mode at x = xl so there must be a mode with lower,

negative action.



g = § o= 1h ’ (4.13)

then the Euclidean action (4.8) to quadratic order in the

h is
ap
2 R TR Y (e oY =af 2
L Iz[h] =5 Id x[zvahﬁyvahﬁ 3 (Vah By« , (4.14)
+ (surface terms)
where
= _ o 3 ’ i
haﬁ haﬁ (1/ }6aﬁh (4.15)

The action (4.14) is just that for a free spin-2 field in
a flat background. Its quantum mechanics is equivalent to
an assembly of independent harmonic oscillators and the
ground state is, therefore, certainly stable. The action
(4.14), however, is no more positive definite than that
for the full theory (4.8). (Try haB = 26an which is a
linearized conformal transformation of flat space.)
What's going on?

The point is that gravity formulated as a field
theory in the metric is a theory expressed in terms of
redundant variables. Part of the metric is arbitrary
corresponding to the choice of coordinates (gauge) and
the remainder is connected by the constraints. In fact,
there are only two physical degrees of freedom. Issues
concerning stability are best discussed in terms of these

physical degrees of freedom, if they can be identified.

In linearized gravity one can fix a gauge, solve the
constraints and identify the physical degrees of freedom.
They are the two transverse-traceless "TT" parts of the
metric fluctuations satisfying

vt =0 n%' - =0 , hT%=0 ,  (4.16)

of op o

where n% is the unit normal to the constant t surfaces.
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It is not difficult to check that the two hi% are invariant

under infinitesimal coordinate transformations and satisfy

the linear

versions of the constraints (3.38) and (3.39).

On the physical degrees of freedom the Euclidean

action 1is

Zlhaﬁ

where (aij...

free fields.

2 =1

)T = a.. a

kK e
It is positive.
ies expressed in terms of the

will converge. Flat space is

The moral of the example
that the guantum mechanics of
variables is best analyzed in

of freedom.

.1‘d4x[(f:lTi'§)2 + (v.h

2 ij...

Sums over histories,

T, 2
i jk) ] 3 (4.17)
. This is the action of two
Sums over Euclidean histor-
physical degrees of freedom

stable in linearized gravity.

of linearized gravity is
a theory with redundant
terms of its physical degrees

for example, can be

carried out in the physical configuration space without

gauge fixing and without ghosts.

But it is often con-

venient to have the gquantum mechanics expressed in terms

of the redundant variables,
invariances of the theory.
relativity such a formulation

appears not to be possible to

exhibit the physical degrees of freedom explicitly.

for example,

to display the

In a theory like general

is essential because it
solve the constraints to
To

pass from a sum over histories in the physical degrees

of freedom to one in terms of redundant variables one

simply adds back in the extra

as to not affect the value of

integrations in such a way

5)

the integral.3 Typically,

one might make use of identities like

+eo
1=

e [ 22| 6 (g (x))

(4.18)

*

for adding back in gauge variables and
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*e 2
d -Mx
1 = =S o ; (4.19)

= /M
for adding back in the gauge invariant ones. Identity
(4.18) gives rise to "gauge fixing §-functions" and
"Faddeev-Popov determinants." Identity (4.19) modifies
the action. One is free to use any identities one wants
as long as they converge and the value of the sum over

histories is left unaffected.

In the theory of linearized gravity integrations cannot
be added to a sum over histories with the action (4.17) to
obtain one with the action (4.14). The starting integral is
convergent the resulting integral is divergent. One can,
however, arrive at a coordinate invariant result by the

6)

followin procedureJ : Decompose the fluctuations as
g P

= + 26 v 4.20
B “oB aﬁx ( ;

and fix the decomposition by requiring one condition on maﬁ.

It is convenient to take

Rl(w ) =0 ; (4.21)
ap

where Rlis the linearized scalar curvature. The function X

is thus a gauge invariant scalar generating linearized con-

formal transformations. Then,

2

t"1,[n] = ¢ I, [w 2

fes do4x(VX 2 (4.22)

ap

. ‘o . .
sum over histories cannot be manipulated into a form in-

where the action I, on 1s positive definite. A physical

volving the action (4.22) but one can arrive at one with the

form

t"I,[n] = Lzlz[waﬁJ + 6jd4x(7x)2 . (4.23)



This action is gauge invariant, 0(4) invariant, positive
definite, and it is physically equivalent to Iz[h]. It

is the action to use in constructing convergent Euclidean
functional integrals for fluctuations about flat space

and use of this action gives the correct ground state wave

37) A sum over histories

function for linearized gravity.
based on the action (4.23) may be thought of as a sum based
on the action (4.22) but carried out along a functional
contour in which X is purely imaginary. It is in this form
that we shall find it most convenient to summarize the

result.

For the full general theory of relativity, while we
cannot explicitly identify the physical degrees of freedom,
we can carry out a procedure analogous to that of linearized
gravity. Consider first the case of the sums over histories
which determine vacuum expectation values in asymptotically
flat spacetimes with A = 0. These are integrals over
asymptotically Euclidean spacetimes with the action (4.8).
Split the integral over all metrics into an integration
over a conformal factor and an integration over metrics in

a conformal equivalence class. That is, write

2~
= 4,24
with Q = 1 at infinity and require
R(g) =0 C (4.25)

If we write O = 1+Y and carry out the formal rotation Y iy,

the action becomes [cf. (4.11) ]

’LzIE[g] = &2IE lg] + 6l[‘d4ng"(’ﬁY)2 P (4.26)
M
The last term is positive definite so the integral over the
conformal factor converges. There remains the integral over
metrics § satisfying (4.25). The positive action theoreaﬁg)

shows that the action on such metrics is positive. These
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integrals thus converge.

The analysis of the asymptotically flat case and the
case of small fluctuations about flat space suggests that
a similar procedure should be used to define the Euclidean
functional integral giving the state of minimum excitation
for closed cosmologies. One divides the integral into con-
formal equivalence classes in (4.24) using perhaps a con-
dition of constant curvature rather that (4.25). One writes
the conformal factor as 1+ Y where Y vanishes on the boundary
where the argument of the wave function is given. One
rotates Y into iY making the second term in (4.10) positive.
The resulting action, however, is no longer manifestly
positive. 1In fact it is complex. We do not yet have a
demonstration that the resulting integrals converge but the
preceding two examples give some hope that they may. We
will write the prescription for the state of minimum exci-

tation as

@O[hijocp] = Xc 6g 6pexp (-I[g,op]) ; (4.27)
0

where the CO indicates that an appropriate complex contour
must be taken. This contour will ensure that ¥, is real.
However, since CO is complex, we cannot conclude that gb is
positive. In general it will oscillate and this will be

important for its interpretation.

4.3 The Wave Function of the Universe

The wave function so naturally identified by the
Euclidean functional integral prescription (4.27) displays
many properties one would associate with a state of minimum
excitation when analyzed in simple models as we shall show.
As our own universe is not in a state of very high excita-
tion, and as this state emerges so simply in the theory, it

is a natural conjecturez)
wave function of our universe and that the law (4.27) is the
law specifying the initial conditions. We shall examine this
conjecture in what follows.

that this wave function is the
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5. MINISUPERSPACE MODELS

5.1 Minisuperspace

To test the conjecture that the wave function for our
universe is that constructed by a sum over compact Euclid-
ean four geometries, we want to calculate it and compare its
predictions with the observations summarized in Section 2.
The sum cannot be done exactly, we can only make approxima-
tions to it. Approximations may be constructed by singling
out a family of geometries described by only a few parame-
ters or functions and carrying out the sum only over
geometries in this restricted class. Such a restriction
on the 4-geometries which occur in the sum implies ga
restriction on the 3-geometries which can occur as
arguments of the resulting wave function. This restriction
reduces the configuration space on which the wave function
is defined from the superspace of all 3-geometries to a
smaller class - a minisuperspace. For this reason such

approximations are called minisuperspace approximations.

One way of constructing a minisuperspace approximation
is to restrict geometries and field configurations to have
a certain symmetry. This type of approach has had a long
9)

and useful history in quantum cosmology.3 Minisuperspace
models based on symmetry are easy to implement and generally
easy to interpret. They do not, however, offer the possi-
bility of systematic improvement. That can be achieved in
the lattice approximation to general relativity called the
Regge calculus. There, curved geometries are built out of
flat 4-simplices in much the same way that a geodesic dome
is built out of triangles. The lengths of the edges of the
simplices making up a 3-geometry become the parameters of

a minisuperspace. Such simplicial minisuperspace approxi-
mations offer the hope of systematic improvement and are

well adapted for the study of topological questions.40)



Minisuperspace methods have already been extensively
applied to construct approximations to the wave function of
the universe.2’25'28’4l‘61) We shall discuss only three
of these models here and these can only be treated briefly.
In two of these models the essential minisuperspace
restriction is that geometries and field configurations be
homogeneous and isotropic. The models differ in their
assumptions about the matter. A conformally invariant
scalar field gives a model which is not very realistic but
easy to analyze. A massive scalar field provides a model
which possesses many of the features of our universe.z) Fi-
nally we discuss the model of Halliwell and Hawking49) in
which the origin of deviations from exact homogeneity and

isotropy can be predicted.
5.2 Homogeneous, Isotropic Geometries with Scalar Field
5.2.1 Framework

The simplest class of minisuperspace models are those
obtained by restricting the geometry to be homogeneous and
isotropic and thus close to that of the present universe.

The line element is then

2 P22 2
[

ds™ = g7 |-N"(t)dt" + a2{t)dQ§] i (5.1}

where N(t) is an arbitrary lapse function and 02 = L2/24w2

is a normalizing factor chosen for later convenience. dﬁg
is the metric on the unit three sphere. The Euclidean
histories with the same symmetries which enter into the

sum defining the wave function have the metric

da = UZ[Nz(T)de + a’(7)aqn? (5.2)

3] ‘
For the matter, we take a single scalar field with mass M,
coupling to curvature ¢, and potential V(&) whose action

generally is



1 3. 172, 2
L. =i d"xh™ "K¢&
-ER IaM
(5.3)
+ 3 g v0? + rEMIE (9 ]
M

We restrict the matter field to be homogeneous following
the symmetries of the geometry.

With these restrictions, the three geometry of a
constant t spacelike surface is characterized by a single
number aj and the field by its homogeneous value on the
surface ¢b 3 The minisuperspace is thus two dimensicnal

and we write

¥ o= Y(a,. 00 - (5.4)

The gravitational action on this minisuperspace is

% :
=3 Idr[a][-('gi)z-az +B%a%] (5.5)

where
B® = o%A/3 . (5.6)

(The H used in this section thus differs by the normalizing
factor 02 from that defined previocusly.) The action for
the matter may be conveniently written in terms of the re-

scaled variables

o= {2 2y mo= oM
5 (5.7)
vip) = o V(P 5
Tt is ¢
I = N, ra . 2 2 .2
IQp =3 Jd'r(g) [N—z(m+6f§§"cp) + 6Ea o
+ a4(m2ep2 + vi(op)) ] ” (5.8)

The kinetic energy part of (5.8) may be diagonalized by a

further rescaling

o = ¥/ad s : (5.9)
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For the total action we then have

; 2-6§
1 =3 far@-E2 + A5—9% +v@x] . (5.10a)
where
U(a,X) = —a2+H2a4+6£a2w2+a4(m2w2-Fv(w)) . (5.10b)

and ¢ is understood to be a function of a and X through
(5.9).

The Hamiltonian constraint follows from the action by
varying it with respect to the lapse N and expressing the
resulting classical equation in terms of the variables and
conjugate momenta. gecalling that, for example,

7, = =1ah /3X one finds

% Euclidean

80 12¢-2.2 | 0
il +a o U(a,X)] =0 2 (5.11)

We can write this as

BBe o 4 2o mlacad =g : (5.12)

1
2 G A'B 2a

where G, is a minisupermetric on our minisuperspace. In

(a,X) coordinates
-a 0

G — -
AB 5 rad-128

(B 13)

The Wheeler-DeWitt equation is the operator form of
(5.12). 1In constructing it there are ambiguities of factor
ordering which can only be resolved through a careful
analysis of the measure of the sum over histories. As the

precise form will not be very important for us we shall

simply write

L w? - % U(a,X) J¥(a,x) =0 . (5.14)
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Here, Wz is the "covariant" Laplacian constructed from GAB’

Ve = — LA(./-G g —-a-g) , (5.15)
J—G Bx >4

in "general coordinates" on the two dimensional minisuper-

space or
2
2L LB 188 By g oL 3
32—65 da 3a 83_12‘5 axz ¢

(5.16)

in the coordinates (a,¥X). From either (5.11) or (5.16) we
recognize that the Wheeler-DeWitt equation is hyperbolic

with a being a "timelike direction" in the minisuperspace.

The wave function of minimum excitation, gb(ao,xo), in
these minisuperspace models is the sum of exp(-I) over all
compact geometries of the form (5.2) with a single three

sphere boundary of radius a, and over all regular configura-

0
tions of scalar field which match Xo ©on the boundary. If we
fix the last gauge freedom explicitly by taking N =a, and

denote the time coordinate in this special gauge by n., then

\po(ao,xo) = j'céaﬁxexP(—I[a,X]) ' (5.17)
0

where 0
' l-6f ,,2
1[a, x] =% Jdr [-a 2 ¥ (a "8Gy

+ U] . (5.18)
and a prime denotes an n-time derivative. With this choice
of gauge,the "south pole" of the geometry is located at
N=-= (see Fig. 7). We have used the residual n-time trans-
lation invariance to locate the boundary by n = 0. This
fixes the limits of the n-coordinate range. We integrate
over those a (n) which vanish at 11 = -» so the geometry is

regular at its "south pole" and over field configurations x(n)

el



Fig. 7. A two dimensional representation of a homogeneous
and isotropic 4-geometry contributing to the sum for the

state of minimum excitation ¥p(ag,Xp) . Shown embedded in
a flat 3-dimensional space is a 2-dimensional slice of such

a geometry whose intrinsic geometry is

2 2
dz® = dr® + a’(7)do’

T is thus a "polar angle" and a the "radius from the axis.”
The gecmetry is compact and has only one boundary at which
the radius is ag, the argument of Uy - In the time coor-
dinate n such that adn = dT the "south pole" is located at
n = -» and the boundary at n = 0. The field configurations
o (1) which contribute to the sum are those which are rsgular

on this surface and which match the argument of the wav
function Ty on the boundary.



which are regular on this geometry. Thus X = 0 at 1= -»

when ¢ > 0. ¥ satisfies the Wheeler-DeWitt equation for

0
the minisuperspace, (5.14). The functional integral supplies
the boundary conditions for singling out the state of mini-

mum excitation from among all other solutions of the Wheeler-

DeWitt equation.

We shall now calculate @b approximately for two
different model actions for the scalar field. To do this
we shall move back and forth between evaluating the inte-

gral and solving the equation.
5.2.2 A conformally invariant field

Ifm =0 and v = 0 and ¢ = 1/6 the scalar field is
conformally invariant. This is not a very realistic model
of matter - it lacks any particle physics scale, for
example - but it does lead to an easily analyzable example.
The reason is that geometries of the form (5.2) are con-
formally static. (To see this just put N = a.) Since the
field is conformally invariant its dynamics are thus essen-

tially trivial.

The action (5.18) for this special case reads

0

1 _l2_2 22 12
I=5 I_QT[ a

2
a” FHETS X #X) s (5.19)
The scalar field action decouples from the gravitational
one. Indeed, since the action for ¥ is just the Euclidean

action for a harmonic oscillator the integral over X in
(5.17) is purely gaussian and easily evaluated to find

L 2
wo(ao,xo) = exp(-fgxo)é(ao) . (5.20)

The one homogeneous mode of the scalar field is in its
ground state as one would expect for the state of minimum

excitation.



@b must satisfy the Wheeler-DeWitt equation and this
gives a differential equation for . Choosing the

operator ordering as in (5.16) we have

2
d &
- (aZ—H2a4)¢ =l e (5.21)
da
This is just a "Schrodinger equation" for a particle in a

potential

Wla) &'8% = Hoa) ; (5.22)
The boundary conditions for & are to be extracted from the
integral (5.17). Under the simplest interpretation of
the measure which is consistent with (5.16) we have
dd/da = 0 at a = 0. The overall normalization is as yet

arbitrary. Some typical solutions are shown in Figure 8.

It will be of later interest to see how solutions to
(5.21) arise semiclassically from (5.17). The integral

defining @(ao) is

®(ay) = | GaexP(—IE[a]) g (5.23)

where I, is (5.5) with N=a. Evaluation of (5.23) by the

method gf steepest descents gives the semiclassical
approximation. For this we must find the extrema of Iz
through which the contour of integration can be distorted.
We begin with values of a, less than H L. The possible

extrema of IE are just the solutions of

a" —a-—2H2a3 =0 (5.24)

The equation has an "energy integral" whose value may be
found from the regular vanishing of a at 1 = -=. Expres-

sing this integral in terms of 1 gives
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Fig. 8. The wave function & for the homogeneous, isotropic
minisuperspace model with conformally invariant scalar field.
Figure 8a shows a sketch of & for H ~ 1, Figure 8b for

a much larger value of H. As H decreases the amplitude to
find a 3-sphere of radius a, < 1/H becomes very small.

This is the classically forBidden region for de Sitter
evolution (Figure 11). For ag > 1/H the envelope approaches
the distribution of 3-spheres in de Sitter space.
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L - w ; (5.25)

a

This is the Euclidean Einstein equation for a metric with
the symmetries of the model as it must be. The solution

is illustrated in Figures 9 and 10 and is Jjust the 4-sphere
of radius 1/H. For ao < 1/H there are thus two possible
extrema which are compact 4-geometries with a 3-sphere
boundary of radius aO. One for which the boundary bounds
less than a hemisphere of the 4-sphere and another for which
it bounds more. The action for the 4-sphere is negative and
therefore one might think that the extremum encompassing
more 4-sphere should dominate. One must remember, however,
that because of the conformal rotation the contour of a
integration is in the imaginary direction in the immediate
vicinity of the extremum. Extrema of analytic functions

are saddle points so that a maximum in a real direction is

a minimum in an imaginary direction. The stationary con-
figuration which contributes to the steepest descent
evaluation of (5.23) is the one which is a maximum of the
action in real directions and a least action configuration
in imaginary directions. The extremum corresponding to the
smaller part of the 4-sphere, therefore, provides the steep-
est descent approximation to the wave function. In fact,
the contour cannot be distorted to pass through the other

extremum. We thus have for a; < 1/H

2 2 4.-1/4
&(ay) ~ N[—L+aO—H ag |
X exp[-«—li (1-H2a§)3/2] A (5.26)
3H

where N is an arbitrary normalizing factor.

If a, is increased to a value larger than 1/H there are

no longer any real extrema because a 3-sphere of radius

=68 =
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Fig. 9. The extremizing scale factor for the homogeneous,
isotropic minisuperspace model with conformally invariant
scalar field. The sclid line is the solution of (5.25)
for real Euclidean extrema of the action. The complete
range of a from zero to maximum and back again describes
the geometry of the 4-sphere (Figure 10). The dashed
curve is the solution of (5.27) for complex Euclidean
(Lorentzian) extrema. It describes the geometry of

de Sitter space (Figure 1l1l). For each value of a, there
are thus two possible extremizing solutions. Choosing the
trajectory to start on the left at ap =0 the Euclidean
prescription for the state of minimum excitation singles
out the heavy curve shown. This gives the semiclassical
approximation to the wave function @O'
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ao > 1/H cannot fit into a 4-sphere of radius 1/H. There
are, however, complex extrema. These can be obtained by

changing 7 - + it in Eq. (5.25) so they solve
8 = ¥ 1
(E) =~ =g . (5.27)

They are thus the solutions of the Lorentzian Einstein
equations with positive cosmological constant. This
solution is called de Sitter space (Figure 11). These
complex extrema must contribute in complex conjugate pairs
so that the wave function is real. By a standard WKB

matching analysis we can establish the form of the wave

function for a, > H_l
2 4 2 1/4
®(a,) =~ 2N [H = B B 1]
(12221372
X cos 0 - Lt . (5.28)
2 4

3H

This form could be derived by carefully following the
extremum configuration as ag is increased along the heavy

curve shown in Fig. 9.

The complete wave function @O on the minisuperspace of
homogeneous isotropic geometries with conformally invariant
scalar field is given by

2 2
Tilagepg) = exp[—wo/(2ao)]@(ao) . (5.29)

where @ is given approximately by (5.26) and (5.28). From
this correlations between field and geometry can be extract-
ed. The exponential factor gives an inverse correlation

and a

between Large ®o occurs at small a, and vice

) 0"
versa. This is the type of correlation that occurs in

classical evolution.
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Fig. 10. The real Euclidean extrema of the homogeneous,
isotropic minisuperspace model with conformally invariant

scalar field have the geometry of a 4-sphere of radius

H-l. The extremizing configuration which gives the semi-

classical approximation to ¢ at ajg < 1/H is a part of the
4-sphere with a single 3-sphere boundary of radius ag -
There are two possibilities corresponding to more than a
hemisphere or less. The Euclidean functional integral
prescription for @ identifies the smaller part of the
4d-sphere as the contributing extremum. For a, > H-1l there
are no real extrema.
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The factor & suppresses correlations for aj < gt

but affects them only weakly for a, > H L. The classical
solution of Einstein's equation restricted by the mini-
superspace assumptions is de Sitter space. This homogeneous,
isotropic, empty geometry may be thought of (Figure 11) as
the evolution of a 3-sphere which contracts to a minimum
radius H_1 and reexpands. The region of minisuperspace with
a, < H_l is thus classically forbidden_?nd & suppresses
correlations there. The region ag > H is classically

allowed and there & varies only weakly.

The analysis leading to (5.28) gives another way of
summarizing the information contained in ﬁb in the semi-

classical limit. In the classically allowed region,

-1
aO>H

by a complex Euclidean but real Lorentzian extremum of the

, the semiclassical approximation to @b is given

action. The wave function oscillates proportionally to

cos (S) where S satisfies the Lorentzian Hamilton-Jacobi
equation. This action specifies a solution to the equations
of motion up to initial conditions. In this semiclassical
approximation the wave function thus corresponds to an en-
semble of Lorentzian de Sitter spaces which differ from one
another only in the time assigned the minimum radius. It

is in this way we recover the classical limit.

5.2.3 A massive scalar field

The conformally invariant scalar field is not a
realistic model of the matter in the universe. It con-
tains no scale. Within the general framework of the
minisuperspace models discussed in Section 5.2.1, a more
realistic model is provided by a free, massive, minimally
coupled scalar field. This was discussed by Hawkingz) in

the case A = 0. The parameters of this model are thus

E =0, AN=0, v=0, and m # O.
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THREE SPHERE

=%

/\

Fig. 1l1. Lorentzian de Sitter Space. In the classically
allowed region of the minisuperspace of homogeneous
isotropic geometries with conformally invariant scalar
field, the wave function corresponds semiclassically to
Lorentzian de Sitter space. This is the most symmetric
solution of the source free Einstein's equation with
positive cosmological constant. It is the geometry of

a Lorentz hyperboloid in a 5-dimensional Lorentz sig-
natured spacetime. It may be thought of as_a three sphere
which collapses to a minimum radius (3/A) 1 2 and then re-
expands.
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The metric on minisuperspace in this model is [(5.13) ]

-1 0
GAB = a ) : (5.30)
0 a
This is conformal to the metric on the interior of the for-
ward light cone in a two dimensional Minkowski space. To

see this, introduce new coordinates

X = a sinhg

(5.31)
y = a coshyp
(X = ® in this case when £ = 0.) The metric in x,y
coordinates is
-1 0
SO S % 14
Gap = (v™=-x") . (5.32)
0 1

The new and old coordinates can be conveniently plotted on an
x-y diagram as in Figure l2a. The Wheeler-DeWitt equation

becomes
2 2
3 3

— + — - U(x,y) [¥(x,y) =0 , (5.33)
2 2

50 ox

=

where U(x,y) 1is the "potential" of eg. (5.10b). Expressed
in terms of x and y it is

=1 3¢, 12
(y | FEdi (5.34)

The first term is from the spatial curvature in the Wheeler-

U(x,y) = Xz—y2+m2(y2—x2)2[tanh

DeWitt equation. The second is the contribution of the

scalar field's mass to its energy.

Eg. (5.33) is a wave equation with potential in one
space and one time dimension. It could be integrated
numerically if boundary conditions could be found for Ty -
These boundary conditions are supplied by sum over compact

Euclidean histories (5.17) which defines the quantum state

-
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Fig. 12. (a) Two sets of coordinates on the minisuperspace
of homogeneous isotropic geometries with minimally coupled
massive scalar field. The minisuperspace is conformal to
the forward light cone of a 2-dimensional Minkowski space
(y,x). Curves of constant spatial volume are the hyper-
bolae a = constant. Curves of constant scalar field are
straight lines through the origin.

(b) The classically allowed and classically forbidden
regions of minisuperspace. In the classically allowed
region the semiclassical approximation is given by a
Lorentzian extremum of the action and the wave function
oscillates. 1In the classically forbidden regions the
semiclassical approximation is given by a Euclidean ex-
tremum and the wave function is nonoscillatory.
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of the universe and distinguishes it from all other solu-
tions of the Wheeler-DeWitt equation. A convenient place
to evaluate these boundary conditions is the characteristic
surface y = |x| corresponding to a = 0, 9 = £ ». The
boundary condition needed to integrate the Wheeler-DeWitt
equation is the value of T, on this surface. To evaluate
this and also to obtain a qualitative understanding of its
behavior we consider the semiclassical approximation to
(513

Semiclassicaly, we expect to find

U (ay.9) = Alag,9 ) exp[-I(ay.®,) ] (5.35)

for those values of a, and Xo for which there is a real
Euclidean extremum of the action. For those values for
which the extremum is complex Euclidean (i.e. real

Lorentzian) we expect

AE ) A(ao,cpo)cos[S(ao,chH ; (5.36)

0’'%o
where S 1s the Lorentzian action. In this case the wave
function will oscillate. The equations of motion which

a Euclidean extremum must satisfy follow from varying (5.10a)

with respect to N and . In the gauge where N=1 they are

s 3 -

© + ?a p - m2:p2 = .0 , (5.37a)

3.2 - 1 29 2.3

(g} =S +¢ -my : (5.37b)
a

A solution which is a compact geometry starts at some T

(say T = 0) where a = 0 (Figure 7). There, ¢ = 0 in order
for the field to be regular. The value ©(0) is arbitrary.
There are thus a one parameter family of solutions to (5.37)
which correspond to compact geometries with regular field
configurations. A typical one looks schematically like
Figure 13. The solution whose action gives the wave function
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Fig. 13. A typical Euclidean extremizing configuration.
The geometry has a "south pole" where a = 0, @ = 0 and @
takes some value @(0). (cf. Figure 7.) If egs. (5.37)
are integrated forward in the "polar angle" T a "north
pole" is eventually reached where a = 0 and both geometry
and field are singular. A compact, non-singular geometry
with 3-sphere boundary on which a = ag and @ = g is ob-
tained by locating the T4 forwhich a = ag and then
varying ©(0) until @=¢g at that value of 7g . This
extremizing configuration is indicated by the heavier
curves.
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at a given value of a, and % is determined by adjusting
©(0) until ¢ assumes the value Pg at the value of T for
which a = ag- There may be several solutions for which
this is possible. This phenomenon is familiar from the
example of the conformally invariant scalar field where
there were solutions to the equation of motion (5.25)
corresponding to less than a hemisphere of the 4-sphere
and also to more than a hemisphere. The solution which
gives the semiclassical approximation, in that case as
in this, is the one for which the action is a maximum

2,54) shows

for real variations. Explicit calculation
that such solutions are confined to a region of mini-

superspace for which approximately
-1
ay < (mley|) or |gy| S 1 : (5.38)

Inside this region the wave function varies without oscil-
lation. Outside this region it oscillates. In the
semiclassical approximation this behavior emerges because,
outside the region (5.38), the extrema are complex
Euclidean and the wave function behaves as in (5.36).
These complex extrema are real Lorentzian geometries and
field histories which obey

3a
a

e + $ + m°p = 0 . (5.39a)
2

)i s 13-+ o> + migS (5.39b)
a

v we

(

a dot denoting differentiation with respect to Lorentzian
time. Indeed, semiclassically, the quantum state may be
thought of as corresponding to an ensemble of classical

histories which obey these equations.

The values ag -~ 0 and Pg — = @ of interest for
evaluating the characteristic initial value data for the

Wheeler-DeWitt equation, are within the region of mini-

superspace defined by (5.38). There is therefore always

=R LA



a real solution of (5.37) giving the semiclassical approxi-
mation to @b. The action approaches zero as ao - 0 since
® is regular. Thus, to the extent the variation in the

prefactor A can be neglected* in (5.35) we have
Yy = constant . (5.40)
on the characteristic initial value surface y = |x|.

A numerical integration of the Wheeler-DeWitt equation
with the boundary condition (5.40) is shown in Figure 14.
(For more see Refs. 41, 51, 63.) In theclassically forbidden
region (Figure 12b, Eg. (5.38)) the wave function varies

smoothly. In the classically allowed region it oscillates.

Figure 15 shows a schematic representation of a
typical solution to (5.39). For sufficiently large g the

2,54) shows that the transition from

explicit computation
Euclidean to Lorentzian extremum occurs when a = (m[m])_l
[cf.(5.38) ] and when é and a are approximately zero. From
(5.39), a classical trajectory thus starts from a field
value o, which is a local maximum and a scale factor which

1
evolution, while g is nearly constant the term mzw in

is a local minimum, a, ~ (m‘ml\)_l. In the subsequent

2
(5.39b) behaves as an effective cosmological constant.
The universe thus inflates with a time scale m\mll.
Eventually ¢ decreases, begins to oscillate and the matter

field acquires kinetic energy of its own.

In the classically allowed region of minisuperspace
the wave function constructed as the sum over compact,
regular histories corresponds semiclassically to an en-
semble of classical histories each characterized by a

value of p; . The histories have an initial inflationary

k4
The prefactor in the case of pure gravity has been
evaluated by K. Schleich.62)
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Fig. 14. A numerical integration of the Wheeler-DeWitt
equation in the homogeneous, isotropic, massive scalar
field minisuperspace model. The figure shows the inte-
gration of E. P. Shellard®3) of the Wheeler-DeWitt
equation (5.33) with the boundary conditions (5.39). Yy
is plotted as a function of the coordinates x and y.
Oscillatory and non-oscillatory regions can clearly be
distinguished and these correspond to those predicted
semiclassically and shown in Figure 12b.
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epoch and, later, an epoch in which the matter field has
kinetic energy and the expansion behaves as though matter
dominated. Thus through the inflationary mechanism, the
universe, although in the analog of the ground state, can

become large, approximately flat and contain matter.

5.3 Linearized Fluctuations about Homogeneous Isotropic

Models

Minisuperspace models which assume homogeneity and
isotropy can neither provide an explanation of this large
scale feature nor of the observed spectrum of fluctuations
away from it. On the one hand an explanation of homogene-
ity and isotropy can only come by comparing the wave
function on configurations which have these symmetries
with those which do not, and on the other fluctuations
cannot be studied in geometries which do not have them.

To progress with either question one needs to enlarge the
minisuperspace to include geometries which are not
homogeneous and isotropic. Of the several models of this
type44‘47'48) perhaps the most complete is that of Halliwell
and Hawking.49) They considered linear fluctuations away
from the homogeneous and isotropic models with massive
scalar field discussed in the preceding subsection. They
discuss the most general fluctuations and thus explore
completely a small domain of superspace about exact
homogeneity and isotropy. Their model is thus not strictly

a minisuperspace model but contains an infinite number of

degrees of freedom.

In the following we shall sketch the assumptions and
method of Halliwell and Hawking's calculation and quote

some of their results.

The model considers Euclidean histories which deviate
only slightly from exact homogeneity and isotropy. Metric

and field can thus be written
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Fig. 15. A typical Lorentzian extremizing configuration.
The solution shown schematically here starts at a minimum
radius with ¢ =0. In the domain where ¢ varies slowly

the universe follows a de Sitter like inflationary expan-
sion with H = mep; . Later the scalar field begins to
oscillate and the universe evolves approximately as though
matter dominated. Eventually a maximum expansion is
reached, the universe recollapses and matter and geometry
become singular. A sufficiently large mp; would provide a
long enough inflationary period to explain the present
large size of the universe and its approximate spatial
flatness. The oscillation of the scalar field models the
creation of matter.
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2 ~2

ds ds® + eaﬁ(X)dxaﬁxB ’ (5.41la)

I

é(r) + £(x) ‘ (5.41b)

P

Here déz is the homogeneous, isotropic line element (5.2),

¢ a homogeneous field configuration and €aB and f the
inhomogeneous deviations from these quantities. Both ¢ 8
o

and £ can be expanded in the harmonics of the homogeneous,

isotropic 3-sphere. Schematically, these expansions have

the form
iy (n) (n) (i
EaB(T'X ) = E(n)e (T)Qaﬁ e (5.42a)
£ir,xh) = g, £ me™ ) (5.42b)
where Q;g) and Q(n) are a complete set of tensor and scalar

harmonics. Near the homogeneous, isotropic configurations,

(n) (n)

the € and f may be regarded as "coordinates" on super-

space and we write

T T L L L € T

Classically the linearized field equations for the

(n)' f(n) decouple into a set for each mode.

fluctuations ¢
Quantum mechanically, the Wheeler-DeWitt equation and the
associated constraints (4.9a) separate when written to
quadratic order in the variables describing the fluctuations.

That is, the wave function is a product

v o= W&, @8, e . (5.44)
(n)

The Wheeler-DeWitt equation implies for @'an eqguation of

the form

| 1 source term| |,
| V¥ - 5= U(a,yp) + [ quadratic Y(a,p) =0 ., (5.45)

i 2a
L in the § ' /|
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The first two terms in this equation are the Wheeler-DeWitt
equation of the homogeneous, isotropic massive scalar field
model [eqg. (5.14) ]. The additional term represents the
expected energy of the fluctuations. In the semiclassical
approximation one expects solutions for ¥ of the form {535}
b [5.36) -

In the classically allowed region, the semiclassical
approximation to & is of the form (5.36). The action
S(ao,mo) is the action of classical histories a(t), o(t)
which satisfy the classical equations of motion. When ¥
is approximated in this way, the Wheeler-DeWitt equation

(n)

implies a "Schrodinger" equation for i
(n)

o - i) )
i = R . (5.46)

(n)

w(n) and H become functions of time through the connec-
tion between a and t provided by the classical trajectory
a(t). This is generally the way that the notion of time is
recovered in the semiclassical approximation to the guantum

64) The dynamics of the fluctuations,

dynamics of spacetime.
in effect, becomes the ordinary quantum dynamics of fields
moving in the background spacetime which provides the semi-

classical approximation to W.

Halliwell and Hawking solve (5.45) and (5.46) with
boundary conditions extracted from the Euclidean sum over
histories specification of the wave function. They argue
that for this wave function the additional source term in
(5.44) is small after appropriate renormalization. The
wave function W and the classical trajectories which give
its semiclassical approximation are thus those of the mini-
superspace model discussed in the previous subsection.
These display an early inflationary phase followed by a

transition to a matter dominated evolution. Eg. (5.46)

o0 - 7. I



shows that the fluctuations will evolve as quantum fields

in this background spacetime. Semiclassically the evolu-
tion will therefore be much like the evolution of
fluctuations in the standard inflationary universe history.em
What the wave function of the universe supplies is the

boundary conditions to begin this evolution.

Halliwell and Hawking find first that at all stages
in which their approximation is valid the wave function is
peaked about isotropy and homogeneity. The fluctuations
away from this symmetry begin in their ground state. They
remain in their ground state until they expand outside the
Hubble radius. Their amplitude then remains frozen until
they reenter the Hubble radius in the matter dominated era.
There results a scale free (Zel'dovich) spectrum of fluc-
tuations which, for the correct choice of the scalar field
mass m, can have the amplitude to correctly reproduce the

spectrum of density fluctuations we observe.
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6o OBSERVATIONS AND PREDICTIONS

The accompanying table offers a comparison between the
large scale observations of our universe reviewed in
Section 2, and the predictions of the proposal for the
quantum state of universe worked out in minisuperspace
models. The predictions are consistent with the ob-
servations. Essential to this consistency is the action
of an inflationary mechanism when the universe is small.
Without such action there would be no natural way for the
cosmological analog of the ground state to explain the
large size of the universe, its approximate spatial flat-
ness and its matter content. It is encouraging that
inflation appears to occur naturally in a wide range of

2i83:50)  grflabich, however, makes it

matter models.
difficult to test the proposal for the quantum state in

a definitive way. Inflation, it will be recalled from
Section 2, was the dynamical mechanism which successfully
explained several large scale features for a wide range
of "reasonable" initial conditions. It is thus difficult
to test any theory which makes specific predictions about
initial conditions and which involves an inflationary

mechanism in an essential way.

Views on what are "reasonable" initial conditions and
what are not are inevitably subjective. A more fundamen-
tal question is whether the states which are consistent
with our present observations are a large subset of the
set of all possible states or a small one. Arguments of
Penrosell} suggest that it is small by a very large factor.
In this sense, present observations already lead to a

strong test of the proposal.
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Evaluating the wave function on some of the more
exotic regions of superspace is important for this kind
of test. As yet, the quantum state of the universe has
only been calculated in minisuperspace models built on
symmetries which closely resemble those of the present
universe or which deviate slightly from them. These
explore but a small part of the whole of superspace.
The observed universe is located in this part but it is
important to demonstrate that the wave function of the

universe has support on no other.
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The proposal developed by Stephen Hawking and his
collaborators for the quantum state of the universe is
one of compelling simplicity and beauty. In the models
tested to date it agrees remarkably well with observa-
tions. In the process of exploring this idea on ever
larger domains of superspace with ever better theories
of gravity and matter we shall certainly learn more
about quantum gravity. We may well be exploring the

state of the universe in which we live.

iz CONCLUDING REMARKS

The point of view developed in these lectures might
be summarized in a minimal way in the following three
statements. If the reader can carry only three ideas
away from these lectures I would hope that they would

be these:

a) Cosmology requires a law for initial conditions.

This will involve quantum gravity.

b) There are basic issues in the kinematics and inter-
pretation of a quantum gravitational theory which
are not those of standard flat space field theory.
The sum over histories formulation of quantum

mechanics may guide their resolution.

c) As conjectured by Stephen Hawking and his collaborators,
the universe may be in its ground state and all the
features of the universe we see about us may have their
origin in the special properties of this state and its

gquantum fluctuations.
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A, Notational Appendix

For the most part we follow the conventions of Ref. 10

with respect to signature, curvature and indices. In par-

ticular:
Signature: (-,+,+,+) for Lorentzian spacetimes.
(+,+,+,+) for Euclidean spacetimes.
Indices: Greek indices range over spacetime from 0 to 3.
Latin indices range over space from 1 to 3.
Units: We use units in which # = ¢ = 1. The Planck

length is 4 = (lBTTG)l/2 = l.lS:i{lO_32 cm.

Minkowski metric: naﬁ = diag (-1,1,1,1).

Covariant Derivatives: V denotes a spacetime covariant
o
derivative and Di a spatial one.

Traces and Determinants: Traces of second rank tensors

K 8 are written as K=K% except when the tensor is
o o
the metric in which case g is the determinant of gaB

and h the determinant of hij'

2

Squares: If A is a tensor, ( ) means

A

ofy--- oBY- - -

A ACBY - - -
opy~--



N [

{Aaﬁ+*AﬁJ

Symmetrization:

A(aB)

Extrinsic Curvatures: If n 1is the unit normal to a
o
spacelike hypersurface in a Lorentzian spacetime

we define its extrinsic curvature to be

K.. =-V,n, .
1] 1]

If the surface is embedded in a Euclidean space-

time we define the extrinsic curvature to be

K,, = ¥v.n.
ij 1]

Intrinsic Curvatures: Intrinsic curvatures are defined
so that the scalar curvature of a sphere is positive,

Metric on the unit n-sphere: This is denoted by dni and

in standard polar angles is

2 2 - 2
sz = df + sin 8dyp n = 2
dﬂg = dX2 + sinzxdﬂg n=3

29D
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