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Abstract. A sum over histories formulation of quantum geometry could involve sums over 
different topologies as well as sums over different metrics. In classical gravity a geometry 
is a manifold with a metric, but it is difficult to implement a sum over manifolds in quantum 
gravity. In this difficulty, motivation is found for including in the sum over histories, 
geometries defined on more general objects than manifolds-unruly topologies. In sim- 
plicial two-dimensional quantum gravity a class of simplicial complexes is found to which 
the gravitational action can be extended, for which sums over the class are straightforwardly 
defined, and for which a manifold dominates the sum in the classical limit. The situation 
in higher dimensions is discussed. 

1. Introduction 

Classical general relativity is a theory of the geometry of spacetime. The classical 
theory considers geometries which are manifolds with a metric. It does so because 
manifolds are the mathematical implementation of the principle of equivalence. That 
principle tells us that locally spacetime is indistinguishable from a small region of flat 
space (R4) and this is the defining characteristic of a manifold. 

A quantum theory of gravity should assign amplitudes to all possible geometries. 
Because classical geometries are manifolds with a metric it is as reasonable to assign 
amplitudes to different manifolds as it is to different metricst. By allowing manifolds 
with different topologies one is led to attractive physical pictures such as those evoked 
by the words ‘spacetime foam’ [3]. 

The sum over histories formulation of quantum mechanics provides a direct and 
powerful framework on which to construct a quantum theory of geometry. Quantum 
amplitudes are specified by sums over geometries with different amplitudes being 
constructed by summing over different classes of geometries. Expectation values in 
quantum states can be expressed as a sum over geometries. For example, in the 
quantum mechanics of closed cosmologies, the expectation value of a physical quantity 
A in the state of minimum excitation could be represented schematically as [4] 

Here, I is the Euclidean gravitational action. The sum is over compact, connected, 
four-geometries, 9, without boundary. Among these are the classical geometries- 
metrics on manifolds. 

t For a very different view on the reasonableness of considering different topologies in quantum geometry 
see [ 1,2]. 

0264-9381/85/050707 + 14$02.25 0 1985 The Institute of Physics 707 



708 J B Hurtle 

In the sum over histories formulation of quantum mechanics we are familiar with 
‘unruly histories’ [5]. These are histories which contribute significantly or even 
dominantly to the sums for quantum amplitudes but are less regular than the classical 
histories. An example is provided by the quantum mechanics of a single particle. The 
dominant contribution to the path integral for the particle’s propagator comes from 
paths which are nowhere differentiable. By contrast the classical paths which extremise 
the action and satisfy the classical equations of motion are everywhere differentiable. 

In a sum over geometries such as (1.1) one would expect, by analogy with field 
and particle quantum mechanics, to sum over unruly metrics. It is also possible that 
one should sum over unruly topologies-geometries defined on objects more general 
but less regular than manifolds. This paper explores this question in the context of 
two-dimensional quantum gravityt. 

Some motivation for considering a wider class of geometries than those defined on 
manifolds can be obtained by considering various possible procedures for concretely 
implementing a sum over manifolds in an expression like (1.1). Simplicial approxima- 
tion provides a concrete way to define sums over geometries [6-111. A simplicial 
geometry is a collection of simplices together with an assignment of lengths to their 
edges. A sum over geometries is a sum over collections of simplices together with a 
multiple integral over their edge lengths. A sum over manifolds is a sum over collections 
of simplices which are locally topologically equivalent to a region of Euclidean space. 

The most direct approach to defining a sum over all manifolds would be to list 
them, find a simplicial representation of each, evaluate the integral over the edge 
lengths for each, and add the results up. However, in four and higher dimensions it 
is not possible to construct a list on which every manifold appears just once because 
the problem of deciding when two manifolds are topologically equivalent is unsolvable 
in these dimensions (see, e.g., [12]). Manifolds are not classifiable. 

A solution of the classification problem is not necessary to carry out a sum over 
manifolds. Another approach, discussed more fully in 9 2, might be to sum over all 
collections of simplices which are manifolds. One thereby counts some manifolds 
more than others with a weight defined implicitly by the procedure. However, in five 
dimensions and higher, and possibly in four dimensions, it is unlikely that there exists 
an algorithm for deciding whether a given collection of simplices is a manifold or not. 
Simplicial manifolds are not identifiable from among all simplicial collections. 

The above examples show that the problem of summing over manifolds is not an 
easy one. They do not, hDwever, demonstrate that it is impossible. Other approaches 
have been proposed [ l l]  and more ingenious ones may yet be found. The existence 
of a universal algorithm may not even be necessary for physics [13]. The difficulty of 
the problem of summing over manifolds, however, does motivate an examination of 
the question of whether the quantum sum over geometries might be better defined on 
geometries for which a procedure like one of those described above can be carried out. 

There are classes of geometries which are smaller than the collection of all manifolds 
and which are classifiable [14]. For example, certain simply connected manifolds are 
likely to be classifiable [15, 161. As yet, however, there seems to be no compelling 
physical reason for restricting the geometries contributing to the sum over histories in 
this way. 

t Already in classical gravity the notion of manifold breaks down at spacetime singularities. Typically, these 
singular points are banished from the manifold to the lower dimensional boundary although they are real 
enough physically. The idea of spacetime manifold is replaced by spacetime manifold with boundary. Our 
question is whether even this class should be enlarged. 



Unruly topologies in 20 quantum gravity 709 

In this paper we shall pursue a second approach. We shall examine whether the 
sum over geometries may be reasonably defined on a larger, less regular class of 
geometries than those built on manifolds in such a way that there is a straightforward 
procedure for carrying out the sum in the simplicial approximation. Including 
geometries in the sum over histories which are not manifolds means relaxing the 
principle of equivalence at the quantum level. The larger class would be the unruly 
topologies of the geometrical sum over histories. To identify such a class one must 
not only identify a class of geometries but also construct a suitable gravitational action. 
Together they define the sum over histories. Two conditions must then be satisfied. 
(1) To have a straightforward procedure, there must be an algorithm for deciding 
which collections of simplices are members of the class and which are not. (2) To 
recover the principle of equivalence in classical physics, the action and class must be 
such that manifolds dominate the sum over histories in the classical limit. 

In § 3 we find the largest natural class of geometries which satisfy the above 
conditions in two-dimensional quantum gravity with the simplest extension of the 
action. Two-dimensional quantum gravity is metrically trivial. There are neither 
dynamical degrees of freedom nor field equations. Two-dimensional gravity is not, 
however, topologically trivial in the sense that the action depends on the topology of 
the geometry [ 171. Topological issues are therefore clearly separated from metrical 
ones in two dimensions and easily investigated. With the simplest extension of the 
gravitational action we find that the largest natural class of two-dimensional geometries 
which are straightforwardly identifiable and which possess a reasonable classical limit 
are those built on pseudo-manifolds. Roughly, a two-dimensional pseudo-manifold 
is a collection of triangles which fails to be a manifold at some collection of vertices 
while being no more disconnected by these failures than a manifold is. Pseudo- 
manifolds thus are the unruly topologies of two-dimensional quantum gravity. 

In higher and more interesting dimensions metric and topology are coupled and 
the problem of evaluating the classical limit is more complicated. Without reaching 
definite conclusions we discuss this problem in § 4 and exhibit possible candidates for 
unruly topologies in higher dimensions. 

2. Simplicial approximation, simplicial complexes and simplicial manifolds 

Sums over geometries may be given concrete meaning by taking limits of sums over 
simplicial approximations to them [6-111. Simplicial geometries are built out of 
simplices joined together in a specific way together with a metric fixed by an assignment 
of lengths to their edges and a flat metric to their interiors. The action for gravitation 
becomes a function of the edge lengths and the way the simplices are joined together. 
For example, one could give a concrete meaning to the sum over geometries in (1.1) 
as follows. (1) Fix a total number of vertices no. (2) Approximate the sum over 
topologies by a sum over the different ways, K ,  of appropriately putting together 
4-simplices. (3) Approximate the sum over metrics by a multiple integral over the 
squared edge lengths si. (4) Take the limit of these sums as no becomes large. In short, 
express (A) as 
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A specification of the measure in the space of squared edge lengths, dX,, and the 
contour of integration is needed to complete this prescription. 

Simplicial complexes provide the widest reasonable framework in which to investi- 
gate simplicial geometries. A simplicial complex is a finite collection of simplices such 
that if a simplex of dimension k is in the collection then so are all of its faces of 
dimension less than k and whenever two simplices intersect they do so in a common 
face. (From now on we shall omit the qualification ‘simplicial’ from complexes, 
manifolds, pseudo-manifolds etc, it being understood that geometries are built out of 
simplices.) The maximum dimension of a simplex in the complex is the complex’s 
dimension, n. It seems reasonable today to restrict attention to complexes which are 
of homogeneous dimension in the sense that any simplex of dimension k < n is the 
face of some n-simplex. We thereby recover the notion of a uniform dimension of 
spacetime. 

For computing expectation values in the state of minimum excitation for closed 
cosmologies, closed, four-dimensional geometries are appropriate. In other situations 
other classes of geometries may be of interest. For example, if spacetime is really ten- 
or eleven-dimensional, geometries of this dimension would be of interest. For a direct 
sum over histories evaluation of the minimum excitation wavefunction for closed 
cosmologies, four-geometries with a boundary would be of interest. To obtain concrete- 
ness, however, we shall focus on sums like (2.1) over closed geometries but in a general 
number of dimensions n. We are therefore interested in homogeneously n-dimensional 
complexes without boundary (closed), i.e. such that there are no ( n  - 1)-simplices 
incident on an odd number of n-simplices?. Without any loss of generality we can 
further restrict attention to connected complexes-those for which there is a sequence 
of edges connecting any two vertices. For expectation values of quantities concerning 
a single universe the contributions of disconnected geometries cancel between the 
numerator and denominator of (2.1). 

As described above, to define a sum over geometries through simplicial approxima- 
tion one can first sum over geometries defined on complexes with a fixed number of 
vertices no and then consider the limit as no becomes large. Indeed, to the extent that 
this limit represents a sum over continuum geometries, one suspects that this is the 
only reasonable procedure. This is because in sums like (2.1) one expects both 
numerator and denominator to diverge in the limit of large no because there will be 
many simplicial geometries which approximate a given continuum one. The sums 
diverge like the curvature scale to the power nno and this divergence corresponds to 
recovering the diffeomorphism group in the continuum limit (see, e.g., [9, 111). The 
divergence should cancel between the numerator and denominator to yield a finite 
result for physical quantities with a continuum limit. We consider sums over complexes 
with a fixed number of vertices no because in any approximation which involved several 
different no the largest no would eventually dominate anyway. Such a sum is finite 
since there are a finite number of complexes which can be constructed with no vertices. 

To define a sum over geometries one must at least be able to identify the complexes 
which contribute to the sum and define the gravitational action on them. Let us begin 
by briefly reviewing the situation for the class of complexes which are manifolds. A 
closed n-manifold is a complex such that there is a neighbourhood of any point which 
is topologically equivalent (homeomorphic) to an open ball in R“. This is a strong 
condition and one which has little to do with the combinatoric properties of a complex. 

i We thus follow the classic topological definition of the boundary of a complex. For more precision and 
discussion of this and the other definitions we have introduced informally, the reader is referred to [18]. 
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There is no difficulty with defining the action for general relativity on a geometry 
defined on manifolds. The continuum Euclidean action for a closed geometry on a 
manifold M is 

g,l"-'I = -J d"x&(R -2A), 
M 

where A is a cosmological constant, 1=(16.rrG)"2 is the Planck length, g ,  is a 
dimensionless coupling constant, and we use units where A = c = 1. On a simplicial 
manifold (2.2) becomes exactly [19] 

The first sum is over the ( n  -2)-dimensional simplices Xnp2  on which the curvature is 
concentrated and the second over the n-simplices. V, is the volume of a k-simplex 
and e(v) is the deficit angle of an ( n  -2)-simplex cr which measures the curvature 
there. Specifically 

e ( ~ ) = 2 ~ -  e(U, 7). (2.4) 
TEZ,, 

The sum here is over the n-simplices which are incident on the given ( n  -2)-simplex 
and O(a, T )  is the 'dihedral angle' in the n-simplex 7 between the two ( n  - 1)-simplices 
which contain cr. By standard flat space geometrical formulae every constituent quantity 
in the action may be expressed as a function of the edge lengths of the simplices. 

By introducing the notion of the link of a simplex we can formulate the condition 
for a complex to be a manifold. The link of a simplex cr is the complex consisting of 
those simplices which (1) are faces of simplices which have U as a face but which (2) 
do not themselves intersect cr. See figure 1 for an example. A necessary and sufficient 
condition for a complex to be an n-manifold is that the link of every k-simplex be 
homeomorphic to a sphere of dimension n - 1 - k [20]. 

a 

Figure 1. The surface of an octahedron is a simple example of a two-manifold. The link 
of every edge consists of two points and is thus a 0-sphere (the boundary of a I-ball). The 
link of every vertex consists of four connected edges which are topologically a 1-sphere 
(a circle). For example, the link of edge e consists of the vertices p and y. The link of 
vertex a is the heavily drawn quadrilateral. 
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Complexes with no vertices can be enumerated by listing all collections of n- 
simplices which can be constructed from no vertices. There are a finite number. The 
lower-dimensional simplices of these complexes are the faces of their n-simplices. One 
could weed this list of complexes by enforcing necessary conditions, but, in the end, 
to check which complexes are manifolds one will have to check that the link of each 
simplex is topologically a sphere of correct dimension. In particular one must check 
that the link of each vertex is an ( n  - 1)-sphere. 

The problem of deciding whether a given manifold is homeomorphic to a k-sphere 
is a more specific one than the problem of deciding when any two given manifolds 
are homeomorphic. The non-existence, in a given dimension, of a universal algorithm 
for the latter problem, therefore, does not preclude finding an algorithm for the former. 
The current mathematical situation on the existence of an algorithm to determine when 
a given manifold is homeomorphic to a k-sphere appears to be the following. For 
k = 1 and k = 2 there exist algorithms. For k = 3, Haken [21] has announced the proof 
of an algorithm, but it is not likely to be easily implementable. For k 2 4 it is highly 
unlikely that an algorithm exists [12] and there are preliminary indications [22] that a 
proof of this can be supplied for k 2 5. Thus, for dimensions n > 5, and possibly in 
some useful sense in dimension n = 4, it appears likely that there does not exist a 
universal algorithm for deciding when a given complex is a manifold. The inability 
in a general dimension of deciding whether a given complex is a manifold does not 
make a definition of a sum over manifolds impossible [ll], but it does make such 
definitions much less straightforward. 

Complexes which are not manifolds fail to be so because the link of some simplex 
is not a sphere of appropriate dimension. Some two-dimensional examples are shown 
in figures 2 and 3. Complexes which are not manifolds are thus singular at a discrete 

Figure 2. This closed, two-dimensional complex is not a manifold. There are neighbour- 
hoods of points in the edges (1,7) and (6,7) which are not homeomorphic to a disc but 
rather to a region in the intersection of two planes. Four triangles intersect each of the 
edges (1 ,7)  and (6,7). The complex thus branches on these edges. Their links consist of 
four vertices each and are not the 0-sphere. For example, the link of edge (1,7) consists 
of the vertices 2 , 3 , 4  and 5 .  The links of vertices 1 , 6  and 7 are not 1-spheres. For example, 
the link of vertex 1 is the heavily drawn set of edges. It is not topologically a circle nor 
a set of disconnected circles. 
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a 

Figure 3. This two-dimensional complex is not a manifold. It is non-branching so that 
the links of edges are 0-spheres. The link of some vertices, however, does not consist of a 
single circle but of two. For example, the link of vertex a consists of the heavily drawn 
edges. The complex is not strongly connected and can be regarded as two almost discon- 
nected spheres joined at the vertices a and p. 

number of simplices of dimension less than n. An assignment of edge lengths to such 
complexes still defines a metric in the sense that the distance along any curve in the 
complex is then determined. A general complex with an assignment of edge lengths 
may thus be regarded as a geometry. 

In order to investigate whether complexes which are not manifolds can reasonably 
contribute to the geometric sum over histories a gravitational action must be defined 
for them. The Regge action (equation (2.3)) extends naturally to all complexes of 
homogeneous dimension. This is because every ( n  - 2)-simplex is contained in some 
number of n-simplices. Equation (2.4) can thus be used to define the deficit angle and 
equation (2.3) to define the action. One would expect a similar extension to hold for 
the approximate curvature squared actions [ 101. Other extensions are certainly possible 
and in particular the Regge action can always be augmented by topological invariants 
of the complex. Such extensions must be consistent with the additive property of the 
action required by the composition law of quantum mechanics (see, e.g., [SI). 

The conditions for a reasonable class of simplicial geometries with which to define 
the gravitational sum over histories may now be restated more precisely as follows. 
We seek a class of closed complexes of homogeneous dimension n together with an 
extension of the gravitational action to them such that 

(1) There is an algorithm for deciding whether a given complex is a member of 
the class or not. 

(2) A manifold dominates the sum over histories in the classical limit. 
Finding a class of geometries and an extension of the action are coupled problems. 



714 J B Hartle 

They could be attacked by starting with an extension of the action and attempting to 
identify a class of geometries satisfying conditions (1) and (2). Alternatively one could 
start with a class of geometries and try and find an action such that ( 1 )  and (2) hold. We 
shall illustrate both lines of investigation in the subsequent sections. 

3. Two dimensions 

The curvature part of the Regge action for two-dimensional quantum gravity is indepen- 
dent of the edge lengths of the closed complex on which it is evaluated. This can be 
seen directly from the defining relations (2.3) and (2.4). Write 

Substitute (2.4) into (3 .1) ,  interchange the summations over vertices and triangles, and 
note that the sum over the interior angles of a triangle is T. There results 

where no is the total number of vertices and n2 is the total number of triangles of the 
complex. The curvature part of the action thus depends only on how the triangles are 
put together to form the complex, not on their edge lengths. 

Since there are no metric degrees of freedom in two-dimensional quantum gravity 
it would be reasonable to consider IE  as the total gravitational action for different 
topological configurations. Alternatively, one could define the total action by adding 
to 1, a cosmological term of the form constant x (total area of the complex). One 
could then carry out the integral over the edge lengths and be left with a sum over 
topologies. In either event, we shall assume that the interesting expectation values in 
two-dimensional Einstein gravity are to be computed in the form 

(3.3) 

where the sum is over some class of closed, connected, two-dimensional complexes 
and v ( K )  is an appropriate weight. In this section we shall find a class of closed, 
connected, two-dimensional complexes which is larger than manifolds and which 
satisfies the two conditions set forth in 0 2 :  the existence of an algorithm for identifying 
members of the class and the domination of the sum over histories by manifolds in 
the classical limit. 

The classical limit of a sum over histories like (3.3) is obtained by allowing h to 
tend to zero keeping other dimensional quantities fixed. Equivalently, in the units we 
are using it is obtained by allowing g, to tend to zero. We shall assume that the 
classical limit of the sums in (3.4) is entirely determined by the topological part of the 
action, I,. That is, we shall assume that when g, becomes small the dominant 
contribution to the sum over histories comes from those complexes with least I€ .  

Let us begin with connected, closed, two-dimensional complexes which are mani- 
folds and enlarge this class as naturally as possible until the largest class is found 
which meets our conditions for the classical limit. For a closed complex to be a 
manifold every edge must intersect exactly two triangles. Otherwise there would be 
neighbourhoods of points on the edge which were not homeomorphic to a disc in R2. 
Such complexes are called non-branching. For non-branching complexes the number 
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of edges n ,  and the number of triangles n, are related by 

3n,  = 2 n , .  (3.4) 

I E  = - 4 ~ x ,  (3 .5)  

(3.6) 

The Regge action for non-branching complexes (equation ( 3 . 2 ) )  can be rewritten as 

where ,y is the Euler number 

,y = no - n ,  + n2. 

For non-branching complexes the action is therefore a topological invariant in the 
sense that it is unchanged by subdivision?. The Euler-Poincark formula expresses ,y 
in terms of the Betti numbers bk 

x = bo- b, + b,. ( 3 . 7 )  
bk is the number of linearly independent, non-homologous k-cycles of the complex. 
Connected complexes have bo = 1. For manifolds b2 = 1 if the manifold is orientable 
and b,=O if it is not. Thus for manifolds 

orientable, 
1 - bl ,  non-orientable, (3.8) 

and so, for all manifolds ,y S 2.  The action I E  is thus bounded below by -47r and the 
manifold of least action is the sphere with b ,  = 0, ,y = 2.  

Complexes which are not manifolds fail to be so on some edges or vertices. A 
complex will not be a manifold at an edge if the edge does not intersect exactly two 
triangled. Were such branching complexes allowed in the sum over histories however, 
there would be branching complexes with the same action as any manifold. To see 
this imagine joining two closed complexes together along an edge. The resulting 
complex will branch at the edge. Its action, as follows from ( 3 . 2 ) ,  is I,+ I2+8.rr /g ,  
where I ,  and I2 are the actions of the two complexes which are joined. By joining 
many spheres ( I  = - 8 7 r / g , )  to a given manifold in this way we obtain a branching 
complex with the same action as the original manifold, and a manifold would not give 
the dominant contribution to the classical limit. We conclude that complexes contribut- 
ing to the sum over histories must be non-branching. Indeed it would be difficult to 
see how to proceed otherwise. Unless the complexes are non-branching the Regge 
action is not invariant under subdivision and thus not a topological invariant. 

Complexes which fail to be manifolds only at vertices can be divided into two 
groups depending on whether they are strongly connected or not. A strongly connected 
two-dimensional complex is one for which every pair of triangles can be connected 
by a sequence of triangles beginning with the first member of the pair and ending with 
the second such that successive members of the sequence have a common edge. As 
the example in figure 3 shows, connected complexes which are not strongly connected 
can be divided into components which are connected only at vertices. The components 
are ‘almost disconnected’. The link of a vertex at which two or more complexes are 
joined consists of two or more disconnected pieces and therefore cannot possibly be 
a sphere. Every connected manifold is therefore strongly connected. 

t In the succeeding discussion we shall be quoting a number of elementary results in topology. A general 
reference for all of them is [18]. 
$ This is equivalent to the condition on the link of an edge because a 0-sphere consists of two points. 
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The action for a complex which consists of components connected only at vertices 
may be written as a sum over the different components as follows 

(3.9) 

where xi is the Euler number of the ith component and mi is the number of attached 
vertices. The action can be made arbitrarily negative. For example, a closed chain of 
N spheres, each joined at two vertices as in figure 4, would have action -(4n-/g2)N. 
In order to have the sum over topologies converge, and in order that manifolds dominate 
the classical limit, this result suggests that the sum over geometries must be restricted 
to complexes which are strongly connected. For the computation of expectation values 
of sufficiently local quantities one expects thdt this restriction is not an essential one. 
For quantities confined to one component of a complex consisting of almost discon- 
nected components, the contribution of non-strongly connected complexes could, with 
a suitable choice of weight, cancel between the numerator and denominator of an 
expression like (3.3). 

Figure 4. A chain of three almost disconnected spheres connected at two vertices of each 
sphere. The Euler number of this complex is 3 so that the action is less than that of a sphere. 

Through the above two suggestive arguments we have isolated a class of complexes 
with which to potentially define a two-dimensional sum over topologies. 'These com- 
plexes are closed, compact, connected and are (1) homogeneously two-dimensional, 
(2) non-branching and (3) strongly connected. These properties are topologically 
invariant, i.e. they are unchanged by subdivision of the complex [ 181. They are defining 
properties of a two-dimensional pseudo-manifold? [ 181. 

Pseudo-manifolds are complexes which fail to be manifolds at a discrete number 
of vertices. The link of every vertex of a pseudo-manifold consists of some number 
of disconnected circles. Otherwise the complex would branch on some edge. The link 
of vertices where a pseudo-manifold fails to be a manifold is a number of disconnected 
circles greater than one. We may reasonably call these the pseudo-manifold's singular 
vertices. An example is shown in figure 5. As this example suggests, two-dimensional 
pseudo-manifolds may be thought of as manifolds in which points have been identified. 

t Pseudo-manifolds have also been considered in quantum geometry by R Sorkin (private communication). 
See also [23]. 
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m 
Figure 5. An example of a two-dimensional pseudo-manifold. This complex is non- 
branchingand strongly connected. It fails to be a manifold at the topmost vertex. The 
complex is topologically equivalent to a sphere with two points identified. Its Euler number 
is 1 and so its action is greater than that of a sphere. 

For pictorial clarity some of the edges triangulating quadrilaterals have been omitted 
in the figure. They should be imagined to be inserted as in the example at lower right. 

The principle of equivalence is not satisfied at the singular vertices of a pseudo-manifold 
for spacetime cannot be locally flat there. We will now show that these more singular 
geometries meet the conditions for defining a sum over histories set forth in 9 2. 

There is a straightforward algorithm for identifying pseudo-manifolds from among 
all connected, closed, two-dimensional complexes. To list all closed, connected, 
two-dimensional pseudo-manifolds with no vertices one might proceed as follows. List 
all collections of triangles which can be constructed from no vertices. There are a finite 
number. Consider these as complexes with the edges and vertices being those of the 
triangles. Homogeneity of dimension is therefore already satisfied. Discard all for 
which an edge is not a face of exactly two triangles. The remaining complexes will 
be closed and non-branching. Since there are a finite number of edges it takes a finite 
number of operations to do this. It remains to discard those complexes which are not 
connected and strongly connected. Since strongly connected complexes are connected 
we can do this in one step. We first note that if there is a sequence of triangles 
connecting two vertices then there is a connecting sequence in which each triangle 
occurs only once. Suppose there was a connecting sequence in which a triangle v 
occurred twice. By omitting all triangles after the first occurrence of v through its 
second one would obtain a connecting sequence in which v occurred only once. While 
there are an infinite number of connecting sequences between two triangles, there are 
only a finite number of sequences in which a constituent triangle occurs at most once. 
These sequences can therefore be listed and it can be checked whether a complex is 
strongly connected in a finite number of steps. If complexes which are not strongly 
connected are discarded there remain complexes which are connected, homogeneously 
two-dimensional, closed, non-branching and strongly connected. That is, there remain 
the closed, connected, two-dimensional pseudo-manifolds. 

The two-dimensional pseudo-manifold of least action is a manifold-the sphere. 
Thus a manifold dominates the sum over pseudo-manifolds in the classical limit. We 
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can demonstrate this result as follows?. Since pseudo-manifolds are non-branching 
complexes their Regge action is determined by their Euler number through (3.5). Let 
P be a closed, connected two-dimensional pseudo-manifold with k singular vertices. 
The link of each of these vertices is some number of circles greater than one. If we 
delete from P the singular vertices together with the edges connecting them to their 
links we are left with a complex P which is a manifold. This manifold has a boundary 
consisting of the circles which were the links of singular vertices. The number of these 
boundary components, b, is greater than 2k. 6 is connected because P is strongly 
connected. The Euler number of P is related to that of by 

x ( P )  = x ( F )  + k, (3.10) 

as follows directly from (3.6) and the above construction. Imagine joining hemispheres 
to F at each of it? boundaries. There results_a closed connected manifold F'. The 
Euler number of P can be related to that of P' by noting that the Euler number of a 
hemisphere is 1 and that (from (3.6)) Euler numbers of manifolds joined across circles 
add. One has 

x ( P ) = x ( F ' ) -  b. (3.11) 

Closed, connected, two-dimensional manifolds have Euler numbers which are less 
than 2, the value for a sphere (see, e.g. (3.8)). Inserting this inequality in (3.11), the 
result in (3.10), and noting again that b 3 2k one finds 

x ( P )  s 2 - k. (3.12) 

The pseudo-manifold of largest Euler number and least action therefore has k = 0. It 
is thus a manifold-the sphere. 

The above result can be seen more constructively if one knows that each pseudo- 
manifold is a manifold with some vertices identified. Under this identification the 
number of vertices decreases while the number of edges and triangles remains 
unchanged. The Euler number (equation (3.6)) decreases under this identification. 
For every pseudo-manifold there is thus a manifold with larger Euler number and 
smaller action. 

In two dimensions pseudo-manifolds meet the two conditions for defining a sum 
over topologies set forth in 0 2. They are algorithmically identifiable from among all 
complexes and the principle of equivalence is recovered in the classical limit. Eliminat- 
ing any of their defining conditions will allow complexes which violate these conditions. 
In this sense pseudo-manifolds are the largest class which can be defined naturally, 
although one can produce larger classes by ad hoc restrictions (e.g. considering almost 
disconnected complexes, each component of which is connected to others at four or 
more vertices). 

Two-dimensional quantum gravity is interesting only in so far as it is suggestive of 
results in higher dimensions. Indeed, in the two-dimensional case it is possible to 
meet the two conditions just with manifolds. Two-dimensional manifolds are identifi- 
able and the condition of the classical limit is trivially satisfied. The existence of a 
larger class, however, already raises the question of how the sum over topologies 
should be carried out in two dimensions. In higher dimensions such larger classes 
may be essential to obtain a computable procedure. 

i The author learned this demonstration from Professor M Scharlemann. It is reproduced here for complete- 
ness and because the author does not know of another reference. 
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4. More than two dimensions 

Defining a physically reasonable sum over topologies in higher dimensions is a more 
challenging problem than in two dimensions for two reasons. First, in higher 
dimensions there are a wider variety of topological invariants and therefore a wider 
variety of candidates for the gravitational action even if one is certain of its local 
nature. Second, an examination of the classical limit involves not only finding the 
topology but also the metric of least action. This, in turn, involves the measure, contour 
and action on the space of edge lengths. In this section we illustrate the issues which 
arise in higher dimensions in two ways. We shall show that, with the straightforward 
extension of the Regge action to all complexes described in 0 2 ,  pseudo-manifolds do 
not meet the two conditions for reasonable unruly topologies in higher dimensions. 
Then we shall exhibit possible restrictions on the class and illustrate modifications of 
the action by which the conditions might be met. 

Pseudo-manifolds are straightforwardly generalised to arbitrary dimensions [ 181. 
Replace ‘triangle’ and ‘edge’ in their defining properties in two dimensions by ‘n- 
simplex’ and ‘( n - 1)-simplex’ in n dimensions. Pseudo-manifolds may be constructed 
from manifolds by identifying simplices of dimension less than n - 1, although for 
n L 4 not every pseudo-manifold can be realised in this way. This construction can 
be used to show that for n > 2 ,  with the straightforward extension of the Regge action 
to complexes discussed in 0 2 ,  there are geometries on pseudo-manifolds with the same 
action as any geometry on a manifold. Consider identifying two sufficiently separated 
vertices on an n-dimensional manifold and ask how the Regge action changes when 
the edge lengths are kept the same. The action (equation (2.3)) involves the volumes 
of the n- and ( n  -2)-simplices and the deficit angles defined by (2.4). The volumes 
are unchanged because edge lengths are unchanged. The deficit angles are unchanged 
because the interior angles of any n-simplex are unchanged and because the n-simplices 
intersecting a given ( n  - 2)-simplex are unchanged by the identification of vertices. 
The Regge action is thus neutral to an identification of vertices. Manifolds therefore 
cannot be the only geometries of least action and manifolds will not dominate the 
classical limit. A suitable sum over histories in higher dimensions must either be 
defined with a different action or a different class of geometries or both. 

To illustrate the possibilities of a different action consider the virtues in three 
dimensions of adding a negative multiple of the Euler number to the Regge action for 
closed geometries. x is zero for manifolds [IS]. Identification of vertices of a manifold 
decreases x and thus increases the total action since the Regge action is unchanged. 
This addition of -x therefore removes the neutral stability to identification described 
above. The nature of the minimum and the existence of analogous modifications in 
higher dimensions are interesting questions. 

One can find a variety of subclasses of pseudo-manifolds in higher dimensions 
which are algorithmically identifiable from among all complexes (condition (1) of 0 2 )  
and for which the Regge action is not neutral to identification of vertices. The simplest 
class are pseudo-manifolds whose simplices all have connected links. Identification 
of vertices produces disconnected links and would thus be ruled out. A very restrictive 
alternative would be the class of homology manifolds-complexes for which the link 
of every simplex has all the homology groups of a sphere without necessarily being 
homeomorphic to a sphere. Since the homology groups of a complex are computable 
from its incidence matrices (with some considerable work!) [18], there exists an 
algorithm for deciding whether or not a complex is a homology manifold. Since the 
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lowest homology group determines the connectedness of a complex, disconnected links 
would not be allowed and the objects obtained by the identification of vertices of 
manifolds would not be homology manifolds. In fact, in two and three dimensions 
homology manifolds are manifolds. 

The above two examples serve to illustrate the variety of possible approaches to 
defining a sum over topologies in higher dimensions. The search is both for a physically 
motivated action and class of unruly topologies. If, however, an algorithmically 
identifiable class can be found and an action for them such that manifolds dominate 
the classical limit, then by relaxing the principle of equivalence in the quantum sum 
over histories, one will be able to implement in a computable way a quantum sum 
over topologies. 
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