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Invariance of classical equations of motion under a group parametrized by functions of time im-

plies constraints between canonical coordinates and momenta. In the Dirac formulation of quan-
turn mechanics, invariance is normally imposed by demanding that physical wave functions are an-
nihilated by the operator versions of these constraints. In the sum-over-histories quantum mechan-
ics, however, wave functions are specified, directly, by appropriate functional integrals. It therefore
becomes an interesting question whether the wave functions so specified obey the operator con-
straints of the Dirac theory. In this paper, we show for a wide class of theories, including gauge
theories, general relativity, and first-quantized string theories, that wave functions constructed from
a sum over histories are, in fact, annihilated by the constraints provided that the sum over histories
is constructed in a manner which respects the invariance generated by the constraints. By this we
mean a sum over histories defined with an invariant action, invariant measure, and an invariant
class of paths summed over. We use this result to give three derivations of the Wheeler-DeWitt
equation for the wave function of the universe starting from the sum-over-histories representation
of it. The first uses Becchi-Rouet-Stora-Tyutin methods and the explicit path-integral construction
of Batalin, Fradkin, and Vilkovisky. The second is a direct derivation from the gauge-fixed Hamil-
tonian path integral. The third exploits the embedding variables introduced by Isham and Kuchar",
in terms of which the connection with the constraints representing the four-dimensional
diffeomorphism group is most clearly seen. In each case it is found that the symmetry leading to the
Wheeler-DeWitt equation is not in fact four-dimensional diffeomorphism invariance; rather, it is the
closely connected but slightly larger canonical symmetry of the Hamiltonian form of the action of
general relativity. By allowing our path-integral construction to be either Euclidean or Lorentzian,
we show that the consequent Wheeler-DeWitt equation is independent of which one is taken as a
starting point. Our results are general, in that they do not depend on a particular representation of
the sum over histories, but they are also formal, in that we do not address such issues as the opera-
tor ordering of the derived constraints. Instead, we isolate those general features of a sum over his-
tories which define an invariant construction of a wave function and show that these imply the
operator constraints.

I. INTRODUCTION exp[ —oS(history)] .
histories

(1.3)

T (p, , q') =0 .

In Dirac's quantum mechanics of such constrained Ham-
iltonian systems, this invariance is expressed by operator
constraints which annihilate the wave functions
representing physical states:

T (P;,q ')%'=0 . (1.2)

In sum-over-histories quantum mechanics wave functions
are defined by suitably restricted sums over histories of
the form

In classical dynamics, invariance of the equations of
motion under a group parametrized by functions of time
implies constraints between the canonical coordinates
and their momenta

The class of histories summed over determines the wave
function. For some purposes a Euclidean construction
with o =1 is useful. For others a Lorentzian construc-
tion with o. = —i is more appropriate. Most generally,
sums of the form (1.3) over complex contours are of in-
terest as in the "wave function of the universe" construc-
tion in the "no-boundary" theory of the cosmological ini-
tial condition.

If wave functions are defined by sums over histories, it
becomes an interesting question whether they satisfy the
operator constraints of the Dirac theory. One expects
that if the defining sum over histories respects the invari-
ance of the theory, then the resulting wave function
should satisfy the operator constraints which implement
that invariance. That is, we expect (1.2) to be a conse
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quence of (1.3). This paper is concerned with demonstrat-
ing that consequence.

The most famous example of a constrained Hamiltoni-
an theory is Einstein's general relativity. In general rela-
tivity two metrics which are related by a diffeomorphism
are physically equivalent —they describe the same
geometry. There are no further observable fields which
can supply anything like a preferred system of coordi-
nates. As a consequence, the classical gravitational ac-
tion is a functional of the metric alone and is invariant
under diffeomorphisms. This invariance implies the four
constraints of general relativity.

In relativity, canonical coordinates may be taken to be
the three-metric of a spacelike surface, h,J(x), and the
matter-field configurations on that surface. For simplici-
ty we shall consider the case of a single scalar field P(x, t)
whose spatial configuration we denote by y(x). The con-
straints following from diffeomorphism invariance are re-
lations between these coordinates and their canonical mo-
menta, ~'~(x) and vrz(x), respectively. There are three
momentum constraints and one Hamiltonian constraint
for each point on the surface. In the case of spatially
closed cosmologies, these have the form

2D vrj+—'r;"=0, (1.4a)

~—I2G ~V'~ki l
—2g 1/2(3R —2A)+h T =0

Gjki= —,'h ' (h;(hk~+h;khji —h;Jhki) . (1.5)

In these expressions l =(16~G)' is the Planck length in
the units with fz=c =1 we use throughout.

In the quantum mechanics of closed cosmologies, the
operator form of the Hamiltonian constraint

A(x)+[h,, y] =0 (1.6a)

is called the Wheeler-DeWitt equation and summarizes
the quantum dynamics. The operator form of the three-
momentum constraints

&,(x)%[h;, ,y] =0 (1.6b)

expresses invariance under coordinate transformations in
the spacelike surface.

The derivation of the constraints from the sum over
histories has previously been considered by a series of au-
thors: Hartle and Hawking gave a formal derivation,
but without attention to the inevitable gauge fixing. Bar-
vinsky and Ponomariov and Barvinsky gave a more
careful derivation, but using the so-called "canonical"
gauges. The use of such gauges has been convincingly
criticized by Teitelboim, who also gave a construction of
the path integral manifestly satisfying the momentum

(1.4b)

Here T;" and T„„arethe energy-momentum tensor of the
matter once and twice projected on the normal to the sur-
face. These are to be viewed as functions of the canonical
coordinates and momenta. D; and R are the covariant
derivative and scalar curvature intrinsic to the three-
surface, and 6; kI is defined by

constraints, but an explicit derivation of the Wheeler-
DeWitt equation was not given. Halliwell has given a
very detailed treatment, with attention to the path-
integral measure and operator ordering, but in the re-
stricted context of minisuperspace models. Implicit in
the work of Henneaux' is a derivation utilizing Becchi-
Rouet-Stora-Tyutin (BRST) invariance and taking advan-
tage of the formal possibility of transforming the con-
straints into ones which commute among themselves.
Woodard" has considered the issue of enforcing the
Wheeler-DeWitt equation in canonical inner products.
Although many of these derivations may be criticized on
the grounds of precision and generality, the underlying
ideas are useful, and we shall exploit them in what fol-
lows.

In this paper we shall present a derivation of the opera-
tor constraints for invariantly constructed sum-over-
histories wave functions that is general enough to apply
to a wide class of invariant theories and to different sum-
over-histories representations of them, but specific
enough to be investigated in particular models. By study-
ing the connection between invariance and constraints
generally, we are able to achieve two things: First, we
can isolate the essential requirements for an invariant
sum-over-histories construction in a way that is concrete
enough for these requirements to be tested in specific
cases. These requirements are that the action, measure,
and class of histories summed over be invariant under the
symmetry generated by the constraints. Second, we can
show clearly that invariance so defined is the origin of the
operator constraints. Two caveats should be noted.
First, we do not demonstrate that sums over histories in-

variant under any notion of symmetry imply wave func-
tions satisfying constraints. Rather, the invariance must
be explicitly related to the classical constraints of the
theory. Second, nothing here is assumed about the wave
functions (for example, their normalizability) beyond the
fact that they have a sum-over-histories integral represen-
tation. This effort may therefore be regarded as an inves-
tigation of the properties of a specific class of integral
representations. As we shall see, however, the class is
general enough to apply to a very wide variety of interest-
ing cases.

The general lemma exhibiting the connection between
invariance and constraints is derived in Sec. II. Using the
lemma, we are able to present three different derivations
of the constraints of general relativity from three
different sum-over-histories representations of the sum
over geometries. The first, in Sec. III, is a BRST-
invariant representation, ' following the path integral
construction of Batalin, Fradkin, and Vilkovisky' (BFV).
This has the advantage of formal elegance and simplicity,
as well as the sanction arising from the successful use of
BRST methods in other areas. The BFV starting point
provides perhaps the most explicit representation of the
invariant measure. However, because the BFV construc-
tion exploits a global symmetry, namely, BRST invari-
ance, it reproduces the invariant sum over four
geometries only for manifolds with topology H. XM,
where M is a compact three-manifold. To show that the
constraints are satisfied independently of topology, we
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give in Sec. IV a second demonstration where the lemma
of Sec. II is applied directly to a phase-space sum over
histories. The invariance here is that of the infinitesimal
canonical symmetries generated by the constraints them-
selves. The result is a direct and conceptually simple
derivation.

For neither of these demonstrations, however, is the
connection with the underlying diffeomorphism group ex-
plicit. This is because, while the commutators of the con-
straints close, they do not reproduce the algebra of the
four-dimensional diffeomorphism group. ' For related
reasons wave functions on superspace do not carry a rep-
resentation of the four-dimensional diffeomorphism
group. They cannot do so because some diffeomorphisms
displace a spacelike surface forward or backward in time,
while the superspace of three-geometries and spatial
matter-field configurations contains no time label. These
difficulties and their resolution were clearly discussed by
Isham and Kuchar". ' These authors showed how, by
breaking general covariance and augmenting the
configuration space of general relativity by the embed-
dings of a foliating family of spacelike surfaces, one could
arrive at a space large enough to carry a representation of
the algebra of four-dimensional diffeomorphisms. In Sec.
V we use their method to give another derivation of the
constraints from invariant sums over histories, which
makes explicit the connection with the algebra of
diffeomorphisms. '

All of our demonstrations are formal in the sense that
few details of any specific implementation of functional
integrals will be used. As a consequence, no information
about such things as operator ordering of the constraints
are recovered. However, the possibility of such formal
derivations is just a reAection of the underlying generality
and elementary nature of the connection between invari-
ance and constraints in the quantum theory. Indeed, we
are able to reduce our derivation to just the assumptions
of the invariance of the action, and measure and class of
histories summed over, together with a few assumptions
on the behavior of functional integrals.

The importance of summing over an invariant class of
histories to obtain a wave function satisfying operator
constraints emerges clearly from this work in all three
demonstrations. This connection was stressed by Teitel-
boim' and Hartle, ' ' and emerges very clearly in the
models studied by Halliwell. It becomes an important
restriction on the contour of integration defining a no-
boundary wave function of the universe. ' However, in
each case the notion of invariance which leads to the
operator constraints must be carefully and specifically
defined As we .shall see, there are several diferent no-
tions of invariance traceable to the underlying
diffeomorphism invariance of spacetime theories. Only
one, the canonical symmetry generated by the constraints
themselves, defines those invariant sum-over-histories
constructions leading to wave functions annihilated by
operator versions of the constraints.

S[q "(t)j = f '
dt I.(q, q ") . (2.1)

Suppose that the action is invariant under infinitesimal
transformations of the form

q "(t)~q "(t)+5q (t),
where

(2.2a)

&q (r)=~ (&)f (q (&),q "(&))

(2.2b)

for functions e (r), a= 1, . . . , m, which are arbitrary ex-
cept for possible restrictions at their end points. We as-
sume that the g do not vanish identically for
a= 1, . . . , m and the f do not vanish identically for
a =m + 1, . . . , m. Among the transformations (2.2)
there will be, in general, those describing the reparametr-
izations of t. Under (2.2) the change in the action is

tll

6S= 5q" + f dt 6q E~ (2.3a)

tll

aga ~ & ga
uq

(2.3b)

where E~ are the equations of motion

d BL BL
(2.4)

Invariance of the action means 6S=O. The equations
of motion, however, will be invariant under the weaker
condition that 5S is just a boundary term. Invariance of
either kind under a group parametrized by arbitrary
functions c (t) requires that the integrand in (2.3) vanish,
not just for q satisfying the equation of motion Ez =0,
but for all q "(t). The action will then be invariant pro-
vided the e (t) are restricted at the boundaries so that the
remaining surface terms vanish.

The vanishing of the integrand of (2.3b) means, in par-
ticular, that the coefficients of the third time derivatives
of q, which occur linearly for a=1, . . . , rn, and of the
second term derivatives of q, which occur linearly for
a =m + 1, . . . , m, must vanish separately. Thus

that are constant in time implies conservation laws. ' In-
variance under a group parametrized by functions of time
implies constraints. ' Let us recall the standard argue-
ment in the Lagrangian framework where symmetries are
usually most easily expressed. Consider a system whose
histories are paths q "(t) in an X-dimensional
configuration space 3 =1, . . . , X. Consider an action of
the form

II. INVARIANCE AND CONSTRAINTS
A. Classical invariance and classical constraints

In classical dynamics, invariance of the equations of
motion under a group with a finite number of parameters where

(2 5)
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A~a —ga, &—1, . . . , m,
h =f, a=m+1, . . . , m .

(2.6a)

(2.6b)

derivatives e and where the e are freely specifiable
functions of t for which the following two facts hold.
First,

The degeneracy of the matrix of derivatives (2.5) is the
sign of a constrained system. The field equations

h Ez =0, a=1, . . . , m, (2.7)

involve only q and q, not q . They are thus con-
straints on the initial data.

When we come to constructing the equivalent Hamil-
tonian formulation of dynamics, the relation (2.5) means
that the equations defining the momenta

BIps= ~. ~
q

(2.8)

are not independent. By themselves, they cannot be
solved for the q as functions of pz and q". The m
dependent relations of (2.8) when then expressed in terms
of the pz and q become the m constraints of the Hamil-
tonian theory:

T (p„,q")=0, a=1, . . . , m . (2.9)

5S=[e F (q",q")],', . (2.10)

It then follows from (2.3) that when the equations of
motion, E~ =0, are satisfied the quantities

f~pa F(pa, q ")— (2.1 1)

are conserved.
We shall now show that, in a large and interesting class

of theories, wave functions constructed as invariant path
integrals satisfy the operator forms of these constraints.

B. A lemma

There is a rich variety of invariant theories and their
general characterization is a complex subject. We shall
consider a general class characterized by the following
properties.

(a) The theory is described by a configuration space
consisting of n coordinates q, which have nonvanishing
conjugate momenta p; and "multipliers" k with vanish-

ing momenta. We shall consider cases where the theory
is described by a Lagrangian action S[q', iP], containing
no more than first derivatives in the time, and also cases
where it is described by a Hamiltonian action
S[p;,q', A, ]. Where it is not necessary to distinguish, we
shall write S[z "],with z being either the set (q', A, ) or
(p;, q', k ).

(b) There is a set of transformations

z" z "+5z (2.12)

where 6z depends linearly on m parameters e and their

It is in this way that invariance implies constraints.
It is also easy to see that invariance of the equations of

motion under a symmetry such as (2.2), but whose pa-
rameters e are independent of time, implies conservation
laws. Suppose the change in the action, necessarily a
pure divergence, is written

5q'=e f' (p;, q'), (2.13)

for some functions f ', which depend only on q' and p, in
the Hamiltonian form or on q' and p; =p;(q ', q') in the
Lagrangian one. In particular, 5q' is independent of any
multipliers or i . Second, we assume that the action
changes under (2.12) by at most a boundary term in-
dependent of i and the multipliers. That is, we assume
5S has the form

5S=[e F (p, ,q')]', (2.14)

The condition (2.14) implies the invariance of the equa-
tions of motion. It also implies the invariance of the ac-
tion if the conditions e (t )=0=@ (t") are imposed for
those n for which F does not vanish identically. How-
ever, the derivation of the operator constraints that we
shall give requires not just transformations which leave
the action invariant, but most generally those for which
either (2.13) or (2.14) or both are satisfied in a nontrivial
way. As we shall see in Secs. II C and II D below, a large
and interesting number of theories possess invariances in
this class. They include gauge theories, general relativity,
and first-quantized string theories, each in Lagrangian,
Hamiltonian, and BRST forms.

We now consider wave functions %'(q') constructed as
invariant path integrals of the form

+(q'")= J 2)z "5(q'(t")—q'")
C

Xhc[z "]5[C (z )]exp( crS[z
—"]) . (2.15)

The ingredients of this formula are as follows. The vari-
ables z are the configuration- or phase-space coordi-
nates defined above. S[z ] is the Lagrangian or Hamil-
tonian action satisfying the two conditions (a) and (b).
o. =—i for Lorentzian path integrals and + 1 for Euclide-
an ones. C denotes the class of paths that are integrated
over. This integration incIudes an integration over the
final values q '( t" ). It is the surface 5 function
5(q'(t") —q'") that ensures that at t =t" all paths end at
the point q '(t" ) = q

'", which is the argument of the wave
function. C (z ) are a set of gauge-fixing conditions, and
Ac [z "]are associated weight factors discussed below. In
the case of gauge theories, they are Faddeev-Popov deter-
minants. More generally, they are integrals over the
ghosts of the exponential of a suitable ghost action and
may not always be interpreted as determinants. Gauge-
fixing conditions will not be present in every application.
For example, in the BRST construction they will be ab-
sent. The form (2.15) thus covers a wide variety of in-
teresting cases. We shall show that if a path-integral con-
struction of the form (2.15) is invariant with a symmetry
satisfying (2.13) and (2.14), then the resulting wave func-
tion will satisfy operator forms of the constraints.

We now spell out what we mean by an invariant path-
integral construction. An invariant path-integral con-
struction involves an action, measure, and class of paths
for which the following four properties hold under the
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C;[z"]=C [z'+5z'] . (2.16a)

transformation (2.12).
{1)The action S changes at the most by a surface term

of the form (2.14). It is thus strictly invariant under
transformations (2.12) when e vanishes at the end points.

(2) The class of paths, C, is invariant.
(3) The path integral (2.15) is independent of the choice

of gauge conditions C in a class which includes those
generated from a defining C by a symmetry transforma-
tion, that is, at least all C, [z "]of the form

Using the assumed independence of gauge-fixing condi-
tion, C, may be replaced by C in (2.18). Then, subtract-
ing (2.15) from (2.18), expanding to first order in e, and
using (2.16) and (2.17), we have

0= z~e t — '
p,- t",q' t"

oF—(p, (t"),q'(t"))

(4) The combination of the measure and the gauge-
fixing weight factor transform under a symmetry trans-
formation (2.12) according to

X5(q'(t") —q'")b, [z "]5[C (z")]

Xexp( —oS[z "]) . (2.19)

2)z "b, [z "] 2)z "b, [z ] . (2.16b)
Then, using (2.17), we find, in some suitable operator or-
dering,

In addition to these four properties characterizing the in-
variance of the path integral (2.15), we will also need to
assume the following.

(5) Integrals of the form (2.15) weighted by functions of
p, and q' on the final surface are equal to corresponding,
appropriately ordered, operators acting on %(q"'). That
is, for a given V(p;, q'),

If'. (Pl' "q'")p' F.(PI'—q'")]+(q'")=0 (2.20a)

where

a
Bq'"

(2.20b)

I 2)z "V(p;(r" ),q'(&" ))5(q'(&" )
—q'" )

C

Xbc[z ]5[C (z")]exp( crS[z
"—])

, q'" %(q"'),
Bq'

(2.17)

for some deducible operator acting on the right-hand
side. Of course, (3)—(5) are usually deemed to be conse
quences of a path-integral construction such as (2.15). In
gauge theories, (3) and (4) follow from the standard
Faddeev-Popov determinant construction and (5) from
explicit implementations of the sum over paths. Conse-
quences or not, these are the minimal criteria necessary
to define an invariant construction.

We shall return to a discussion of assumptions (1)—(5)
below, but now we show that the operator constraints on
an invariantly constructed wave function follow immedi-
ately from the above. The argument is standard: We
translate the integration variables in (2.15) by a symmetry
transformation (2.12) for which e (r) is nonvanishing
only in a neighborhood of t". The overall integral is un-
changed because we are merely changing the variables of
integration. The class of paths is unchanged because it is
invariant. The action changes according to (2.14) with
only the surface term at t = t" contributing because
e (t') =0. The change in measure and gauge-fixing
machinary consists of no more than a change of gauge
conditions. The integral with translated integrand there-
fore takes the form

4(q'")= I 2)z "5(q'(t")+5q'(t") q'")—
C

Xa, [z']5[C;(z")]

X exp[ —o (S[z ]+5S[z"])I . (2.18)

This is the main result —a diff'erential operator identity
for %(q') satisfied as a consequence of a path integral
satisfying invariance properties (1)—(5).

The derivation of the operator constraints (2.20) made
essential the use of the freedom to prescribe e as a func-
tion of t Choosin. g e so that e (t')=0 eliminated the
surface term at t =t' in 5S given by (2.14). However, the
operator constraints would still follow if e (0) did not
vanish, but the class of paths was such that the surface
term at t = t' vanished. For example, operator con-
straints would follow for wave-function constructions
satisfying (1)—(5) based on global symmetries with param-
eters e independent of time, provided the class of paths,
C, was such that F (p;, q') =0 at t =t'. We shall make
use of this special extension of the lemma when consider-
ing BRST symmetry in Sec. III.

The variety of theories for which the assumptions
(1)—(5) are true and operator constraints follow is best il-
lustrated by specific examples. These will be the topic of
the following sections. Before proceeding to them, how-
ever, we offer some comments on (1)—(5).

First, we note that the assumption (4) is weaker than
that which could be imposed on gauge theories based on
compact semisimple Lie groups. We do not require that
Az be a determinant as mentioned above. Even if it is,
we do not require it to be invariant under gauge transfor-
mations, but only that it, together with the measure,
transform as (2.16). This will allow extension to nonsem-
isimple cases. Further discussion of this point may be
found in Appendix C.

The above derivation relies on formal manipulations of
path integrals and in this sense is general and indepen-
dent of specific implementations, for example, as a limit
of integrals over piecewise linear paths parametrized by
the values z" at a discrete number of times (time slicing).
One consequence of this is that no information was ob-
tained on the operator ordering of (2.20a). This depends
specifically on how the path integral is implemented.
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(2.21)

where S,&
is the action of the classical path connecting zJ

to zJ+i. Equation (2.21) gives a specific implementation
of the path integral. Relations such as (2.17) then follow
from the classical connection

BS,iPN; (ZN )ZN —1 )
~qN

(2.22)

or from approximations to this, valid to leading order in
h. Similar connections hold for time-slicing implementa-
tions of phase-space path integrals.

The existence of an implementation such as (2.21) may
be crucially dependent on the form of the action and
gauge conditions. For example, such a time-slicing im-
plementation is generally known only for Lagrangian ac-
tions which are quadratic in the t derivatives. Further,
for a single classical path to dominate the sum between
slices, its action must become large as h becomes small.
For a reparametrization-invariant action, this cannot be
true in general for the parameter T is arbitrary. It will be
true, however, when the sum is restricted by gauge condi-
tions, C, which tie t to a physically meaningful time. '

Such considerations should be kept in mind when consid-
ering the generality of formal statements such as (2.21).

As a final comment, we would like to stress the far-
reaching nature of the assumption (2) that the paths are
invariant. Commonly, path integrals are used to con-
struct propagators which evolve wave functions in t. The
invariance of the action under groups with a functional
dependence on t can then be used to show that the con-
straints are conserved in the sense that, if they are
satisfied by the initial wave function, they will be satisfied
by the final one. Or, in the case of a symmetry generated
by time-independent parameters, it can be shown that an
eigenfunction of a conserved quantity remains an eigen-
function. Here a path integral over an invariant set of
paths is being used to construct wave functions which
satisfy the constraints.

We shall now illustrate the application of this lemma in
an important class of cases.

Moreover, the validity of some of the assumptions may
depend on the implementation as well. Specifically, con-
sider assumption (5). This might be derived in a time-
slicing implementation of a configuration-space path in-
tegral as follows: Divide the interval t =t' to t =t" into
N + 1 intervals of width h at points tp, t, , . . . , t&. The
sum over paths may then be represented as a sum in be-
tween the t slices followed by a sum over the values on
the slices. If, as h becomes small, a single classical path
dominates the sum in between slices, then one can write

N
%'(q'")= lim J Q Qdzj p(z~ )6(qN q'"—)

N~oo CJ p

Xh[C (z")]6, [z "]
N

Xexp —o g S„(zJ"+,,zJ )

J=O

C. Constrained Hamiltonian systems

A large and useful class of constrained theories are
those theories defined on a phase space (p;, q') for which
the constraints T (p, , q ) are in involution under Poisson
brackets:

S[p, ,q', A, ] = f dt(p, q' Ho —
A, T —), (2.24)

where k are multipliers which when varied enforce the
constraints T =0. Hp is the physical Hamiltonian of the
theory and satisfies

[Ho, T I
= V~Tp, (2.25)

where VP may depend on p; and q'. Hp vanishes identi-
cally when the physical time is included among the
dynamical variables q' (parametrized theories) and the
action as a consequence is reparametrization invariant.

Gauge theories, general relativity, and first-quantized
string theory are examples of theories of the above type.
For gauge theories with four-vector potential, 2„'(x,t ),
the q' represent its spatial components, q'- A (x), and
the iP its temporal components, A, —3 0(x). The struc-
ture coefficients U~P are constants and VP =0. For the
case of general relativity described in detail in Sec. IV,
the q' represent the components of the three-metric,
q
'- h;. (x ), and the A, represent the lapse and shift,
—(X(x),%'(x)). Ho=0 and the structure coefficients

U~P depend on q ', but not p;.
There exist a great variety of Lagrangian forms of the

action corresponding to theories characterized by (2.24).
They may be found from (2.24) by using equations of
motion to eliminate the momenta or multipliers or
both. ' The result is generally an action of the form (2.1).

The Hamiltonian action (2.24) is invariant under
canonical transformations generated by the constraints.
To see this, consider the transformations

(2.26a)

5q'= jq', » T I, (2.26b)

where» (t) is a function of time. An elementary calcula-
tion shows that if

6X =i —U A,Pe~ —V ePPr P

then

(2.27)

5S = [» F (p;, q ') ]I

where

8T~F =p; „—T
OP].

(2.28)

(2.29)

(2.23)

where our convention is Iq', p~] =5,' and the structure
coefficients U~P may be functions of p,- and q'. The Ham-
iltonian action on phase space for such theories takes the
standard form
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Equation (2.28) shows that the equations of motion are
invariant under the transformations (2.26) and (2.27) be-
cause the action changes by a pure divergence. The ac-
tion itself is invariant in general only with the additional
restrictions c (t')=0=@ (t"). The exception is when
the constraints are linear in the momenta and F van-
ishes identically.

Equation (2.26b) implies

T~5q'=e =e f—' (p;, q') .
Bp;

(2.30)

This and (2.28) show that constrained Hamiltonian sys-
tems fall into the class of theories, satisfying conditions
(a) and (b), with which the lemma is concerned. It fol-
lows that wave functions '0 constructed from a path in-
tegral satisfying (1)—(5) obey the operator constraint
(2.20). Using (2.29) and (2.30), this takes the form

T (P;,q')V(q') =0 . (2.31)

All the constraints are therefore satisfied as operator
identities. As already mentioned, the explicit construc-
tion of path integrals for + satisfying the assumptions is
the task of the following sections.

A word is probably in order concerning the connection
between the Euclidean and Lorentzian forms of the con-
straints of the same theory. Consider a theory of the
class under discussion defined by an action

S[q', A, j=J dt L(q', q', A, ) . (2.32)

Suppose now that there is a continuation of the variables
q', A, alone to new real or purely imaginary values such
that L becomes a purely imaginary function on the con-
tinued values. That is,

8p]= ~;~ p&
=

Bq'
a

Bq'
(2.36)

we see that the operator forms of the constraints are iden-
tical up to constant factors of proportionality:

(2.37)

Specifically, the operator form of the Hamiltonian con-
straint for general relativity (the Wheeler-DeWitt equa-
tion) will be the same whether the wave function is con-
structed from a Euclidean or Lorentzian path integral.

It goes without saying that in order for a functional in-
tegral to define a wave function satisfying constraints, the
functional integral must exist. The Euclidean action for
most matter fields is positive definite, and the Euclidean
functional integral (1.3) is convergent when the integra-
tion is over real field configurations. For gravity, howev-
er, the Euclidean Einstein-Hilbert action is unbounded
from below and the integral over purely real metrics will
not converge. In the gravitational case integrals of the
form (2.15) with cr =1 must be understood to be taken
over a complex contour such that the integral is conver-
gent. Any convergent contour that is invariant, in the
sense discussed above, will generate a wave function an-
nihilated by the constraints. The issues involved in iden-
tifying suitable contours for a wave function of the
universe are discused in Ref. 19.

Having shown generally in this section that the Eu-
clidean and Lorentzian sums over histories yield essen-
tially equivalent operator constraints, we shall, for simpli-
city, restrict attention to purely Lorentzian examples in
what follows.

L(q', q', A, )=iL (q', q', A, ), (2.33) III. BRST DERIVATION

BL . BL
pi = . =~ ='pi

Bq

The Euclidean constraints are found by differentiating L
with respect to A, :

(2.34)

BL E BLT (p;, q')= ~ =T (ip, ,q'),
Bk

(2.35)

where the factor of proportionality is +1 or +i, depend-
ing on whether or not k was continued to imaginary
values. In obtaining this result it was important that the
q' were not continued. The form of the Euclidean con-
straints expressed in terms of coordinates and momenta
will therefore differ in the Euclidean and Lorentzian
cases. However, taking note of the operator forms of the
momenta in (2.20),

where L is purely real on the continued ranges. Such a
continuation in some cases can be efFected by sending
t~ it, but i—n other interesting problems (e.g. , gauge
theories, general relativity) will involve continuation of
the A, instead or as well.

The Lagrangian L defines the Euclidean version of
the theory. Clearly,

In the previous section we defined, through a list of
four requirements, the notion of an invariant path-
integral construction for a wave function and demon-
strated, with one further requirement, that a wave func-
tion so constructed satisfies operator constraints. In the
next sections we shall apply this derivation to wave func-
tions constructed as sums over geometries obeying the
dynamics of Einstein's general relativity. We shall be
concerned, in particular, with the wave function of the
universe defined by the Euclidean sum over geometries of
the "no-boundary" proposal. The burden of the demon-
stration will be to show explicitly that requirements
(1)—(5) are satisfied.

General relativity has a well-known Hamiltonian for-
mulation. It might, therefore, seem conceptually most
natural to begin considering sums over geometries ex-
pressed as Hamiltonian path integrals and applying the
derivation of the constraints arising from the Hamiltoni-
an symmetry (2.26) and (2.27) that was discussed in Sec.
II C. The immediate task in such an approach would be
to demonstrate the invariance (2.16) of the combination
of measure and gauge-fixing weight factor 6&. As argued
by Fradkin and Vilkovisky, when the constraints T are
not the infinitesimal generators of a group, the factors 4c
will not, for arbitrary gauges, be determinants of the fa-
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where the constraints and the canonical Hamiltonian Ho
are taken to satisfy

[ T, Tp )
= U~ttT, [Ho, T I

= V~Tp . (3.2)

The structure coefficients U~&, V~ may depend on p, and

miliar Faddeev-Popov type. Rather, the factors 6& are
most easily defined starting from a BRST-invariant form
of the sum over geometries and integrating out the
ghosts. General relativity is a theory of this kind. The
structure functions Ur& defining the "algebra" of con-
straints in general relativity are functions of the canonical
coordinates; the constraints are therefore not the genera-
tors of a group; and the hz are not Faddeev-Popov deter-
minants for a general gauge. To understand the transfor-
mation properties of the 6&, we therefore begin with a re-
view of the BRST-invariant path-integral construction of
Batalin, Fradkin, and Vilkovisky. ' ' We shall apply this
understanding to a direct derivation of the operator con-
straints based on the Hamiltonian symmetry of the action
in the next section. However, the development of the
BFV construction yields an additional dividend: An ap-
plication of the extension of the general lemma discussed
in Sec. II yields an alternative derivation of the operator
constraints for invariantly constructed wave functions, as
a consequence of the global BRST symmetry of the
defining path integral. This BRST derivation of the con-
straints is the topic of the present section.

Recall that we are interested in wave functions defined
by invariantly constructed path integrals for a class of
constrained systems described by an action of the form

So= f dt(p;q' —Ho —
A, T ), (3.1)

q'. We are primarily interested in the case of general re-
lativity with closed three-surfaces, for which HO=0, but
for completeness we will retain Ho.

The T generate a symmetry of the action So. In par-
ticular, under the transformations

5q'=e [q', T I, 5p, =e [p;, T I,
5A, =i —U k~er —V ep,Pr P

the action changes by an amount

aT
5SO= e (t) P, —T

ap;

(3.3)

(3.4)

(3.5)

Equation (3.5) vanishes only if the otherwise arbitrary pa-
rameter e (t) satisfies the boundary conditions

e (t')=O=e (t"), (3.6)

for those values of a corresponding to T not strictly
linear in the momenta.

The above symmetry of the action may be broken by
adding a gauge-fixing term

So„=J dt II (A, —y (p, , q', A, )) . (3.7)

Here H is a Lagrange multiplier enforcing the gauge-
fixing conditions A, =y and g is an arbitrary function
of p;, q', and I, . Before putting the gauge-fixed action
into a path integral, it is necessary to add ghost terms to
give the correct measure and so ensure independence of
the choice of gauge-fixing condition. The ghost terms are
added in such a way that, subject to certain boundary
conditions, the total action is invariant under the global
symmetry of BRST. According to BFV, the appropriate
ghost action is

tlt CX

Ssh„t= f dt p c +p c —p~ —c [y, Tt3I c~ c&pp p—V)c~ —pU& A~c—r cc~[y, U—t —
Ipg

t
(3.8)

The ghost fields c,p, c,p and the Lagrange multipliers
A, , II satisfy the Poisson-brackets relations

the BRST charge

Q=c T +p H —
—,'U& c~crp (3.12)

[P,c I =5, p, cp[=5~, [~,llpI =5p (3.9)

Q =(q', X,c,c ), P~ =(p;, II,p, p ) . (3.10)

A BRST transformation on any function I' on the extend-
ed phase space is then defined to be a canonical transfor-
mation of the form

5F= [F,AIl] . (3.1 1)

Here A is a constant anticommuting parameter and 0 is

We will use the conventions of Henneaux' for the an-
ticommuting variables. In what follows all derivatives
are left derivatives; e.g. , 5f(c )=5c (BfIr)c ).

It is convenient to define an extended phase space in-
cluding the ghosts and Lagrange multipliers, with coordi-
nates (P„,Q ), where

It has the important property that it is nilpotent,
[Q, AI =0. This follows from the Jacobi identities deriv-
able from (3.2) (see Appendix B). The BRST charge
(3.12) is that appropriate to theories of rank 1 (as defined

by Henneaux' ), which includes gauge theories and gen-
eral relativity. Extra terms in (3.12) are nescessary for
theories of higher rank. Although the following analysis
deals explicitly only with the rank-1 case, we expect the
extension to the case of higher-rank theories to be
straightforward.

The total action may now be concisely written:

ST =So+S~F+Sgh

=I dt[P~Q "—Ho —p Vpc~ —[p iP+c y, QI ] .
t'

(3.13)
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5S=P ' ' A—nT A gp
(3.14)

In this form the BRST invariance of the action is relative-
ly straightforward to demonstrate. The Poisson-brackets
term in (3.13) is BRST invariant by virtue of the Jacobi
identity and the nilpotency of 0, . The term Ho+ p V&c,
absent in the case of general relativity, may be shown, at
some length, to have zero Poisson brackets with A using
one of the Jacobi identities derivable from (3.2) (see Ap-
pendix B). Finally, since the BRST transformation is just
a canonical transformation on the extended phase space,
the change coming from P„Q"is just a boundary term.
The total change in the action under a BRST transforma-
tion is therefore given by

Given the BRST-invariant path-integral construction
(3.17), we may now apply the extension of the lemma of
Sec. II and demonstrate that the BRST symmetry of the
construction (3.17) implies that 0'(q'") is annihilated by
the constraints. However, an immediate application of
the lemma would lead to a vacuous result. This is be-
cause under a BRST transformation with the boundary
conditions (3.15) and (3.16), the action and the end-point
value of q'(t) are in fact totally unchanged, 5S=0,
5q'(t")=0. It is therefore necessary to relax the bound-
ary conditions a little and first consider the wave function
t( q "',c "

), defined on an extended configuration space
including the ghost fields. This wave function is defined
by a path integral of the form (3.17) in which the bound-
ary conditions on the initial surface are the same, but on
final the surface (3.16) is replaced by

By choosing suitable boundary conditions, this boundary
term can be made to vanish, and thus the action will be
BRST invariant. A set of boundary conditions which do
the job are

q'(t")=q'", II (t")=0,
c (t")=0. (3.19)

q'(t') =q", II (t') =0,
c (t')=0, c (t')=0,
q'(t")=q'", II (t")=0,
c (t")=0, c (t")=0 .

(3.15)

(3.16)

Explicitly,

4'(q'", c ")= f2)P„2)Q"5(q'(t")—q'")5(11 (t"))

X5(c (t")—c ")5(c (t"))exp(iS&) .

(3.20)

Other choices of boundary conditions are also possible,
but here we will consider only this choice. Note that
they are themselves BRST invariant. We shall return to
their discussion below.

We may now write down the BFV path integral. It is

%'(q'") = f2)P„2)Q exp(iSr ) . (3.17)

The path integral is over all histories (P~(t), Q (t)) satis-
fying the BRST-invariant boundary conditions (3.15) and
(3.16). For convenience, we do not exhibit the depen-
dence on q" in %' explicitly. The integral may be defined
by a time-slicing procedure, and the measure is then tak-
en to be the canonically invariant Liouville measure on
each time slice. For example, an explicit time-slicing
definition is

n

%(q"')= f g dP„(k)dQ"(k)5(q'(n) —q'")
k=1

X5(II (n))5(c (n))5(c (n))exp(iSz). -

(3.18)

On the initial slice k =0, the field satisfy the boundary
conditions (3.15). There are no integrations of any of the
fields on the initial slice. This is because the skeletoniza-
tion of the action Sz- is assumed to be such that, on the
k =0 slice, it is independent of the fields conjugate to
those fixed there.

The whole point of constructing the path integral in
this way may now be stated: It is that the path integral
(3.17) can be shown to be independent of the choice of
gauge-fixing condition. This result is known as the
Fradkin-Vilkovisky theorem, and an outline of its proof
is given in Appendix A.

The object of ultimate interest, 4(q'"), is, of course, ob-
tained by setting the ghosts to zero in (3.20) as the bound-
ary conditions (3.15) or the 5 functions in (3.18) show:

+(q'") =%'(q"', 0) . (3.21)

( P„5Q ), ,-+5S—z-

(3.22)

where we have used the fact that 5Q =B(AA)/BP~ (and

Now we apply the lemma of Sec. II to the path integral
(3.20), where the transformation 5 is taken to be a BRST
transformation [Eq. (3.11)]. Under the BRST transfor-
mation, the action changes according to (3.14). The con-
tribution from the initial surface vanishes because of the
boundary conditions (3.15). The class of paths integrated
over will be invariant if, as we assume to be the case, the
domains of integration are BRST invariant (this is in fact
necessary to assume to prove independence of gauge
fixing; see Appendix A). In particular, the Lagrange mul-
tipliers must be integrated over an infinite range. This
will be discussed in more detail in Sec. IV. There is no
gauge-fixing machinery to worry about in the prefactor.
Finally, the measure is clearly invariant, because it is the
Liouville measure and the BRST transformation is a
cononical transformation. The assumptions of the exten-
sion of the lemma are therefore straightforwardly
satisfied, and the operator identity (2.20) holds.

The terms appearing in the operator identity (2.20) are
given by
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the derivative is a left derivative, as explained above).
Note that (2.20) would strictly only hold for amplitudes
with fixed final Q", whereas the boundary conditions
used here involve fixed final II . However, II (t")=0,
and so Eq. (3.22) is consistent as it stands. It follows
from (3.22) that the wave function 4 is annihilated by the
operator version of the BRST charge (3.12), with II =0.
That is,

a 8f1%'(q', c )=— c T +—U cocci'a 2 Py 4'(q', c )=0 .

for some coefficients 4, A, B &, . . . depending only on

q '. By virtue of (3.21), the first coefficient %'(q ') is
identified with the physically interesting wave function
generated by the sum over histories (3.17). Inserting
(3.24) into (3.23) and equating coefficients of the ghosts,
one immediately obtains, from the coefficient of c,

T (q ',P; )%(q') =0 . (3.25)

This completes the derivation.
It should be noted that this sort of derivation may be

carried out in a number of different ways. For example,
by choosing suitable boundary conditions, one could use
the path integral to generate an object of the form
%(q', II,c,c ), show that it is annihilated by the ap-
propriate BRST operator (which would now include II ),
and then examine the consequences for the coefficient in
the ghost expansion obtained by setting II,c,c to zero.
Alternatively, one could consider the object
%(q', A. ,P,p ), from which 4(q') is obtained by integrat-
ing over A, , p, and p . This particular representation
emphasizes the dependence of the derivation of the con-
straints on the domains of integration. Numerous other
choices exist. The particular one we used appeared to be
the simplest.

Elegant though the above BRST derivation of the con-
straints is, it is not without its limitations, especially
when applied to sums over geometries. To write the ac-

(3.23)

In (3.23) the momenta p, have been replaced by the usual
operators in T and in U&z, and the ghost momenta p
have been replaced by the operators —i i)/Bc .

There is, of course, the usual operator-ordering ambi-
guity in making these replacements. To resolve this one
normally demands that 0, =0. The operator ordering is-
sue then becomes the comparatively trivial issue of
finding an ordering for the ghosts, and the distinctly non-
trivial issue of finding orderings such that the algebra
(3.2) is preserved at the quantum level. We have nothing
to say about this latter issue. However, if a suitable or-
dering for the p; and q' in T and U&z may be found,
then the chosen ordering for the ghosts in (3.23) guaran-
tees that 0 2=0.

To complete the derivation, 4'(q', c ) is expanded in
the ghosts. One has

4(q', c )=4'(q')+c A (q')+c c~B &(q')+

(3.24)

tion in the form (3.1), one must assume that the topology
of the manifold is IRXM, where M is a three-manifold.
Then the q' are the components of the three-metric of a
family of foliating surfaces and the p; then conjugate mo-
menta. The action of the BRST symmetry [Eq. (3.11)] is
not local in time, but operates globally at all times. The
product structure H XM must therefore hold for the
whole four-manifold.

In many situations in quantum gravity, manifolds more
general than products are of interest. The sum over
geometries for the no-boundary wave function, for the
amplitudes for topology change, and for wormhole pro-
cesses are among these cases. The no-boundary wave
function of the universe, for example, is defined by a sum
over geometries on compact four-manifolds with only
that boundary necessary to define the argument of the
wave function. There is considerable evidence from min-
isuperspace models ' ' that the problem of summing
over metrics on some compact manifolds can be mapped
onto an equivalent sum of functions on 1RXM with turbo

boundaries and suitable boundary conditions on the paths
at one of the boundaries which are equivalent to com-
pactness. For these situations this BRST derivation of
the constraints applies directly. For more general situa-
tions, however, it is important to have a derivation of the
constraints which does not assume the topology IRXM
for the whole manifold. This is provided by the direct
derivation based on the loca/ Hamiltonian symmetry of
the action, which we give the next section.

IV. DIRECT HAMILTONIAN DERIVATION

In its Harniltonian form, general relativity is an exam-
ple of a constrained theory whose constraints are in invo-
lution. The results of Sec. II C can therefore be applied
to yield a direct derivation of the operator constraints for
wave functions defined by invariantly constructed sums
over histories. In this section we spell out this derivation
explicitly.

Recall the standard Hamiltonian formulation of gen-
eral relativity in the form due to Dirac, and Arnowitt,
Deser, and Misner. Since it is the most interesting case
for further application, we restrict attention to the case of
manifolds M with closed boundaries BM, e.g. , spatially
closed cosmologies. Asymptotically Oat spacetimes are
therefore specifically excluded. In some neighborhood of
the boundary, the topology is IRXBM, and the geometry
can be foliated by a family of closed spacelike surfaces.
Choosing coordinates so these surfaces are labeled by a
constant value of the coordinate t, any metric in this
neighborhood can be written in standard 3+ 1 form:

ds = Ndt +h, (dx'+—N'dt)(dx +"N dt) . (4.1)

X [K,"K'i—K —(2A —3R )], (4.2)

where K," is the extrinsic curvature of the constant t sur-

In a region where (4.1) is valid, the action for gravity may
be written

Ss[N N', h, ]=Jdt d x h'~ N
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faces and R is their intrinsic curvature scalar. Explicit-
ly,

K, = (h; +D(;N )),2X
(4.3)

where D, is the derivative in the constant-t surfaces and
an overdot denotes a t derivative. The action of matter
fields may similarly be expressed in terms of N, N', h;. and
the field variables through (4.1). For illustrative purposes
we shall use a single scalar field P(x, t) to represent the
matter whose value on a constant-t surface we denote by
y(x). The field's action may be taken to be

S [N, N', h;, y]= —
—,
' f d x&—g [(VP) + V(P)] . (4.4)

The momenta ir'J(x) conjugate to h; (x) can be construct-
ed straightforwardly from (4.2). Similarly, the momen-
tum nz(x) conjugate to g(x) can be constructed from the
matter action. In the total action the multipliers N and
N' occur undifferentiated with respect to time. Variation
of the total action with respect to them gives the four
constraints of general relativity coupled to matter. These
are the &(x) and &;(x) of Eq. (1.4), respectively. There

are four constraints for each point x in the constant-t sur-
faces.

Classically, the constraints of general relativity are in
involution. That is, if we write in an abbreviated nota-
tion& (x)=(&(x),&, (x)),

I& (x),&&(x')] = f d x"Ur&(x, x';x")& (x") . (4.5)

The explicit form of the structure functions can be found
in Ref. 24, but will not be important for us. Just their ex-
istence is enough to show that general relativity is a
theory of the type discussed in Sec. II C. We note, how-
ever, that the structure coefficients are not constants, but
depend on the three-metric.

General relativity is a constrained Hamiltonian system
of the form discussed in Sec. II C. The coordinates q' are
the three metric h,"(x) and the matter fields g(x). There
are thus an infinity of them —seven for each spatial
point. The momenta p; are the 7r'~(x) and mz(x). The
Hamiltonian Ho =0 and the constraints T are the
& (x). On the phase space (h, , ir'J, y, i"rz), the Arnowitt-
Deser-Misner (ADM) action for the general relativity of
closed cosmologies coupled to matter is

S[ir'~, h;J, i', y, N ]=f dt f d x[~v(x, t)h, (x, t)+~~(x, t)j'(x, t) —N ( xt)& (x, t)] .
aM

This action is invariant under the transformations (2.26) and (2.27):

(4.6)

6h,,(x, t) = [h,, (x, t), f d'x'e (x', t)W.(x', t)],
aM

6ir'~(x, t ) = I ir"(x, t ), f d x'e (x', t )& (x', t )],
aM

6N (x, t)=e (x, t) —f d x'd x"U&r(x', x";x)NP(x', t)er(x", t),
aM

(4.7a)

(4.7b)

(4.7c)

with matter fields transforming similarly. For example, a scalar field transforms as

6g( tx)=Iy(x, t), f d x'e (x', t)& ( tx)] .
aM

(4.7d)

The action is invariant provided, as stressed by Teitelboim, that e (x, t) vanishes on all components of the boundary
BM. If e (x, t ) is nonvanishing on a single connected component of BM, then the action changes by an amount given by
(2.28) and (2.29):

65[~",h,, ~,y, N ]=f d x e (x) f d'y ~"(y) . .
—&(x)6&(x)

aM 6'"(y )
(4.7e)

Since & is quadratic in the momenta, this is easily ex-
pressed in terms of ~', R, A, and the components of the
stress-energy tensor of the matter field projected onto the
boundary. Specific expressions will not be needed for our
argument. The important point is that the change in the
action is of the form (2.28) with a function E, which de-
pends only on the canonical coordinates and momenta,
and not on the multipliers.

The canonical symmetry of the action displayed in Eqs.
(4.7) is closely connected with diffeomorphism invariance,
but does not coincide with it. ' Indeed, they act on

6g ( p)x= 2 (Vgti)(x ),
6$(x)=g' (x)V P(x) .

(4.8a)

(4.8b)

However, Eqs. (4.7a), (4.7c), and (4.7d) coincide with Eqs.

different spaces. The canonical symmetry acts on the
space of extended phase-space histories, while
diffeomorphisms act on the space of four-dimensional
metrics and field configurations. Under an infinitesimal
diffeomorphism generated by a vector field g (x), the
metric and matter field change by
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(4.8) if e" and P are identified according to

(4.9)

%' (vr;, , h;, 8z,y)%[h, ,y] =0, (4.10)

for %'s constructed according to the invariant sum-over-
histories prescription summarized by assumptions (1)—(5)
of Sec. II. We now discuss those requirements. Require-
ment (1) follows immediately from the form of the action
as discussed in Sec. II C and as exhibited explicitly in Eq.
(4.7). Requirement (5) we shall assume without further
discussion. Requirement (3), independence of gauge
fixing, is a consequence of the explicit path-integral con-
struction described in Sec. III, and will be discussed no
further. Requirements (2) and (4) merit further comment.

and provided the equations of motion relating time
derivatives of coordinates to momenta are satisfied.
Thus, when the canonical symmetry of R X (extended
phase space) is projected onto the configuration space of
four-dimensional metric and field configurations in this
sense, it coincides with diffeomorphism invariance. This
connection, however, exists only when an infinitesimal e
yields an infinitesimal g and in particular can be expect-
ed to fail in those regions of extended phase space near
where N =0. The failure of the two invariances (4.7) and
(4.8) to coincide in the absence of (some of) the equations
of motion is common to reparametrization-invariant
theories with quadratic constraints. It happens, for ex-
ample, with the free relativistic particle. The existence
of a different symmetry of the action written in canonical
form from that of the same action in Lagrangian form,
however, does not mean that there are two separate sets
of constraints which can be derived from the general re-
sults of Sec. II. One way to see this is to note that in a
time-slicing implementation of the functional integral,
the equations of motion are used to compute the
skeletonized action in between slices. For the skeleton-
ized action, therefore, the two symmetries coincide.
Another way is to note that for actions which are quadra-
tic in momenta as here, doing the integrals over the mo-
menta gives the same result as substituting the relation
between time derivatives and momenta as would arise
from the relevant equations of motion. Either way, only
one set of constraints are derived. However, when con-
sidering the requirements (1)—(5) for an invariant path-
integral construction, it is important to keep in mind that
the in variance which defines the requirements is the
canonical symmetry of (4.7). This will have important
consequences for the definition of an invariant class of
paths, as we discuss below.

Since relativity is a particular case of a Hamiltonian
theory whose constraints are in involution as discussed in
Sec. IIC, the constraints follow immediately from Eq.
(2.31):

of integration over the lapse, N( x, t). Equation (4.7c)
shows that the symmetry transformation essentially
translates the lapse. The integration range N= —~ to
+ ~ is therefore invariant. The range N =0 to + ~ is
not. Specifically, there is no reason that i cannot be
negative and thus, near N =0, connect positive lapse with
negative lapse. To derive the constraints the lapse must
be integrated over an infinite range. This conclusion was
clearly reached by Teitelboim' and is supported by
several models and explicit examples. ' '

Some confusion can arise because positive lapse is a
range invariant under diffeomorphisms. After all, it fol-
lows from (4.1) that +N(x, t) corresponds to the same
metric as N(x,—t) and, therefore, a fortiori to the same
geometry. We could by convention choose to describe a
geometry by a positive lapse function and a
diffeomorphism-invariant sum over geometries by an in-
tegration over positive lapses. The invariance of the posi-
tive lapse range can also be seen explicitly from Eqs. (4.8).
Consider a simple reparametrization of t, t ~f ( t ). A
diffeomorphism of the interval [0,1] is a one-to-one map-
ping of the interval onto itself. The function f (t) must
therefore leave the end points unchanged and be mono-
tonic, f ( r ) )0. For infinitesimal transformations,
f(t) =t+g (t). Work in the gauge N=O and ask, how is
the range N )0 changed under a diffeomorphism generat-
ed by g? It follows from (4.9) that

=Ng (4. 1 1)

The derivative g is finite, and e will therefore vanish
when N is near zero. Positive lapse is sent into positive
lapse for those e, which correspond to diffeomorphisms.

Although the positive lapse range is invariant under
diffeomorphisms, diffeomorphisms are not the relevant
symmetry for deriving the constraints by applying the
general lemma of Sec. II. Rather, it is the closely related
"canonical" symmetry of Eqs. (4.7). This can be seen in
two ways. First, the symmetry (4.7) is the symmetry gen-
erated by the constraints whose derivation is being at-
tempted. Second, inspection of (2.14) shows that to effect
the derivation the e"(x ) must be freely prescribable func-
tions, independent of N. For the relevant canonical sym-
metry, positive lapse is not an invariant range. The re-
quirement that histories be summed over an infinite range
of the lapse can be stated in a geometrically invariant
way which is independent of any 3+ 1 decomposition as
follows: When the action is written in 3+1 form [Eqs.
(4.2) and (4.4)], a change in the sign of the lapse results in
a change in the sign of the action S. Each half-range of
the lapse corresponds to a diffeomorphism-invariant sum
over geometries. Including both positive and negative
lapse is therefore equivalent to first summing exp(iS) over
geometries where S is defined with a fixed sign for N and
adding it to the corresponding sum over exp( —iS) over
the same class of geometries.

A. Range of the lapse

To satisfy requirement (2) the class of histories must be
invariant under the transformation (4.7). In the formula-
tion of this section, that issue chiefly concerns the range

B. Invariance of the measure

The second requirement which merits discussion is (4).
A Hamiltonian form of the sum over histories to which



1182 JONATHAN J. HALLIWELL AND JAMES B.HARTLE 43

the lemma can be applied to derive (2.31) can itself be de-
rived, at least locally, from the BFV form of the path in-
tegral summarized by Eq. (3.17). It has the form (2.15)
where z" corresponds to (p, , q', A, ) and the action is
(2.24). The gauge-fixing conditions are limited to the
form

(4.12)

and the gauge-fixing 6 function arises from the integra-
tion over II . The associated factor 4c is then

bc[p;, q', A, ]=J2)p~p 2) c Xlc exp(iSs„„,), (4.13)

where Ssh„, is given by (3.8). The integral over ghost
momenta p, p can be carried out, yielding

Qc[p, , q', A, ]=J2)c 2)c exp(iS „„,[c,c,p;, q', A]), , (4.14a)

where S h„,is the ghost action in the ghost configuration space,

(4.14b)

Here 5, denotes a transformation of the form (2.26) and
(2.27), in which the parameter e has been replaced by
the ghost field c .

With such an explicit representation, the question nat-
urally arises, does the action of a symmetry transforma-
tion (4.7) change the combination of measure and b, c in
accordance with (2.16b)? More specifically, since the
Liouville measure dp;dq is invariant under (4.7), the
question is whether under (4.7) one has

c[p q' t ] 2)t ~c+sc[p q' ~ ] (4.15)

for some 5C[p, , q', A, ]. This question cannot be
answered by the usual "Faddeev-Popov" formal argu-
ments developed for gauge theories for two reasons. First
of all, Eq. (4.13) does not define a determinant because
S h„,is not quadratic in the ghosts. There is a four-ghost
term, which arises as a result of the fact that the struc-
ture coefficients for gravity depend on the three-metric.
Even for those gauges where the gauge-fixing function y
is independent of p;, and 4c therefore, is a determinant,
the usual formal argument applies only to semisimple
compact Lie groups for which U &

=0. This is discussed
in Appendix C. An explicit calculation is required to ver-
ify (4.14). The necessary calculation is carried out in Ap-
pendix B. We do not check the invariance (4.15) for all
gauges, although it would be reassuring to do so. The 4'
defined by (2.15) is assumed to be independent of the
gauge-fixing condition. Indeed, this is explicitly verified
in Appendix A. It therefore suffices to check (4.15) in

I

I

one specific gauge to provide a derivation of the operator
form of the constraints. In Appendix B we carry out
such a check in the cases of the gauge k =0 for gravity,
and in the more general class of gauge conditions
A, =y (p, , q', A, ) for ordinary gauge theories. The result
is that while X)A, and b, c are not separately invariant,
their combination is. Requirement (4) is thus satisfied.

Thus, by assumption or calculation, the four require-
ments for an invariant Hamiltonian path integral for 0
are satisfied, and we derive

&.(vr ~, h„,vr, ,y)% [h„,y] =0 . (4.16)

As discussed in Sec. II C [cf. Eq. (2.37)], the operator form
of the constraints are independent of whether 4 is con-
structed from a Euclidean or Lorentzian path integral.

This derivation of the constraints (like the purely La-
grangian one following) has one important advantage
over the BRST-BFV derivation given in the previous sec-
tion. That derivation exploited global BRST symmetry
and therefore implicitly assumes the topology IRXM for
the manifold M. By contrast, this derivation exploits the
local symmetry of diffeomorphism invariance. To obtain
the result, the e"(x, t) can be taken to vanish outside a
neighborhood of the boundary BM. A sufficiently small
neighborhood has the topology IRXM assumed in this
derivation. Indeed, this argument shows that if the
boundary BM consists of n disconnected compact three-
manifolds BM' ', k = 1,2, . . . , n, then the constraints
must be satisfied for each boundary separately. That is,

~(k)( ~(k)ij h (k) ~(k) (k)))II(h (1) ~(1) gM(1) h (&) &(&) )M(&)]—0
&j L &'j &X gj

(4.17)

V. EMBEDDINGS AND DIFFKOMORPHISMS

The results of the preceding two sections show that
wave functions constructed from sums over histories
which respect the canonical symmetry arising from
diffeomorphism in variance satisfy operator equations
representing the Dirac constraints generating this sym-
metry. However, these constraints do not themselves
give an operator representation of the algebra of

I

diffeomorphisms; the Dirac "algebra" is not the algebra
of four-dimensional diffeomorphism, although it is con-
nected to it. ' Intimately related to this is the fact that
the space of wave functions on three-metrics is not large
enough to admit a representation of the full algebra of
diffeomorphisrns in the way that it does for spatial
diffeomorphisms. Crudely, this is because, classically, the
remaining diffeomorphisms are concerned with displac-
ing the three-surface on which the wave function is
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defined forward or backward in coordinate time. A
three-geometry by itself, however, contains no explicit
reference to a coordinate time.

The connection between the "algebra" of constraints
and four-dimensional diffeomorphisms has recently been
fully discussed in a series of papers by Isham and
Kuchar". ' These authors find a formulation of the classi-
cal theory of relativity in which the algebra of constraints
is the full algebra of four-dimensional diFeomorphisms.
The theme of this paper has been the connection between
the diffeomorphism invariance of classical general rela-
tivity and the operator constraints satisfied by invariantly
constructed wave functions in the quantum theory. It
seems only appropriate, therefore, to investigate a deriva-
tion of constraints which actually implement the algebra
of diffeomorphism using the ideas of Isham and Kuchar".
We shall sketch such a derivation in this section. In cer-
tain respects this derivation will be even more formal
than those of the preceding sections. Less attention will
be paid to the technical details of establishing the validity
of assumptions (1)—(5) of Sec. II. Despite this, this
derivation is useful in a number of different ways. (i) It
provides a direct and transparent connection between an
invariant sum over histories and operator constraints on
an extended space which do represent the algebra of
four-dimensional diffeomorphisms. (ii) It shows the con-
nection between the operator constraints representing
diffeomorphisms on the extended space and the Dirac
constraints on familiar superspace. (iii) It introduces new
and potentially powerful tools for the construction of
geometrical sums over histories. (iv) It makes explicit in
an invariant way the "sum over time, " which is a part of
certain generalizations of quantum mechanics that have
been proposed for quantum theories of spacetimes. '

A. Extended configuration space

The idea of Isham and Kuchar" is to enlarge the
configuration space of three-metrics and the spatial
matter-field configuration so that the enlarged space can
carry representations of the full four-dimensional
diffeomorphism group. They do this by augmenting the
superspace of three-metrics and spatial matter-field
configurations by embedding variables which explicitly
describe how the spacelike hypersurface on which the
wave function is defined is lodged in four-dimensional
space. Displacements of this surface in time can be de-
scribed in terms of these embedding variables and opera-
tors effecting these displacements introduced. These new
operators represent the nonspatial diffeomorphisms. Of
course, such embedding labels are not physically measur-
able for there are no matter fields in nature which exactly
define such an embedding. They must be, therefore, in-
tegrated out to form physical amplitudes such as the
wave function +[6,"(x),X(x)]. However, by understand-
ing the representation of diffeomorphisms on the extend-
ed configuration space before this integration is per-
formed, one can understand the connection between con-
straints and diffeomorphisms in a more transparent way.

A family of spatial hypersurfaces which foilates space-
time may be described by giving four scalar functions
X"(x). The function T(x)—:X (x) labels the surface that

the point with spacetime coordinates x lies upon. The
functions X (x) are four coordinates which locate the
point within the surface T(x). The inverse functions
x (T,X ) are a map from positions X on the hypersur-
face T to the spacetime. They are the embedding vari-
ables of Isham and Kuchar" (although not in the same no-
tation).

Some words on the notation are probably in order.
The X"=(T,X ) are four scalar functions on spacetime.
The indices p and m are thus not tensorial indices, but
serve to list these functions. In this section we shall
reserve the latter half of the Greek and Roman alphabets
beginning with p and m for this purpose. Indices in the
former half of these alphabets will be usual tensorial ones.
In both cases Greek indices range over the values 0 to 3,
while Roman indices range from 1 to 3. Finally, it should
be noted that our notation for the embedding variables is
diFerent from that employed by Isham and Kuchar".
They use X for our x and vice versa.

A metric on spacetime may be specified either by giv-
ing its components g &(x) in the coordinates x or by
giving the lapse N(x), shift N (x), and spatial metric
s „(x)in a 3+1 decomposition appropriate to a foliating
family of spatial hypersurfaces together with the embed-
ding variables X"(x), which locate these surfaces in
spacetime. Such a description in terms of 14 scalar func-
tionals is, of course, highly redundant. Many sets of
these 14 functions correspond to the same metric. We
could fix the redundancy by demanding, for example,
that the X" coincide with the x . That would lead back
to the description of Sec. IV with no freedom to represent
displacements of the spacelike hypersurface in time.
Rather, we follow Isham and Kuchar" and instead fix the
four functions (N, N ). The freely specifiable X"(x) can
then describe displacements of the hypersurfaces. The
metric is described by the ten functions (X"(x),s „(x))
with much less, although still some, redundancy. There
are a variety of suitable ways of fixing the (N, N ). The
precise way will not be especially important for us.
When definiteness is needed, however, we can focus on
the "Gaussian coordinate conditions" originally em-
ployed by Isham and Kuchar". Then the spacetime metric
can be written

ds = dT +s „(X)dX—dX"=s„,dX"dX (5.1)

or in a general system of spacetime coordinates
x =(rx ) as

ds~=[ VTV&T+s „V—~ V&X"]dx dx~ . (5.2)

The ten scalars X"(x) and s „(x)describe spacetime
geometry. The action can be expressed in terms of these
variables by substituting (5.2) for the metric in the famil-
iar form (4.2) and (4.4). Then

I =I [ X( ),xs „(x),P(x)] . (5.3)

This is the action for a parametrized theory in which the
special coordinates X~(x) have been elevated to the status

of dynamical variables. By varying the s, keeping the
three-geometries fixed on two boundary hypersurfaces,

one obtains six Einstein equations. In varying the X"one
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BX BN(x) BX BN'(x)
BN(x) BXi'(x) BN'(x) BX"(x)

(5.5)

Here X denotes the Lagrangian density expressed in 3+ 1

form and a dot denotes a r derivative. aZidN and
i)X/BN' are the standard Hamiltonian and momentum
constraints of general relativity & and &;, respectively.
Calculating the derivatives following Isham and Kuchar",
we find the constraints

II„(x)=P„(x)—n„(x)&(x)+Y„'(x)&;(x)=0, (5.6)

where n„(x)is the unit normal to constant r surfaces and
Y„'(x) are the three tangent vectors to this surface,
Y' =s„h'~D Y'. In this expres. sion, &(x) and &, (x) can
be regarded as functionals of h;, ~', y, and ~z. n„and
Y~ can be expressed entirely in terms of X"(x), its deriva-
tives in the surface, and the metric h;. . For n„this fol-
lows from

n„~e„+,Y D2YD3Y', '
(5.7)

and the fact that the metric s„needed to effect the nor-
malization of n„[Eqs.(5.1) and (5.2)] involves no time
derivatives. For Y„it follows from its definition and the
same facts. The constraints (5.6) are quadratic in all mo-
menta except P„,in which they are linear.

obtains the rest. The correct boundary conditions for
this latter variation are to fix X" on one boundary sur-
face, but allow it to vary freely on the other. This is
correct because, given a metric g &, a set of first-order
partial differential equations must be solved to find the
X"(x), which represent it in the form (5.2). The value of
X"(x) may be conventionally prescribed on, say, the ini-
tial spacelike surface bounding the region for which the
action is to be computed. But then it must be allowed to
vary freely on the final surface to reproduce the space of
all metrics g &. Put difFerently, extremizing the action
(5.3), keeping the X" fixed on the boundaries, results in
field equations which are derivatives of four of the Ein-
stein equations. The Einstein equations themselves result
from the free variation of Xp(x) on one boundary. The
same conclusion can be reached by considering the Ham-
iltonian form of the action (5.3).

The action (5.3) is as invariant under diffeomorphisms
when expressed in terms of (X"(x),s „(x),P(x)) as it was
when expressed in terms of (g &(x),P(x)). The coordi-
nates x are completely general. Classically, this invari-
ance of the action under diffeomorphisms implies four
constraints between the coordinates and momenta on a
spacelike surface. These include not only the three-
metric h,"(x) and its conjugate momentum n'J(x), but
also the values of X"(x) on this surface, which we denote
by Y"(x), and their conjugate momentum P„(x).These
relations are straightforward to find. Write the metric in
standard 3+1 form

ds = Ndr +h—, (dx'+N'dr)(dx&+N~dr) . (5.4)

Express N and N' in terms of X" using (5.2). Calculate
the momenta conjugate to X". Since the X" enter only
through the lapse and shift, and since these enter
undifferentiated into the action for general relativity, we
have

The most important fact concerning the constraints
II„(x)on the extended configuration space is that their
Poisson-brackets algebra is Abelian:

Ill„(x),11,(x )] =0 . (5.8)

This, as shown by Isham and Kuchar", is the same as say-
ing the constraints H„generate the algebra of the
diffeomorphism group. The generators of
diffeomorphisms are vector fields, In the special coordi-
nates of Eq. (5.1), we may represent these as U"(X'),
V"(X ), etc. Isham and Kuchar" show that the smeared
constraints

11( U) = f d x U"(X (x) )II„(x) (5.9)

generate the algebra of the full diffeomorphism group,
viz. ,

t 11(U), lr( v) I =11([U,v]) . (5.10)

Here I, ] are the canonical Poisson brackets and [, ] is
the Lie brackets between two vector fields. Explicitly,

[ U, V] = —
( U'V, V"—V'V, U") a

aX~
(5.1 1)

The constraints on the augmented space of variables gen-
erate the algebra of four-dimensional diffeomorphisms.

B. Quantum operator constraints

The fact that a spacetime metric g &(x) may be
represented through (5.2) in terms of the fields
(X"(x),s „(x))means that the sum over geometries may
be represented as sums over the (X"(x),s „(x)).The
sum over the three-metric s „onsurfaces of constant T
can be conveniently exchanged for a sum over the three-
metrics y, on the surface of constant ~ since these are re-
lated by

y; =s „DXDJX'—D TDq~, (5.12)

Xexp(iS[X, Y, P]) . (5.13)

The integration is over three-metrices y,- which induce
the metric h; on the boundary, over matter fields
which induce g in the boundary, and over the fields X".
This integration includes an integration over the value of
Y"(x) on the boundary. To see why this is so, imagine
that the conditions C were fixed on one boundary while
+ is calculated on another, BM. The values of X"(x) may
be conveniently fixed on the boundary associated with C,
but they are then determined on BM by the metric. An
integration over the metric thus includes an integration
over the Y"(x) whose range we shall discuss below. The
gauge condition C =0 must ensure that the functions

where D; is the derivative in the surface. The action (5.3)
is invariant under diffeomorphisms and so the familiar
gauge-fixing machinery is required in constructing the
sum. Thus, in particular, (1.3) can be represented in the
neighborhood of BM as

%[h; (x),X(x)]=f 2)X2)y2)p bc[X,y]6(C [X,y])
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Xi'(x) are not only single valued on M, but also form a
good coordinate system on M. That is they must be in
one-to-one correspondence with the coordinates x . The
easiest way to do this is to make the X coincide with the
x up to scale. Equation (5.5) is not as unfamiliar as it
looks. The integrations over y and X are essentially the
integration over three-metric, lapse, and shift in a 3+1
decompositions of each four-metric of the form (5.2).

The integration over the X"(x) can be carried out in
two steps. First, an integration in which the values of
X"(x) are kept fixed on the boundary and, second, an in-
tegration over these values. For the first integration we
write

ft (x)p[ Y"(x),h,i(x),X(x)]=0 . (5.16)

Further, we shall argue that (5.16) and (5.15) together im-

ply the constraints of general relativity on the wave func-
tions %'[h;, (x),X(x)], that is

We shall now show formally that the appropriate in-
variance of the functional integral defining the amplitude
g[ Y„(x),h;~(x), X(x)] implies operator forms of the con-
straints associated with this invariance in the classical
theory on the extended configuration space, that is

g[ Y"(x),h, (x),X(x) ]
& (x)%'[h,j(x),X(x) ] =0 . (5.17)

= f +XX)y'2lP b, c[X,y]$(C [X,y])
X exp(iS [X,y, P]), (5.14)

where the integration is as before except that the integra-
tion over X" must match the values Y"(x) prescribed on
BM by the arguments of f. The second integration is
then

'p[&;, (x),X(x)]=J 2) Y p[ Y"(x),h,, (x),X(x)] . (5.15)

This integration is over the class of functions Y"(x),
which induce a good coordinate system on the boundary,
that is, say, for which there is a one-to-one correspon-
dence between the values of x' and Y'(x).

A physical picture can be associated with the
mathematical decomposition of the sum over geometries
represented by Eqs. (5.14) and (5.15). Suppose there were
matter fields X~(x ) defining a preferred system of
coordinates —a system of ideal rods and clocks —so that
the spacetime intervals were connected to their values by
(5.1). Such fields would necessarily couple to spacetime
and other matter as in (5.3). The amplitude
itj[Y"(x),h,"(x),X(x)] would then be the physical ampli-
tude for the values ( Y"(x),h; (x),X(x)) to be assumed on
a spacelike surface. Or, since the embedding variables
Y"(x) label a unique spacelike surface, one could say that

g[ Y"(x),h, (x),X(x)) is the amplitude for the three-
metric and matter fields to have the values h; (x) and

X(x) on the spacelike surface Y"(x). The amplitude p is
then the wave function on that spacelike surface in a fa-
miliar sense and, as we shall see below, obeys a familiar
Schrodinger equation [Eq. (5.24)]. Of course, there are
no such matter fields defining a preferred system of coor-
dinates. However, one can introduce such fields as un-

physical labels for convenience in computation provided
their values are summed over in computing physical am-
plitudes. This is exactly the significance of (5.15). The
use of labels for individual particles which are in fact in-
distinguishable, or proper time in theories of a relativistic
particle, are other examples of the use of unobservable la-
bels in physics. Their hallmark in the theory is that am-
plitudes are summed over their values before computing
probabilities. Were they potentially observable quanti-
ties, then probabilities should be summed over their
values when they are not involved.

Yet another derivation of the operator constraints will
thus have been achieved.

Indeed, several different derivations of the constraints
ft&it =0 on the extended phase space can be given. For
example, we could give a standard canonical derivation
following the methods of Sec. IV. However, since the
algebra of constraints is Abel'an [Eq. (5.8)], the familiar
Faddeev-Popov construction (Appendix C) applies direct-
ly and a derivation from the Lagrangian form of the path
integral (5.14) can be given. It is instructive to follow this
route first.

To implement the general lemma of Sec. II, we must
identify the symmetry of the Lagrangian action which
satisfies assumptions (1)—(5). Under an infinitesimal
diffeomorphism generated by a vector field g (x), metric
and field variables change as follows:

5g ii=2V( gp),

5(t'=@V P

5X"=g V~p

(5.18a)

(5.18b)

(5.18c)

5Sg =(g n)h ' [K, K'~ K (2A R)]—, — —

and for the matter action from (4.4),

5S =
—,'(g n)h' [(VP) + V(P)] .

(5.19)

(5.20)

Here n„is the normal to the final surface. Equations
(5.18) and (5.19) can be expressed in 3+ 1 form in terms
of m.", h;, i', X, and the projections of p in the surface
and normal to it. These we define by

e =(g n)=N(
e'= g'+ N'( g n ) =g'+ N'g

The result is

(5.21a)

(5.21b)

(recall that the X" are four scalar fields). V is the four-
dimensional derivative. The change in the action is easy
to calculate. The action is invariant under
diffeomorphisms which leave the ends of the range of in-
tegration unchanged. However, in order to make use of
the results of Sec. II, we consider diffeomorphisms where

P may not vanish on the final surface. The change in the
action is then entirely the change resulting from the dis-
placement of the final surface. Specifically, for the gravi-
tational action,



1186 JONATHAN J. HALLIWELL AND JAMES B. HARTLE 43

5Sg =E [~;,~'~ ,'—~——h '
( 2A —R )],

5S = ,'e —[vrx+V(y)] .

Similarly, for Eqs. (5.18),

5y=e'D;y+e h

6X"=e'D,X"+e n" .

(5.22a)

(5.22b)

(5.23a)

(5.23b)

(5.23c)

6 6—Y„'&, —,h,, y it . (5.24)

The n„here are regarded as functionals of Y~(x) and
h,j(x) defined by (5.7) and the normalization condition.
The relations

Equation (5.22) and (5.23) are of the general form of Eqs.
(2.14) and (2.13) pvouided we identify the symmetry of the
action with that generated by the projected components
of the ditTeomorphism vector field P and allow the e"(x)
to be arbitrary infinitesimal functions of x. It will not es-
cape the reader that (5.21) coincides with (4.9), and an
elementary calculation shows (5.23) coincides with (4.7).
We have thus recovered, in this Lagrangian form, the
canonical symmetry of preceding sections.

The action is invariant under diffeomorphisms which
preserve the end points no matter how they are
parametrized. However, only if written in terms of the
3+1 projections e" will the changes in coordinates and
action have the special form of (2.13) and (2.14), that is,
the form (parameter) X (function of coordinates and mo-
menta alone). Only using this form, can we deduce the
constraints. To see this more clearly, imagine using the
P as the parameters. The result would be (2.19) with the
brackets multiplied by N. Since N is integrated over, we
could not then use (2.17) and conclude (2.20).

Thus, even in this Lagrangian, demonstration, even
though we are considering constraints which actually im-
plement the algebra of diff'eomorphisms, we conclude
that it is the larger canonical symmetry which defines the
necessary invariance of the sum-over-histories construc-
tion. The ranges of integration, gauge-fixing factors, and
measure must be invariant under this symmetry.

An important advantage of the Isham-Kuchar" formu-
lation is that the constraints generate an Abelian algebra
[Eq. (5.8)]. The method of Faddeev and Popov reviewed

briefly in Appendix C may, therefore, be applied directly.
The result of the formal argument adumbrated in Appen-
dix C is that Ac, the Faddeev-Popov determinant, is in-
uaviant under the symmetry transformations (5.18). The
measure in the sum over histories (5.14) must therefore
also be invariant. We have not constructed this measure.
It plausibly could be found by beginning with the canoni-
cal sum over histories defined with the invariant "Liou-
ville" measure and integrating out the momenta as in the
treatments of Leutwyler, and Fradkin and Vilkovisky.
The important point is that the measure should be invari-
ant under diffeomorphisms parametrized as in Eq. (5.23).
The seeming "noncovariant" nature of this parametriza-
tion may well lead to a similar "noncovariant" appear-
ance of the measure, as in the familiar case.

The above informal analysis indicates how assumptions
(1)—(5) of Sec. II can be satisfied for a sum over histories
of the form (5.14) on the expanded configuration space of
Isham and Kuchar". We may conclude the operator form
of the constraints (5.16). More explicitly, but still formal-
ly,

(D, Y")Y' =5~,

n„D;Y"=n"Y„'=0,
(5.25a)

(5.25b)

(5.25c)

where indices p are raised and lowered with the metric
g ii( Y",h;z ) defined by (5.2) enable the constraints (5.24)
to be written in the form

in" =&(~'~, h;, vr, j)g, (5.26a)

iD, Y" =&;(~",h;, m~, y)f . (5.26b)

&+[h;,(x),y(x) ] =i f2) Y n"
6Y" (5.27a)

&'P[h;, (x),y(x)]=i f2) YD, Y"
5Y"

(5.27b)

The right-hand sides of Eqs. (5.27) may be integrated by

The operator constraint (5.26a) has a physical interpreta-
tion as a Schrodinger equation (or Schwinger-Tomonaga
equation) describing evolution in the special hypersur-
faces picked out by the fields X"(x). Indeed, yet another
way of deriving this constraint would be to repeat the
original argument of Feynman for deriving the
Schrodinger equation from the path integral for nonrela-
tivistic quantum mechanics. To do this we would need
to introduce an explicit implementation of the sum in
(5.14), say, by skeletonizing the integral on a coordinate
lattice in the x . We can then study the "evolution" be-
tween the penultimate and final surfaces of constant ~ as
the lattice spacing is made small.

We now investigate the consequences of the constraints
(5.26) for the wave function of the universe %' connected
with g by (5.15). To do this we integrate both sides of
(5.26) over all possible spacelike hypersurfaces specified
by Y"(x). This integration should be restricted to sur-
faces which are members of a foliation of spacetime. It
should not include, for example, surfaces which are self-
intersecting. The range of integration must be invariant
under the symmetry (5.23). In particular, this will mean
that the values of n„Y"will have to cover an infinite
range, over both positive and negative values. The label
"time" of the spacelike surfaces must be integrated over
an infinite range to recover physical amplitudes [cf. Ref.
18]. In keeping with the adumbrative spirit of this sec-
tion, we shall propose no explicit implementation of the
integral over Y"(x). Rather, we proceed formally and
write, using (5.15),
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parts. We assume that the sum over histories defining P
is such that the "surface" terms in this integration van-
ish. The remaining integrals involve the formal quanti-
ties 5n "(x)/5Y"(x) and 5(D, Y"(x))/5Y"(x). Continu-
ing formally,

5(D; Y"(x))
=D;5(x,x) =0 .

5 Y"(x)
(5.28a)

A similar expression for the functional derivative of n"
may be found by varying the expressions (5.25) using (5.2)
and keeping h,"(x) fixed. Again, one finds

5n "(x) ~D;5(x,x)=0 .
5 Y"(x)

(5.28b)

Thus, formally, the right-hand sides of Eqs. (5.27) vanish
and the constraints

& (x)%'[h; (x),y(x)]=0 (5.29)

are recovered for the invariantly constructed wave func-
tion of the universe.

VI. SUMMARY AND CONCLUSIONS

The object of this paper has been to elucidate the con-
nection between operator constraints on wave functions
in the Dirac quantization procedure and the symmetry
properties of a sum-over-histories representation of such
wave functions. In particular, we proved, in Sec. II, a
lemma showing very generally that wave functions con-
structed from a sum over histories satisfy a set of opera-
tor constraints prouided the sum over histories is con-
structed in an invariant manner. That is, the path in-
tegral should involve, in specific senses, an invariant ac-
tion, invariant class of paths summed over, and invariant
measure, and gauge-fixing machinery.

Applied to gauge theories, the lemma readily shows
that a gauge-invariant path-integral construction for a
wave function (of the Faddeev-Popov type, for example)
satisfies the Gauss-law constraints. When applied to an
invariant sum-over-geometries construction for the wave
function of the universe, the consequent operator con-
straints were found to be the Wheeler-DeWitt equation
and momentum constraints of canonical quantum gravi-
ty. Sections III—V were devoted to constructing three
different path-integral representations of the wave func-
tion and verifying, in each case, that they were indeed in-
variant. However, for the case of general relativity, with
which this paper is primarily concerned, it was necessary
to be precise about exactly which symmetry it is that
leads to the constraints.

The Hamiltonian form of the action for general rela-
tivity is invariant under the canonical symmetry generat-
ed by the constraints. This symmetry transformation
may be projected down from extended phase space onto
configuration space, by invoking the usual relationship
between velocities and momenta. The resulting symme-
try transformation on configuration space is not exactly
four-dimensional diffeomorphism invariance, but is in
fact a larger, more restrictive symmetry. In particular,
although a half-infinite range for the lapse N is

diffeomorphism invariant, it is not invariant under the
canonical symmetry. In each of the three derivations, the
constraints were found to follow from the path integral
only if the larger canonical symmetry was fully exploited:
Invariance of the path-integral construction under four-
dimensional diffeomorphisms alone was not sufficient to
derive the constraints. In turn, consideration of the
canonical symmetry was made necessary by the structure
of the general lemma of Sec. II. There the constraints
arose from free variations in the action and coordinates
arising from the symmetries projected into the boundary
surfaces. These were the canonical symmetries in the
case of canonical forms of the action and coincided with
them in the case of the Lagrangian forms.

Our first derivation of the constraints, in Sec. III, was
perhaps the most elegant from the technical point of
view. There, we gave an explicit construction of the
gauge-fixed path integral in Hamiltonian form, using the
BFV method. With the gauge-fixing machinery exponen-
tiated using ghost fields and Lagrange multipliers, the
path-integral construction is invariant under the global
symmetry of BRST. Application of the lemma led im-
mediately to the discovery that wave functions on an ex-
tended configuration space including the ghosts are an-
nihilated by the BRST generator. Wave functions on the
usual configuration space annihilated by the usual con-
straints were readily obtained by expanding out in the
ghost fields. However, one can still say that it is the
canonical symmetry of the Hamiltonian form of the ac-
tion that leads to the constraints, and not four-
dimensional diffeomorphisms, in that the method is a
Harniltonian BRST method, and the global BRST sym-
metry is based on local canonical symmetry.

The most direct derivation of the constraints was that
given in Sec. IV. Here the symmetry utilized was the
canonical symmetry of the Hamiltonian form of the ac-
tion, and in this derivation it is most clearly seen that it is
this symmetry, and not diffeomorphism invariance, that
leads to the constraints. This derivation was technically
more cumbersome than the previous one, in that it was
necessary to demonstrate the invariance of the gauge-
fixing machinery not present in the BRST derivation.
The gauge-fixing weight factor Ac in the BFV construc-
tion could not be regarded as a Faddeev-Popov deter-
minant because in a general gauge, the ghost action from
which it is constructed involves a four-ghost coupling. In
fact, even in a gauge with no four-ghost term, we found
that 6& is still not of the Faddeev-Popov type in that it is
not gauge invariant. This is because, as explained in Ap-
pendix C the usual proof of gauge invariance of the
Faddeev-Popov measure relies on the assumption of a
compact semisimple Lie group, which does not hold for
gravity. We were able to show, however, in Appendix B,
that Ac combined with the functional integral measure
on the Lagrange multipliers 2Q. is invariant, and this is
sufficient for the derivation of the constraints.

Although the derivations of Secs. III and IV establish
the connection between invariant sums over histories and
the constraints, they fail to make explicit the contact
with four-dimensional diffeomorphisms. The canonical
symmetry of the Hamiltonian theory, when projected
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down onto configuration space, is certainly closely related
to spacetime diffeomorphisms, but the algebra of the con-
straints of the Hamiltonian theory on the full phase space
is not the algebra of four-.dimensional diffeomorphisms.
For this reason we gave, in Sec. V, a derivation which
rectified this shortcoming. There, we went to an enlarged
phase space which included the embedding variables of a
foliating family of spacelike surfaces. As shown by Is-
ham and Kuchar", the (suitably smeared) constraints of
this new formulation, linearly related to the old ones, do
obey the algebra of four-dimensional diffeomorphisms.
We gave a sum-over-histories representation of the wave
function using this enlarged set of variables and once
again derived the constraints. This derivation was less
detailed than the previous two, in that we did not devote
much attention to, for example, the issue of the construc-
tion of the gauge-fixing weight factor, or to the measure
and range for the integration over embeddings. These
points we hope to return to in a future publication.

It is, however, important to emphasize the following
concerning this derivation: Although the algebra of the
constraints on the enlarged phase space is the algebra of
four-dimensional diffeomorphisms, the infinitesimal sym-
metry transformations generated by the constraints,
when projected down onto configuration space, are not
quite spacetime diffeomorphisms, but, as we found in the
previous sections, constitute a slightly larger symmetry.
Once again, we found that the constraints could be de-
rived only if this larger symmetry was fully exploited.

In just two sentences the conclusion of this paper is as
follows. Classically invariance implies constraints. Wave
functions defined by invariant sums over histories satisfy
operator constraints provided the notion of an invariant
sum over histories is carefully and suitably defined.

Note added. Since the completion of this paper, one of
us (J.J.H. ) has elaborated on these ideas for the case of
global spacetime symmetries —see J. J. Halliwell, MIT
CTP Report No. 1927, 1991 (unpublished). This paper
considers parametrized scalar field theory in a fixed
spacetime background, in which the embedding variables
describing the location of the three-surfaces in the space-
time (as introduced in Sec. V above) are raised to the
status of dynamical variables. The parametrized field
theory is used to give a path-integral representation of
the wave functionals for scalar field theory in curved
spacetime backgrounds. It is shown that if this path in-
tegral is invariant under the isometry group of the space-
time, then the wave functionals so constructed are an-
nihilated by the corresponding global symmetry genera-
tors. This result is used to discuss de Sitter —invariant
states in the de Sitter spacetime. It is found that only
through the embedding variables can one obtain the full-
est appreciation of the spacetime symmetries of the wave
functionals in the functional Schrodinger picture, a situa-
tion reminiscent of that encountered in Sec. V above. In
particular, introduction of the embeddings turns out to
be essential for the derivation of the global constraints.
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APPENDIX A: FRADKIN-VILKOVISKY THEOREM

The crucial point of the BFV path-integral construc-
tion described in Sec. III is that the path integral is in-
dependent of the gauge-fixing function. This result is
known as the Fradkin-Vilkovisky theorem' ' and will be
used explicitly in Appendix C, to show that the measure
and gauge-fixing machinery have the correct transforma-
tion properties for the derivation of the constraints. In
fact, the version of the theorem we need is actually a
modest generalization of that explicitly written down in
Refs. 10 and 13. But before describing this generaliza-
tion, let us first indicate how the proof of the theorem
goes.

So that we can understand the ideas without getting
obscured by details, let us consider a finite-dimensional
system with (commuting) phase-space coordinates
z "= (x ',p; ), and consider the path integral

x't p; te' (A 1)

for some action S. We imagine that the path integral is
defined by a time-slicing procedure, and 2)x'(t)2)p;(t) is
taken to be the Liouville measure on every time slice.
Suppose the action is invariant under a single global sym-
metry generated by a generating function F(p, q); that is,
it is unchanged by the transformation

6x'=e{x',FI, 5p, =e{p,,FI (A2)

where e is a constant parameter. Clearly, the measure is
also unchanged by such a transformation. We will fur-
ther suppose that the class of paths summed over is also
invariant.

However, let us see what happens if we perform a
change of variables of the form (A2) on (Al), but with e
taken to be a functional of the fields, e=e[x'(t), p, (t)].
We therefore go to new variables:

x'(t) =x'(t)+ & (x'(t),p;(t)),BF
(A3)

p, (t) =p; (t) F. . (x '(t),p;(t) ) . —BF
(A4)

The action is still invariant under (A3) and (A4), because
e is a constant, but because e is also a functional of the
histories, the measure acquires a Jacobian factor J:
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X)x 'llew, =2)x '2)p, J,
where

5z ~(t)
5z~(t')

One has

ax'(t),
,

a'F
B x~(t') Bx'Bp,

+ . (x'(t),p;(t)),6e BF
5 '(t') Bp;

(A5)

(A6)

e[x'(t),p;(t)]=i f dt E(x'(t), x'(t),p, (t),p,.(t)), (A14)

where E now depends on the derivatives of the fields, as
well as on the fields themselves. One thus has

gauge-fixing function y—follows from applying this gen-
eralized result to the path integral (3.17), with F taken to
be the generator of BRST transformations. However, to
prove the desired transformation properties of the path
integral below, it turns out that we need to be able to
drop not only terms of the form (A13), but also terms in-
volving time derivatives of the fields. For this reason it is
necessary to consider the following more general case,
not obviously covered by the original works.

Let

ap, (t) =5(t t') 5,' ——e
ap, ax J BE d BE

5x'(t) ax' «ax' (A15)

. (x '(t),p;( t) ),5e BF
5p; t' ax' (A8) 5e

5p, (t)
BE
Bp;

d BE
Bp.

(A16)

apj (t) ax'(t)=O(e)=
ax(t ) =ap(t )

(A9)

J=l+ fdt 5x'(t) ap;

6e BF
5p, (t) ax' (A 10)

The matrix in (A6) is thus of the form I+ A, where
A =O(c), and so J=l+TrA. The part of 3 coming
from the usual canonical transformation (i.e., what one
would have if e was not a functional of the fields) is trace-
less, as expected, leaving

Equation (Al 1) now becomes

aE aF
Bx Bp;

BE BF BE d BF
Bp; Bx' Bx' dt Bp,.

BE d BF
Bp.

(A17)

(after integrating by parts and assuming that the bound-
ary terms vanish). Now note, however, that under the
transformation generated by F, one has

Because (A10) is of the form 1+0(e), we can write it as
exp[0(e)]. This means that the overall effect of the
change of variables (A3) and (A4), with e=E[x (t),p (t)],
is to add to the action a term of the form

6x'=, 6p, =—BF BF
Bp; Bx

(with e= 1 ). Equation (A17) may therefore be written

6e BF—i dt
5x'(t) Bp;

6e BF
5p;(t) Bx'

(A 1 1)
BE ~,+ BE ~. , + BE

~ + BE ~.t
I~

x
~

I r
~ x

~

I»

p I~ I
I~

p I~

Bp;
'

Bp,

This is the main result.
Consider first the following case. Let

e[ x'(t), p(t)]=i f dt E(x'(t),p, (t)), (A12)

where E is an arbitrary infinitesimal function of x and p;.
Then (Al 1) becomes

BE BF
Bx Bp;

= f dtIE, F) .
l

(A13)

That is, a canonical transformation of an arbitrary func-
tion is effectively added to the Lagrangian. What this re-
sult implies is that any term of the form (A13) may be
simply dropped from the path integral, because it can be
got rid of by a change of variables.

The generalization of this derivation to a phase-space
path integral including anticommuting variables is
straightforward, although we will not go into the details
(see, for example, Ref. 10). The Fradkin-Vilkovisky
theorem —that the path integral is independent of the

=5fdtE . (A18)

This is the final result and the most general one we will
need.

What the above result means is that the value of the
path integral is unchanged by the addition to the action
of a term of the form

5f dt E(x',p, ,x',p, ), (A19)

where 5 is a canonical transformation under which the
action is invariant, and E is an arbitrary function of not
only x',p;, but also x',p;. One would again expect this re-
sult to generalize to the case of interest, namely, that of
an extended phase space with the canonical transforma-
tion a BRST transformation. Of course, we have not
have actually proved this generalized version, but merely
indicated how the proof would go. However, we expect
the result to be true and we will use it in Appendix B. It
is reassuring to note that a detailed proof has been given
using the antibracket-antifield formalism.
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APPENDIX B: TRANSFORMATION
OF THE BFV PATH INTEGRAL

In this appendix we will demonstrate explicitly that the
gauge-fixing machinery transforms according to our as-
sumptions.

For convenience we begin by recording the relevant
formulas. The original action is

So= f dt(p;q' Ho ——
A, T ), (Bl)

where T and Ho obey the Poisson-brackets relations

[T,Tp'=iU~pTr, [HD, T [ =VPTp . (B2)

U p
U" —

[ U"p, Ty ]

+(antisymmetrization on aPy)=0,

[Ho, U~p )+ [ Tp, V~ j
—

[ T, Vpr ]

+ U &V~+ V U&~
—VpU~ =0 .

The action is invariant under the transformation

5~'=e [q', T ), 5~, =e"
[ p, , TJ,

(B3)

(B4)

(B5)

The structure coefficients obey the following Jacobi iden-
tities:

P~BRs(c q)= II q c [q, Tp)[c c
p p (B7)

the transformation properties of the gauge-fixing
machinery below, we will be performing a transformation
of the form (B5) and (B6) on the gauge-fixing and ghost
actions. This will generate, among other terms, terms of
the form 6,g. By the above theorem, the appearance of
such terms does not change the value of the path integral,
and so they may be dropped. However, because we are
working in a so-called "relativistic" gauge, the gauge-
fixing action also involves the term H A, , which under
the transformation (B6) leads to a term of the form
II 5,A, in the gauge-fixing action and to corresponding
terms in the ghost action. These extra terms cannot be
absorbed into the definition of y. It is for this reason that
we need the generalization of the Fradkin-Vilkovisky
theorem described in Appendix A.

In anticipation of the extra terms generated, we will

add to the total action the term —5BRs(c g ), where

g (q', A, ) is an arbitrary (commuting) function, depend-
ing only on q' and A, , and 5&zs is a BRST transformation
under which the action is invariant. The theorem of Ap-
pendix A guarantees that addition of this term will not
change the value of the integral. One has

6 X~=V—U~ k~e~ —V~e~
e Py P (B6)

with suitable boundary conditions on e .
The gauge-fixing and ghost actions are given, respec-

tively, by (3.7) and (3.8). The content of the Fradkin-
Vilkovisky theorem, as we outlined in Appendix A, is
that the path integral constructed from these actions is
independent of the gauge-fixing function y. In deriving

(restricting to the case in which the Up are independent
of the P;). The gauge-fixing and ghost actions are now
therefore not just (3.7) and (3.8), but are given by

So„=f dt II (A, +g (q', X ) y(p, —, q', A, )),
t

g
II CX

Ssh„,= f dt p c +p c p~ c[&—, Tp)[c ——c pt'

PVpcP P— Up~APc—~ —c cr[y—, UP )Ppc
—c [P,Tp)cP —c pPP (B9)

The Fradkin-Vilkovisky theorem is now that the path integral constructed from the actions (Bl), (B8), and (B9) is in-
dependent of the choice of y and 1t . Note that, strictly speaking, the canonical Hamiltonian structure is lost as a re-
sult of the appearance of the g term, because the kinetic term in the total action is no longer of the form P Q Ifone.
wished to proceed to quantize with a gauge-fixing action of the form (B8), it would be necessary to perform various field
redefinitions to recover the original form. This will not be necessary here, however, because we are only introducing

to see what sort of terms arising in the transformation of the original gauge-fixing and ghost actions (3.7) and (3.8)
may be removed by the change of variables described in Appendix A.

With these preliminaries out of the way, we may now proceed to the proof of assumption (4). We will begin by con-
sidering the path integral with the gauge conditions

C (p;, q', A, )=A, —y (p;, q', A, ),
and ask how it transforms. Under the transformation (B5) and (B6), the gauge condition is shifted by an amount

6C =5k, —5y

(B10)

(B1 1)

This corresponds, in the gauge-fixing action (B8), to going from gauge-fixing functions g =0, y to lt =5,A, and

y+5,y. The gauge-fixing weight factor is of the form

b,c= f2)c 2p)~c 2)p exp(iS „„,) . (B12)
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To prove assumption (4), our goal is therefore to prove that under the transformation (85) and (86) the change in the
quantity Xlz "b«consists solely of replacing g by g+5,g, and g =0 by P =5,k, in the action (89).

The proof has four steps: (i) We apply the transformation (85) and (86) to (812); (ii) we perform a certain change of
variables of the ghosts in the path integral (812); (iii) we show that the total change in the ghost action in (812) is pre-
cisely the change of the gauge-fixing functions 1t,y described above; (iv) we show that the change in the measure in the
path integral (812) is precisely canceled by the change in the measure 2)z ".

We have not been able to carry out the proof in the case of general relativity for all gauge choices of the form (810),
but only for the case g =0. We have, however, been able to treat the case of arbitrary g for ordinary gauge theories.
We therefore treat each of these two cases separately.

1. General relativity in the gauge A, =0

For general relativity, one has Ho =0, V~ =0, and the structure coefficients U&z depend only on the q'. In the gauge
A, =0, the ghost action is

t II

Ss„»,= f dt(p c +p c —p~ —P U&~A, c ) .

Step (i). Under the transformation (85) and (86), the only change in b, c comes from the ghost action. It is
)II

5+s„„,= dt( Pcr—e {U&~, T IA~ —P c~U&~i~+P c~U&~U~, X"e ) .

Step (ii). Now we perform a change of variables, which we denote 5, on the ghosts in the path integral (812):

6c = U& e~c~, 5p = —
U&~ e~p

6p = Upye~p~, 6c =0 .

The resulting change in the ghost action is
II

5S,„.„=f' dt(UI E p~c +p UI, e c~+P UI e c~+p c~UI U AE pc, 'Up U—~ k e ).
t

Step (iii). Combining (817) and (814), the terms involving i cancel, and the total change in the ghost action is
II

5P„„,+SS h„,= f dt[ pc~@—
{U&, T IA.~+UIre~p~c +p U&~e~c~

+p c~e A~(U"pU „+U~p~U „+U~ Utt„)] .

(813)

(814)

(815)

(816)

(817)

(818)

Now consider the first term in (818) and the three terms which involve two structure coefficients. We may use the Jaco-
bi identity (83) on these four terms, and (818) simplifies to

II

5P,„.„+5S,„.„=f' dt[p~e c~(Up, —{U$,, A, T ])+c Uypp~E pc {—Upr, T IiPe~].

As we discussed in Sec. IV, we are allowed to use the field equations obtained by extremizing the action with respect
to the momenta (i.e., the relationship between momenta and velocities). In particular, we may use the equations

U y=tj{Upq, A, T ], c = —
p

Equation (819) therefore becomes
II

5+g„„,+5Ss„„,= f dt(c U~&p~e~+c c { U&, T I
A~e~) .

(820)

(821)

Equation (821) is precisely of the form
I

worry about the measure 2)A, . Now consider the mea-
sure in (812):

(822) 2)c 2)p~c ~2)p (824)

X)z ~ =X)q T)p, XX (823)

The transformation (85) is canonical on the pair q', p;,
and so the measure X)q'2)p, is invariant, and we need only

with P =5,A, . This therefore completes step (iii).
Step (iv). Finally, we consider the transformation of

the measure in (812) and the measure 2)z". Consider
first

2)p (825)

transforms under the change of variables (86) and (816),

The transformation (815) is canonical, and so the part of
the measure X)c 2)p is invariant. The remaining part of
the measure (824) is not, however, invariant under (816).

So it remains for us to consider how the remaining part
of measure
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which we rewrite

5 A, = U @PA,r+iPr

6p = Up ePpr .

(826)

(827)

2. Gauge theories in the gauge A, =g

For gauge theories one has IIO&0 and U& =const.
We will also allow the VP to be nonzero constants, al-
though they vanish for most cases of interest. Rather
than go through the whole proof again, we will just con-
sider the extra terms that arise as a result of including g
and VP and show that they cancel.

Consider first the extra terms arising due to g . In step
(i) the extra terms contributing to 6P h„,are

f dt —c I5,y, TgIc~ c —(6 y )p~
l'

Providing the range of integration of the k integrals is
taken to be infinite, the essentially constant shift i may
be absorbed, and the transformations (826) and (827) on

and p are then identical. The Jacobian factor arising
from the change in the measure for each thus involves an
expression of the form (1+U &e~), which does not van-
ish. However, because p is anticommuting, the Jacobian
arising in the transformation of its measure is precisely
the inverse of that arising from the transformation of
2)A, . The two Jacobians therefore cancel and (825) is in-
variant. This completes the proof of assumption (4).

However, it is readily seen that the sum of (831) and
(832) vanishes, by virtue of the Jacobi identity (84). This
completes the proof of assumption (4) for gauge theories.

For the most general case, the presence of the four-
ghost term, absent in the two cases above, severely com-
plicates matters, and we have not been able to carry out
the calculation explicitly.

APPENDIX C: FADDEEV-POPOV ARGUMENT

Faddeev and Popov have given an elegant and direct
formal argument for arriving at the gauge-fixed form of
(2.15) of a sum over histories for gauge theories whose
gauge group is a semisimple Lie group. The result of
this argument that Ac —the Faddeev-Popov invariant
determinant —and the measure are separately invariant
under transformations of the form (2.12). To appreciate
why the ostensibly more complicated (or at least more
lengthy) arguments for the invariance of the combination
2)zzb, c are necessary for gravitational theories or for
gauge theories based on nonsemisimple Lie groups, it is
instructive to understand how the Faddeev-Popov con-
struction does not apply to these cases. Since our discus-
sion is probably well known to some (indeed we learned
much of it from Teitelboim), we shall be brief.

The Faddeev-Popov argument runs like this: Consider
a gauge field A (x) (group and spacetime indices
suppressed) whose action is invariant under g: A —+gA,
where g is an element of a group G. For a gauge-fixing
condition C ( A ) =0, define a partition of unity by

—c Iy, T ] Utj ere~
I =bc[A]f dpi'(g)5[C(~A)], (Cl)

where we have used the fact that

(828) where dpi' (g) is the right invariant measure on G. Equa-
tion (Cl) is taken to define b,c. It is a direct consequence
of the right invariance of

dye�(g)

that b, c so defined is in-
variant under gauge transformations:

0.' a

ggP ggP ggr ggP
(829) bc[~A]=Ac[A] . (C2)

In step (ii) the extra terms contributing to 5S h„,are

f dt —c Iy", T ] U~&erc~ cUr&e p—~~X

(830)

Equation (830) precisely cancels with the third and
fourth terms in (828), showing that the overall change is

just a change of gauge-fixing function, g ~g +6,y,
which is the desired result.

Now consider the extra terms arising due to VP. In
step (i) an extra term arises in 5P i,„,through the trans-
formation of A, [Eq. (86)]. It is

f tll

dt p Ur VP @Pc

In step (ii) the presence of the term p V&c~ leads, in

6S h„„to the terms

f dt p e~c (U$ V —VrUt3 ) . (832)

dpL g 6 C ~A =detMc (C3)

where Mc is the response of C to an infinitesimal group
action away from that value s for which the gauge condi-
tion is satisfied. That is, if C ['3]=0 and g =s +g,

6tC=C['+~A] —C['3]—:Mc(A)g . (C4)

The integral in (C3) becomes explicit when written out in
terms of coordinates on the group manifold. The
infinitesimal elements g define vectors with components

Insert (Cl) into any sum over gauge fields defined by a
gauge-invariant measure and a gauge-invariant integrand
[e.g. , exp (iS)]. A translation of the integration variable
factors the integral into an invariant gauge-fixed form in-
volving the combination b, c[A]5[C(A)] times an in-
tegral over the gauge group. This latter integral contrib-
utes an overall multiplicative factor of the group volume.
This is the Faddeev-Popov result.

An integral analogous to that in (C 1) over the left in-
variant group measure is easily evaluated as a deter-
minant:
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P at the element s. A left translation of the integration
in (C3), g~rg, reG, can be chosen so the transformed
eigenvectors of Mc coincide with the coordinate direc-
tions. Equation (C3) follows directly. Since a left transla-
tion is involved, it is the left invariant measure which is
relevant in (C3).

For groups where the left and right invariant measures
coincide, 6& and detM& are related by

b, c [ 3 ]= [detMC( A ) ] (C5)

dpL (g) =dptt (g)exp[co(g) j,
where

(C6)

co(g) =A'(g)C;. . (C7)

Then, using the invariance the integrals in (Cl), it is easy
to compute that

5&[detMc( 3)] '=( I+5&A'C;, )(detMC) (C8)

Thus only when the trace of the structure constants van-
ishes will detM& be invariant under gauge transforma-

This will be the case, for example, for semisimple Lie
groups. The identity (C5) allows b, c to be expressed as
an integral over ghost fields in a familiar way.

When left and right invariant measure coincide, it fol-
lows from (C5) and (C2) that detMC( A) is invariant un-
der gauge transformation. When they do not coincide, it
is not invariant, but its transformation properties may be
computed from (C3). Let T, be the infinitesimal genera-
tors of G satisfying [T„Tb]=C;bT, . Then in "canoni-
cal" coordinates A'(g), such that g =exp(A' T, ), we
have

tions. The trace vanishes for semisimple groups.
The Faddeev-Popov construction of a gauge-fixed sum

over histories involving a gauge-invariant determinant
thus works directly only for theories whose symmetries
are based on group [so that Eq. (Cl) is meaningful] and
further a group whose left and right invariant measures
coincide [so that Eq. (C5) follows]. Invariant sums over
histories constructed for gravitational theories in their
Hamiltonian form do not fall in this class. Most impor-
tantly, as stressed by many, ' ' the infinitesimal sym-
metries of the Hamiltonian action do not exponentiate to
form a group. The structure functions Up are functions
of the canonical coordinates, not structure constants. It
is for this reason that the more general BFV construc-
tion, whose invariance can be explicitly demonstrated, is
needed.

As the above arguments show, even if the BFV con-
struction is used to define a sum over histories in the
Faddeev-Popov form by integrating out the ghost fields,
we cannot expect the individual parts of the resulting in-
tegrand to have the transformation properties of the
Faddeev-Popov case. In such a construction Ac would
be defined by the integral of the ghost action over the
ghost fields as in (4.12). Where the ghost action is not
quadratic, it will not define a determinant. Even when it
does so, it may not be invariant under gauge transforma-
tions because of (C8). The transformation properties of
Ac were the subject of the previous appendix. Indeed,
the transformation law (C8) may be explicitly verified by
the techniques described there. What Appendix B does
show is that, although 6& may not be a determinant, and
although it may not be invariant, the combination
2)z„hctransforms in such a way as to define an invariant
path integral in the sense of Sec. II.
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