Electrically pumped quantum post vertical cavity surface emitting lasers

Hyochul Kim, Matthew T. Rakher, Dirk Bouwmeester, and Pierre M. Petroff

Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
Department of Materials, University of California Santa Barbara, Santa Barbara, California 93106, USA
Department of ECE, University of California Santa Barbara, Santa Barbara, California 93106, USA

(Received 26 January 2009; accepted 12 March 2009; published online 1 April 2009)

We demonstrate low threshold electrically pumped lasing in oxide apertured vertical cavity surface emitting lasers with quantum posts (QPs) as the active medium. A lasing threshold current as low as 12 μA is achieved at 7 K and room temperature continuous wave lasing is also demonstrated in the cavities with quality factors of ~10 000. At low temperature, the QP devices show remarkably lower lasing current thresholds compared to equivalent quantum dot devices. © 2009 American Institute of Physics. [DOI: 10.1063/1.3112578]

Quantum dot (QD) lasers based on small mode volume microcavities have been attractive for their low lasing thresholds. Small mode volume microcavities enable low lasing threshold by limiting the number of optical modes and enhancing the spontaneous emission coupling factor (β). Furthermore, QD lasers show low lasing thresholds due to high material gain and a deltalike density of states. How- ever, the small filling factor of QDs imposes the use of very high QD densities or multiple QD layers as a gain medium for practical laser applications. As an alternative gain medium, we introduce a quantum post (QP), which is a self assembled, height controlled nanorod grown by molecular beam epitaxy. A QP shows sharp excitonic luminescence and single photon emission. Similar nanostructures such as columnar-dots have shown high lasing performance due to their large carrier collection efficiency and enhanced optical quality. We demonstrate low threshold lasing in oxide apertured micropillar cavities with a single layer of QPs as the gain medium and compare their lasing threshold characteristics to those of QD lasers with the same cavity design.

A QP is grown by covering an InAs/GaAs seed QD with successive stacks of 7 ML of GaAs and 1 ML of InAs layer cycles. Interruptions between alternating GaAs and InAs layer deposition provide the time for the indium to diffuse to the seed QD position, and produce the coherently strained InGaAs/GaAs post. Figures 1(a) and 1(b) show the device structure and a transmission electron microscopy (TEM) image of QPs and the surrounding quantum well (QW) matrix. The QP electronic structure was calculated using an effective mass eight band k·p model that includes strain effects, dimensions and compositions of the QPs, and surrounding matrix. It shows that electrons are delocalized within the QP, while the holes remain localized at the top or bottom QDs which terminate the QP. Unlike the QD, which contains only one z (along the growth axis) confined and two or three laterally confined electron states, the QP, depending on its height, can contain several (two to three or more) z confined and laterally confined states.

In the experiments presented here, 30 nm high QPs are used as the gain medium in an oxide apertured micropillar cavity. The cavity structure [Fig. 1(c)] consists of an n-doped GaAs substrate followed by an n-doped bottom distributed Bragg reflector (DBR), a λ/2n GaAs cavity (190 nm thick), an AlGaAs tapered oxide aperture, and a p-doped top DBR. The bottom (top) DBR consists of 32 (23) pairs of λ/4 GaAs (74 nm thick) and Al0.9Ga0.1As (83.4 nm thick) layers. The interfaces between GaAs and Al0.9Ga0.1As are graded for the bottom DBR, and bandgap engineered for the top DBR to reduce the device resistance. The 30 nm high QPs are grown within the GaAs cavity at the antinode of the cavity field. For comparison, samples with a single layer of QDs as the active gain medium are grown with the same structure as that of the QP devices. The cavity length and DBR layer thickness of the QD samples are adjusted accordingly to ensure a better spectral overlap between the cavity mode and the QD emission. The QD samples are grown under the same conditions as the QP samples and the partially covered island technique is used to blueshift the QD photoluminescence.

FIG. 1. (Color online) (a) Schematic of the QP structure and measured indium concentration in %. (b) Cross sectional TEM of two QPs. The two QDs at each ends of the QPs have an indium concentration of around 45%–48%. (c) Schematic view of a QP oxide apertured micropillar cavity laser. (d) SEM image after processing the ring and pad metal contacts.
The lasing threshold current dependence on temperature for QP and QD devices turns out to be very different. Figures 3(a) and 3(b) show this dependence for QP and QD devices with aperture diameters of 2, 3, and 4 μm. We first investigate a QP device with a 3 μm diameter oxide aperture. As shown in Figs. 2(a) and 2(b), we observe a lasing threshold of 12 μA (∼180 A/cm²) at 7 K and 22 μA (∼330 A/cm²) at 77 K. Figure 2(c) shows a dominant peak associated with the fundamental cavity mode present at an injection current of 1.2 Ith. The second lasing mode does not appear below 1 mA injection current. This lasing threshold at 7 K is similar to the lasing threshold of QD laser with etched micropillar cavities. The linewidth of the fundamental mode decreases with increasing injection current and saturates at ∼35 μeV, limited by the spectrometer resolution [Fig. 2(a) inset]. The quality factor (Q) of the cavity mode is estimated as ∼10 000 below the lasing threshold. As shown in Fig. 2(d), the lasing threshold current increases from 12 μA at 7 K to 0.4 mA at RT, while the differential quantum efficiency decreases from 33% at 7 K to 20% at RT.

The lasing current threshold dependence on temperature for QP and QD devices turns out to be very different. Figures 3(a) and 3(b) show this dependence for QP and QD devices with aperture diameters of 2, 3, and 4 μm. To characterize the wavelength and temperature dependence of the gain, PL measurements were performed on QD and QP calibration samples grown under the same conditions as the cavity samples [Fig. 3(c)]. The cavity modes of the QP and QD samples are blueshifted and detuned by ∼45 meV from the ground state PL peak at 4 K. While QP devices show a minimum lasing threshold current at ∼10 K, QD devices show a minimum lasing threshold current at ∼220 K. This minimum for the QD devices is consistent with our PL measurement which shows the wetting layer frequency matching that of the lasing mode at this temperature. At 10 K, lasing is not observed below 1 mA injection current for the QD devices. Despite similar spectral overlap between the cavity mode and ground state emission and same densities (∼200/μm²) of emitters, QP samples show about two orders of magnitude lower lasing thresholds than QD samples at ∼10 K. We believe that the larger carrier capture cross sections and modal overlap of QPs are one of the main reasons for their much lower lasing thresholds. The QP carrier collection efficiency can be also enhanced due to the surrounding QW matrix. Another possible reason for the large threshold difference is the larger density of excited states of QPs than QDs. For QD devices in this experiment, the modal gain from a single layer of QDs is saturated and this results in high lasing thresholds at low temperature. For QP devices, the additional density of excited states of QPs at the energy close to the lasing cavity modes can provide high saturation gain.

Finally, Fig. 4 presents the intensity of the fundamental mode as a function of injection current for 2, 3, and 4 μm QP devices at 7 K. We calculate the spontaneous emission coupling factor β of these devices using the rate equation:

\[ I(p) = A \left( \frac{p}{1 + p} \right)^{(1 + \xi)(1 + \beta p) - \xi \beta p}, \]

where A is a scaling factor A=ℏω/τphδβ and ξ is a dimensionless parameter ξ=Np0βVτph/τp. Here δ is the photon conversion efficiency, Np0 is the transparency carrier concentration, V is the active material volume, I is the injection current, and p is the photon number which is taken to be 1 at the lasing threshold. τph is known from the cavity mode Q to be ∼5 ps. Np0 is assumed to be 3×10¹⁷ cm⁻³ similar to the QD transparency carrier concentration. The lateral filling...
threshold current as low as 12/μA calculated from a simple mode counting argument,18 and this No. W911NF-07-1-0321. A portion of this work was done in the high saturation gain in the QPs. enhanced carrier collection efficiency, large modal overlap, and apertured cavity. We attribute this low threshold to the enumerating the aforementioned estimates. The $L/I$ curves deviate from Eq. (1) at low injection currents, showing a superlinear behavior with slope of $\sim 3$ in a log-log plot. This deviation is related to the superlinear increase of PL intensity in the excited states and is less pronounced in smaller diameter devices where the number of QPs in the devices is reduced.

In conclusion, we have demonstrated electrically pumped CW lasing of QPs in oxide apertured micropillar cavities. With a cavity quality factor $\sim 10^4$, a lasing threshold current as low as 12 μA is achieved at 7 K. As an active gain medium, a single QP layer shows lasing with a current density below 200 A/cm² in a 3 μm diameter oxide apertured cavity. We attribute this low threshold to the enhanced carrier collection efficiency, large modal overlap, and the high saturation gain in the QPs.

This research has been supported by DARPA-ARL grant No. W911NF-07-1-0321. A portion of this work was done in the UCSB nanofabrication facility, part of the NSF funded NNIN network.

18If all modes have the same decay rate, $\beta$ can be approximated as $(\lambda_0/n)^3/8\pi n V_c \Delta \lambda$. $\lambda_0$ is a wavelength in free space, $n$ is effective refractive index, $V_c$ is cavity volume, and $\Delta \lambda$ is FWHM of the optical gain. With $\lambda_0=990$ nm, $n=3.2$, $V_c=3$ μm³, and $\Delta \lambda=40$ nm, $\beta$ of $\sim 0.01$ is obtained.