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We report the observation of “tunneling” effects in a classical optical two-level system. In
particular, we present experimental results for the optical implementations of the Landau-Zener
model and of a hidden level-crossing model. The experimental results are in good agreement with
theory for both the transition probability and the detailed time evolution of the wave function.

PACS number(s): 32.80.Bx, 33.80.Be

I. INTRODUCTION

Over the past few years optical resonators have been
studied as model systems for quantum physics (see
Ref. [1] for a review). Phenomena that are usually associ-
ated with the realm of quantum physics such as Rabi os-
cillations, Autler-Townes doublet splitting, Bloch-Siegert
shifts, and multiphoton resonances have been demon-
strated [2-4]. Generally, the experimental setup con-
sisted of an optical cavity containing time-varying optical
elements which drive the intracavity optical field. Almost
all phenomena observed so far were (nearly) adiabatic
in nature. Upon increasing the rate of change and the
strength of the driving optical elements the onset of dia-
batic dynamics has been observed [3]. However, it was ar-
gued that the analogy with quantum physics would cease
to hold if the rate of change or the strength of the opti-
cal elements would become sufficiently large [1,5]. Par-
ticular concerns were raised regarding the small lengths
of the optical elements compared to the optical cavity
length, and regarding the coupling to the various longi-
tudinal modes of the optical cavity. Only recently was it
understood that the correspondence between a two-level
quantum system and a two-level optical system remains
valid in the diabatic limit [6]. In this article we present
experimental results showing both adiabatic and diabatic
dynamics.

The most familiar level-crossing model for which di-
abatic dynamics is possible is the Landau-Zener (LZ)
model [7,8]. In this model the diabatic, i.e., the un-
perturbed, energy levels cross linearly in time and the
coupling is constant. The adiabatic energy levels form
an avoided crossing and are coupled due to the time de-
pendence of the adiabatic eigenstates. For strong time
dependence and small energy separation of the adiabatic
eigenstates, there is a large population transfer between
these states. This phenomenon of Landau-Zener “tunnel-
ing” is usually associated with quantum mechanics. We
report the observation of Landau-Zener transitions over
the full dynamic range, i.e., from the adiabatic limit to
the diabatic limit, in a classical optical two-level system.

Variations of the LZ model in which the diabatic en-
ergy levels do not cross but for which complex degen-
eracies of the adiabatic energy exist have recently been
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studied theoretically [9,10]. We will refer to such mod-
els as hidden-crossing models. In this article we present
an optical implementation of a particular hidden-crossing
model introduced by Fishman, Mullen, and Ben-Jacob
[9]. We benefit from the macroscopic nature of the optical
system which allows for a precise control of the energy-
level structure, in contrast to atomic experiments where
the relevant parameters are difficult to control. Further-
more, in atomic experiments it is impossible to measure
directly the evolution of the populations, or of the atomic
wave function, since the measurement always disturbs
the wave function. In our optical experiment, however,
the optical wave function can continuously be monitored
without influencing its dynamics.

It is noteworthy that the introduction of Ref. [9]
starts with the following statement: “The phenomenon
of Zener-Landau tunneling, or nonadiabatic transitions,
is a canonical example of a quantum-mechanical effect
without a classical analog.” Despite this statement we
find experimentally good agreement with the theoretical
work presented in Ref. [9]. The reason is that tunnel-
ing is a wave mechanical concept, valid for quantum and
classical waves.

Our paper is organized as follows. The mathemati-
cal correspondence between the descriptions of an opti-
cal two-level system and a quantum-mechanical two-level
system is presented in Sec. II. In Sec. III we present a
brief theoretical review of two-level dynamics. In Sec. IV
the experimental setup is described. The experimen-
tal results for the optical implementations of the LZ
model and the hidden-crossing model are presented in
Sec. V. Conclusions are drawn, and discussions are given

in Sec. VL.

II. OPTICAL CAVITIES AND QUANTUM
MECHANICS

The essential idea of the analogy between an optical
cavity and quantum-mechanical system is that the opti-
cal field inside the cavity is mapped onto the quantum-
mechanical wave function. Each optical resonance fre-
quency provides an “energy level” for the optical field.
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In this article we are particularly interested in two-level
systems. The reduction to such systems is obtained by
considering only two orthogonal polarizations of a single
longitudinal mode of a Fabry-Pérot cavity. Experimen-
tally, we use a frequency-stabilized injection laser which
initially populates a single longitudinal mode in a well-
defined polarization state. As soon as the optical system
is prepared in the initial state the injection light is shut
off. Subsequently, the optical elements inside the cav-
ity are driven such that the polarization of the intracav-
ity light will evolve approximately within the polariza-
tion manifold of the selected longitudinal mode. Specific
driving of the optical elements results in an evolution of
the polarization two-vector similar to the evolution of a
quantum-mechanical state vector. Complications due to
the finite speed of light and the presence of neighboring
longitudinal modes are neglected; these are discussed in
Ref. [6].

The energy degeneracy of the two orthogonal polariza-
tions is lifted by an intracavity electro-optic modulator
(EOM). An EOM consists of a crystal of which the bire-
fringence is proportional to the voltage applied over it.
To obtain a coupled two-level system we include a sec-
ond EOM in the cavity, with its principal axes placed
at 45° with respect to the axes of the first EOM. In the
experiment a small fraction of the light propagating in,
J

M(t) = Ba(t)B1(t) B1(t) B2 (?)
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where the Jones matrices for EOM1 and EOM2 are given
by
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The phase shifts ¢; and ¢, are proportional to the time-
dependent voltages applied to EOM1 and EOM2, respec-
tively.

In order to show the correspondence of the evo-
lution of E(t), with the Schrodinger evolution of a
quantum-mechanical wave function |¢(t)) we integrate
the Schrodinger equation over one round-trip time 7',

Y +T))=Ut+T,t)]4()), (6)
where
t+T

t

Ui+ T,t) =T exp {—% H(t) dt’} . (7)

Time ordering indicated by 7 is necessary if H(t) and
H(t + T) do not commute. However, we assume that

say, the positive z direction, leaks through one of the
cavity mirrors thus providing the detection signal. The
mathematical formalism employed to describe the slowly
varying amplitudes of the two orthogonal polarizations at
the position of the outcoupling mirror is the Jones-matrix
formalism [11]. In this formalism each optical element is
described by a 2 x 2 matrix. Multiplying these matrices
for a closed optical path provides the round-trip matrix
M(t). We will neglect optical losses so that M(¢) is a
unitary matrix. The experiments presented in this arti-
cle are within the limit that M (¢t + T) ~ M (t), where T
is the round-trip time. This implies that M(t) is approx-
imately constant during a single round-trip time.

The evolution of the electric field envelope at the po-
sition of the outcoupling mirror is then obtained by

E(t+T) = M(t)E(t). (1)
Here E(t) is given by
E(t) = as(t)& + ay (1), (2)

where a.(t) and ay(t) change slowly compared to the
optical frequency. TAHe two orthonormal basis states are
indicated by # and 7.

For a round trip through the linear cavity used in our
experiments, shown in Fig. 4 below, M (t) is of the fol-
lowing form

—1.cos ¢ sin ¢o ) (3)

isin @1 + cos ¢ cos @2

—

H(t+T) =~ H(t), corresponding to the assumption above
that M(t + T) =~ M(t). Therefore, Eq. (7) reduces to

U(t+T,t) = Ut) = exp {—%H(t)T} . 8)

If we include the factor T/% in the matrix elements of
H(t) and if we restrict ourselves to real symmetric ma-
trices then Eq. (8) reads

U(t) = exp {——iR(t)}
—exp {20 EO VL @)
#2(t) —¢1(t)
where ¢; and qu represent phase shifts per round-trip
time T'.

The round-trip matrix M (t) bears obvious resemblance
to the Schrodinger propagator U(t). In order to make
the correspondence explicit we must express the round-
trip matrix as an exponent of some Hermitian matrix R,
M (t) = exp{—iR(¢t)}. Since M(t) is an unitary matrix

there always exists a R(t) that fulfills this requirement.
For M (t) given by Eq. (3) R(t) is of the following form:

R(t) = -2 (

sin ¢

sin ¢q
cos ¢ sin ¢

cos ¢ sin @2 ) (10)
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FIG. 1. The solid and dotted lines represent the eigen-
values ¢ of R(t) and R(t), respectively, as functions of ¢1
(—m < ¢1 < 7) for constant ¢z (¢2 = 0.1w).

where ¢ = arccos(cos ¢; cos ¢2).

We conclude that the optical system characterized by
R(t) corresponds to a quantum-mechanical system char-
acterized by R(t) if R(t) ~ R(t). To examine whether or
not this relation holds we identify ¢, and ¢, with ‘1;1 and
$2, and plot in Fig. 1 the eigenvalues of R(t) and R(t) as
functions of ¢; for ¢ = 0.17. _

Comparing the eigenvalues of R(t) and R(t), and com-
paring the corresponding eigenstates, leads to the con-
clusion that R(t) =~ R(t) if

—Z<hi<7, and <1 (11)
These requirements are easily fulfilled in the experiments
that we present in this article.

III. THEORY OF TWO-LEVEL DYNAMICS

In this section we briefly review the quantum-
mechanical approach to two-level dynamics determined
by real symmetric Hamiltonians.

A. The adiabatic representations

To obtain a good understanding of level dynamics it is
useful to give a description in the adiabatic representa-
tion. The adiabatic basis at time ¢ is formed by the two
instantaneous eigenstates of H(t), where H(t) is given in
the diabatic, i.e., the time-independent, representation.
For real symmetric Hamiltonians H(t) is of the form

5(t)

.
H@:(Vm_é&). (12)

The time-dependent adiabatic basis vectors are written
as follows:
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FIG. 2. (a) The solid curves represent the adiabatic energy
levels of the Landau-Zener Hamiltonian, Hyz(t), for o = 1.00
J/s, and A = 0.25 J. The dashed curves represent the dia-
batic (A = 0) energy levels. (b) The solid curves represent
the adiabatic energy levels of the Hamiltonian for the hid-
den-crossing model, H|yz(t), for a = 1.00 J/s, § = 0.05 J,
and A’ = 0.245 J. The dashed curves represent the diabatic
(A" = 0) energy levels. Note that in (a) the diabatic energies
cross at t = 0 whereas in (b) the diabatic energy levels form
an avoided crossing at t = 0.
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The adiabatic representation of the Hamiltonian, #, is

—e(t) —iy(t
) = ( B )) ’ (16)

where the energies of the adiabatic eigenstates are
te(t) = £4/52%(t) + V2(¢), (17)
and the adiabatic coupling is

V(t)S(t) — V(t)S(t)
2[8%(t) + V23(t)]

0 .
(1) =5 = balxe) = (18)
For time derivatives the dot symbol is used. Note that
the two adiabatic energy levels are coupled due to the
rate of change of the adiabatic basis vectors.

B. The Landau-Zener model

The Landau-Zener model is characterized by a linear
crossing in time of the diabatic energy levels, S(t) = at,
and by a constant coupling, V(¢) = A. Hence in the
diabatic representation the Landau-Zener Hamiltonian
reads

Hiz(t) = (‘X A, ) (19)

The solid and dotted curves in Fig. 2(a) show the adi-
abatic and diabatic energy curves of the Landau-Zener
model, respectively.

The Landau-Zener model is one of the few models of
two-level dynamics for which the Schrodinger equation
is exactly solvable [12]. If at time ¢t = —oo the system
is prepared in the adiabatic state |x1(—o0)) = |+) then
the final transition probability Py to the other adiabatic
state |x2(+00)) = |+) is given by

Py = exp(—n/T), (20)
where the so-called adiabaticity parameter I' is given by
I = ha/A%. (21)

In anticipation of the comparison of the experimental re-
sults with theory we introduce & and A as phase shifts
per round-trip time T so that we may write

Hyz(t) = %ﬁLz(t) = ; (6;; —?it) ) (22)
and
I' = ha/A% = GT/A%. (23)

C. Hidden-crossing models

Variations of the LZ model in which the diabatic en-
ergy levels do not cross have recently been studied the-

oretically [9,10]. Although neither the adiabatic nor the
diabatic energy levels cross in time there are nonzero
transition probabilities. By analytical continuation of
the adiabatic energy levels in the complex time or space
plane there are in general points where the levels do cross
[13]. Models for which the diabatic energy levels do not
cross and for which complex degeneracies of the adiabatic
energy levels exist are referred to as hidden-crossing mod-
els.

We have studied experimentally a particular hidden-
crossing model for which the adiabatic energy levels are
identical to the LZ levels as shown in Fig. 2(b). This
model was introduced by Fishman, Mullen, and Ben-
Jacob [9]: it is characterized by the following Hamilto-
nian

o2t +52 1/2 A
Hipz(t) = (( A’ ) _(a2t? + 82)1/2 ) (24)

For § = 0 this Hamiltonian reduces to

alt] A’
HlLZI(t) = ( A!ll _altl ) ,

hence we attached the notation |LZ| to this model.
Although the adiabatic energy levels are the same in
Figs. 2(a) and 2(b) (for 62 + A’?2 = A?), the transition
probabilities are completely different for the two models.
This emphasizes the fact that the coupling between the
adiabatic energy levels is dominated by the time deriva-
tives of the adiabatic energy eigenstates. In Fig. 3 the
adiabatic coupling strength ~(t) as given by Eq. (18) is
plotted as a function of time for the LZ model (solid
curve) and the |LZ| model (dashed curve).

Note that for the |LZ| model there are two domains, an-
tisymmetric around ¢t = 0, which significantly contribute

(25)

Adiabatic Coupling (J)

-1.0 -0.5 0 0.5 1.0
Time (s)

FIG. 3. Plot of the adiabatic coupling strength v as func-
tion of time for the LZ model (solid curve, o = 1.00 J/s, and
A = 0.25 J), and for the |LZ| model (dashed curve, o = 1.00
J/s, 6§ =0.05 J, and A’ = 0.245 J).
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to the transition probability. In the adiabatic limit and
in the diabatic limit the state vector will evolve as indi-
cated by the solid curve and dashed curve in Fig. 2(b),
respectively. In the intermediate regime the combined
effect of the two domains of adiabatic coupling give rise
to population transfer. So far, analytical approximations
are only known for the transition probabilities in the adi-
abatic and diabatic limit [9]. In the intermediate regime
only numerical calculations have been reported [9]. The
main feature of the |LZ| model is the |t| time depen-
dence, the precise value of § is of minor importance. We
will hereafter take § = 0. Again in anticipation of the
comparison of the experimental results with theory we
use &t = atT/h, and A’ = A'T/A.

IV. EXPERIMENTAL SETUP

In this section we discuss the experimental implemen-
tation of the Landau-Zener and the hidden-crossing mod-
els. Figure 4 shows the optical part of the experimental
setup. The key elements are the two EOM’s that are
placed in a Fabry-Pérot cavity. The length of the cav-
ity is 0.86 m and the mirrors, M1 and M2, have re-
flectances of 99.8%. The round-trip time T is 2L/c = 5.7
ns. EOM1 is a low-voltage EOM (\/2-voltage = 200 V)
which is driven by the amplified output of an arbitrary-
wave-form generator. The value of &(t) is proportional to
the applied voltage. EOM2, placed with its axes at 45°
with respect to those of EOMI, is a high-voltage EOM
(A\/2 voltage = 4 kV). The parameter A, proportional to
the applied voltage over EOM2, is constant during each
experimental run.

Injection light, provided by a single-mode frequency-
stabilized 633 nm He-Ne laser, is linearly polarized along
one of the axes of EOM1 and then coupled into the cavity

AOM

EOM2 PZT

|

,t_, >< M2 | NPBS

FIG. 4. Experimental setup. The acronyms used are OI for
optical isolator, AOM for acousto-optic modulator, A for at-
tenuator, P for polarizer, M for mirror, EOM for electro-optic
modulator, PZT for piezo element, NPBS for nonpolarizing
beam splitter, and APD for avalanche photo diode. The dot-
ted line surrounds the Fabry-Pérot cavity.

through mirror M1. The cavity is made resonant with
the injection light by slowly scanning the cavity length
with a piezo element (PZT) mounted behind M2. When
the cavity is scanned into resonance, detected by the pho-
todiode APD1, the injection light is switched off by an
acousto-optic modulator (AOM) permitting us to study
the evolution of the intracavity light, without further in-
jection. By using the first-order reflected beam from the
AOM the injection light is switched off by removing the
AOM voltage. The switching occurs within 10 ns since we
focus the incident beam inside the AOM. Subsequently
EOM.1 is driven by the arbitrary-wave-form generator to
create either the Landau-Zener or the hidden-crossing
model. The constant voltage applied to EOM2 is changed
to vary the adiabaticity parameter I' (I' = &T'/A?) [15].

To ensure that the light in the cavity has a
lifetime sufficient for the experiment, a He-Ne dis-
charge tube is inserted into the cavity to serve
as a polarization-independent amplifier. To obtain
polarization-independent amplification we mounted flat
windows (double-sided antireflection coated at 633 nm)
onto the capillary facets, instead of Brewster windows.
We operate the optical cavity closely below laser thresh-
old to avoid saturation of the gain medium which would
introduce a polarization anisotropy. In this way the fi-
nesse is increased from 60 to 2500; this corresponds to a
photon cavity lifetime of approximately 2 us.

The light that leaks through M2 passes through a non-
polarizing beam splitter. One path permits us to detect
the total light intensity, whereas the other path includes
a polarizer and provides the detection signal for the in-
tensity of the light polarized along the direction of the
injection beam. Thus we can measure the intensity of,
for instance, the z-polarization component of the light,
which gives us information about the population transfer
between the diabatic eigenstates. For detection we use
two dc avalanche photo diodes (APD1 and APD2), with
a bandwidth of 200 MHz. In order to enhance the sig-
nal to noise ratio, we average over 100 experimental runs
taken within 10 s.

V. EXPERIMENTAL RESULTS
A. The Landau-Zener model

Before proceeding to discuss the final results, we will
illustrate some of the intermediate steps. Figure 5(a)
depicts the result of a single-run Landau-Zener measure-
ment. By comparing the signals of APD1 and APD2
we observe that before the transition occurs at time
t = 0.75 us the light is polarized along the z axis, i.e., in
one adiabatic eigenstate only. The total intensity of the
light undergoes an exponential decay because the optical
system is operating slightly below laser threshold. After
the transition light is present in both adiabatic eigen-
states. Since the adiabatic eigenstates in the vicinity
of the avoided crossing are superpositions of z- and y-
polarized light a beat frequency is visible in the bottom
trace of Fig. 5(a), i.e., in the intensity of the z polar-
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FIG. 5. Landau-Zener dynamics: (a) Signal from a sin-
gle-run measurement, I' = 2.61. The top trace is the total
intensity as measured by APD1. The bottom trace is the in-
tensity of the z component of the polarization measured by
APD2. (b) Signal averaged over 100 runs and normalized,
I' = 2.61. The normalized intensity of the = polarization cor-
responds to |az(t)|?.

ization. As time increases beyond the transition the fre-
quency of the oscillation increases which indicates that
the levels are being pulled further apart. Figure 5(b)
shows the same dynamics, but now we have averaged over
100 runs and normalized the z-polarization signal by di-
viding by the total intensity. The normalized intensity of
the = polarization corresponds to |a.(t)|?, where a.(t) is
defined in Eq. (2). The graph shown in Fig. 5(b) is quite
remarkable since it allows the verification of the Landau-
Zener theory in all detail. Not only the final transition
probability is measured but also the exact time evolution
of the wave function.

In Fig. 6 we compare the experimental results with the
theoretical predictions. The solid traces in Fig. 6 show
optical Landau-Zener measurements for different values
of I'. In the experiments the & parameter was constant,
& = (1.02+0.01) x 10® s~!. The corresponding range of
¢1 during a single-run experiment of 2 us is

—0.2r < ¢ <0.27. (26)

The adiabaticity parameter I' is varied by changing the
A parameter. The maximum value of A used in the ex-
periments corresponds to ¢2 = 0.1wr. The bottom trace
shows the near-adiabatic regime in which the system fol-
lows the time-dependent adiabatic eigenstates; it pro-
ceeds from initial z- to final y-polarized light. As I' is
increased, the transition probability between the adia-
batic eigenstates becomes larger and the final state con-
tains z-polarized light as well. The top trace shows the

1.0

la_(t)12

x
o
(9]

0 0.5

Time (us)

FIG. 6. Landau-Zener dynamics: comparison of experi-
ment and theory for (top to bottom) I' = 34.8, I' = 8.01,
I' = 293, and I = 0.71. The solid traces show the experi-
mental results and the dashed curves show the corresponding
theoretical results.

near-diabatic regime, in which the light remains almost
completely in the z-polarized state.

Without using any fit parameter the experimental data
in Fig. 6 are in excellent agreement with the theoretical
predictions (dashed curves).

There are only two minor differences between the ex-
perimental and theoretical results. First, the oscillation
frequencies of the theoretical curves and the experimental
traces do not exactly match. This deviation is, however,
within the experimental inaccuracy of 1.5% in the deter-
mination of & and A.

Second, in the experiments the oscillation amplitude
decays slightly faster than the theory predicts. This in-
dicates the loss of coherences between the two adiabatic
eigenstates. A possible explanation is that spontaneous
emitted light by the gain medium gives a small random
contribution to the phase of the light inside the cavity.
If the optical intensities decrease the relative influence of
spontaneous emitted photons increases.

To quantify the agreement between theory and exper-
iment, the theoretical predictions for the final transition
probability Py are plotted in Fig. 7 (solid curve) along
with our experimental results (squares) as a function of
I'. The experimental values of Py have been determined
to an accuracy of 1% by taking the center values of the
oscillations at the right-hand side of the traces in Fig. 6.
Over the complete dynamical range we find agreement
for the final transition probability to an accuracy of 2%.

B. The hidden-crossing model

The experimental results for the optical implementa-
tion of the |LZ| model are shown in Fig. 8. In this case
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FIG. 7. Final transition probability Ps: The solid curve
and the dashed curve show the theoretical predictions for the
Landau-Zener model and the hidden-crossing model, respec-
tively. The squares and the circles show the corresponding
experimental data.

the parameter &(t), which determines the separation be-
tween the diabatic energy levels and which corresponds
to the voltage applied over EOMI1, is of the form &l¢],
where & = (6.02 + 0:05) x 10% s~1. The parameter A/,
which is proportional to the voltage applied over EOM2,
is again constant for each experimental run and is varied
for different runs to change the adiabaticity parameter
I.

In the adiabatic regime as shown in the top trace of
Fig. 8, the light evolves from the z-polarized state to a
superposition of the z- and y-polarized states, back to
the z-polarized state. It corresponds to a zero transition
probability between the adiabatic eigenstates. As I is
increased (from top to bottom trace of Fig. 8), so does the
transition probability, but only up to a certain value of
T'. Notice that the transition probability has a maximum
around I' = 2.4. This qualitative behavior is precisely as
expected from the hidden-crossing model as reviewed in
Sec. III. C. In Fig. 9 the experimental time traces and the
theoretical curves for I' = 0.49, and I" = 8.66 are plotted
[14].

Again good agreement between theory and experiment
is obtained. To quantify the correspondence we plotted
in Fig. 7 the experimental data (circles) obtained for the
transition probability together with the theoretical pre-
dictions for Py (dashed curve) as a function of I'. Over
the complete dynamical range we find agreement for the
final transition probability to an accuracy of 3%.

VI. DISCUSSION AND CONCLUSIONS

We have experimentally demonstrated level-crossing
dynamics, from the adiabatic to the diabatic regime, in

classical optical systems. Despite the presence of addi-
tional optical levels (i.e., longitudinal modes) surround-
ing the two optical levels under study we find good agree-
ment between optical experiments and theory, developed
for quantum-mechanical systems. We have presented
a direct experimental verification of the detailed time
evolution of the wave function upon passing either an
avoided crossing or a hidden crossing. The results for
the two types of crossings show that the correspondence
between optical systems and quantum systems remains
valid within the diabatic limit. In addition, the good
agreement between theory and experiment shows that
the influence of retardation effects remains negligible on
the time scales used in our experiments [6].

One clear difference between the quantum-mechanical
wave function and the optical wave function is of course
the influence of a measurement. Whereas in quantum
mechanics the measurement destroys the phase informa-
tion due to coupling to the macroscopic world, this so-

1.0
05 v
I'=0.13
1.0
0.5 WN—‘
I'=0.24
1.0
N W
;_';x 0.5
I'=0.57
1.0
os W
I'=24
1.0
0.5
I'=10.1
l 0 B e R A e
0.5
T'=44.2
0
-0.5 0 0.5

Time (us)

FIG. 8. |LZ| dynamics: normalized, averaged experimental
data for different values of the adiabaticity parameter T'.
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FIG. 9. |LZ| dynamics: comparison of experiment and the-
ory for I' = 0.49, and I' = 8.66. The solid traces show the
experimental results and the dashed curves show the corre-
sponding theoretical results.

called collapse of the wave function is not present dur-
ing the optical measurement. The fact that photons are
bosons allows that the optical levels can be filled by many
identical photons. We profitted from this boson char-
acter by including a light-amplifier tube which “clones”
photons to replace those escaping from the cavity. Since
the precise time evolution of the optical wave function
is measurable, it is possible to examine histories of adi-
abatic “quantum” transitions in optical systems. This
topic, which led Berry and Lim to the introduction of
the superadiabatic basis [17-19], will be the subject of
future experiments.

For the description of quantum-mechanical systems the
appearance of A is usually believed to be a fundamental
feature. In the description of the dynamics inside optical
cavities all frequencies can be related to energies by the
well-known relation F = Aw. Since in the description of
the dynamics inside any two-level system only the rela-
tive differences between the energy or frequency levels is
relevant, # becomes a superfluous constant. We have not
set A = 1 for this article; instead £ simply vanishes from
the equation of motion since all energies are related to
frequencies.

Our experiments were limited to a finite time inter-
val since the optical level structure deviates from the
Landau-Zener level structure for |t| > 0. It is not neces-
sary to interpret this deviation as a shortcoming of the
optical system; rather it emphasizes the unphysical char-
acter of the Landau-Zener model for ¢ — F+o0o. Variations
on the Landau-Zener model have been introduced which
are not beset by unphysical features for t — +oo [16].
A detailed study of such models is within reach of opti-
cal experiments; however, this is outside the scope of the
present article.

In this paper we have restricted ourselves to two-level
systems with real Hamiltonians. Two-level models char-
acterized by complex Hamiltonians offer new possibili-
ties. Berry has pointed out that certain complex Hermi-
tian Hamiltonians give rise to geometric amplitude fac-
tors [20]. It is possible, in principle, to generate such
Hamiltonians in our setup. Experimental efforts are cur-
rently underway to observe the geometric amplitude fac-
tors in these optical systems.
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