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Nonlinear photonic crystals can be used to provide phase matching for frequency conversion in
optically isotropic materials. The phase-matching mechanism proposed here is a combination of form
birefringence and phase velocity dispersion in a periodic structure. Since the phase matching relies on
the geometry of the photonic crystal, it becomes possible to use highly nonlinear materials. This is
illustrated considering a one-dimensional periodic Aly4GaygAs/air structure for the generation of
1.5 wm light. We show that phase-matching conditions used in schemes to create entangled photon pairs

can be achieved in photonic crystals.
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Polarization entangled photon pairs play a central role
in testing the foundations of quantum mechanics and in
implementing quantum information protocols [1]. They
are likely to remain an appealing resource for practical
quantum information science since they interact very
little with the environment, propagate easily over long
distances, and since photon polarization is easily manipu-
lated in experiments. A popular method to create such
pairs is by down-conversion in nonlinear crystals. For
this process to be efficient the down-converted photons
generated by pump photons at different points in the
crystal have to be in phase with each other. This leads
to the “phase-matching” condition k = kl + kz, for the
wave vectors of the pump (k ) and down converted pho-
tons (kl, k2) In general this condmon will not hold owing
to normal index dispersion which makes |k | > |k | +
|k2| The current schemes for down-conversion employ
the natural birefringence of specific nonlinear crystals,
like B-barium-borate (BBO), to compensate for this
effect.

In one of these schemes [2,3], down-converted photons
emerging in a particular pair of directions are entangled
in polarization:

1 .

E(|V>1|H>2 + e"H) V), (1)
where V and H denote the polarization state of particles 1
and 2 and € is a phase factor that can be set by passing one
of the photons through a phase plate.

Although birefringent nonlinear crystals have proven
to be a successful source in many proof of principle
experiments the demands of both practical quantum in-
formation and schemes for the implementation of all
optical quantum computing [4] make it desirable to pro-
duce sources that are both more efficient and more easily
integrable on, for example, an optical chip. The require-
ment that both the birefringence and the y'? nonlinearity
be naturally present severely limits the possibilities
for improvement of sources based on existing crystals.
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PACS numbers: 03.67.Mn, 42.65.Lm, 42.70.Qs

Semiconductors such as GaAs or GaP have a ', typi-
cally 200 pm/V [5], about 2 orders of magnitude larger
than that of commonly used crystals such as BBO,
2.2 pm/V [6]. This, together with the existence of well
developed microfabrication techniques for these mate-
rials, makes it attractive to explore ways of creating semi-
conductor based entangled photon sources. In these
materials, which have no natural birefringence, the con-
ditions for phase matching must be created artificially. In
this Letter we show how photonic crystals can be used to
achieve this.

Photonic crystals are materials with a periodic varia-
tion in refractive index on the scale of the optical wave-
length. In layered structures the different boundary
conditions at the interfaces for the two polarizations leads
to an effective or “form” birefringence. The application
of this effect to phase matching has been explored in the
limit that the optical wavelength is much larger than the
periodicity [7-9]. When the wavelength is comparable to
the periodicity it was suggested that a reciprocal lattice
vector can be added to the phase-matching conditions
[10]. Alternatively a similar relation was found for peri-
odically poled structures that have a periodicity in y?,
leading to quasi-phase-matching conditions [11]. Our
work proposes how a combination of form birefringence
and the strongly altered phase velocity in a photonic
crystal can be used to phase match down-converted light
and generate entangled photons.

We focus on one-dimensional structures for the sake of
simplicity, although the concepts can be extended to two-
and three-dimensional photonic crystals. The periodic
variation in refractive index leads to Bragg scattering of
the light, and wave propagation becomes best described in
terms of a photonic band structure. If the wavelength is
comparable to the periodicity of the structure, the propa-
gation of light is strongly affected, leading to the exis-
tence of a range of frequencies, known as a stop band, for
which light does not propagate.

The propagation of electromagnetic waves in a pho-
tonic crystal is described by Maxwell’s equations with a
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periodic dielectric function (7). The general solution is
given in terms of Bloch waves labeled by a frequency w
and a Bloch-wave vector K and consists of a plane wave
multiplied by a function that has the periodicity of the
photonic lattice. The Bloch wave can be written as a
Fourier sum over the reciprocal lattice vectors G:

E,g(?, ) = e_i(E’F_w’)Zékée_ié'F, 2)
G

where e[%é are the Fourier coefficients for each of the
space harmonics. For a one-dimensional structure K and
the coefficients é; ; can be obtained by finding the ei-
genvalues of a 2 X 2 transfer matrix for each polarization
separately [6]. The effect of index dispersion, essential in
any discussion of phase matching, can be easily incorpo-
rated as the transfer matrix is defined at each frequency
separately. The obtained wave vector can be decomposed
in components K, perpendicular and k| parallel to the
layers of the photonic crystal. The dispersion relation for
transverse electric (TE) or ordinary (o) polarized waves,
which have the electrical field in the plane of the layers, is

given by [6]

1
K, (w, k)= Karccos[cos(klza +ko.b)

l(klz + k2z)2 . .
—_ = k k,.b)],
3 ko, sin(ky,a)sin(k,.b)]

3)

where k;, and k,, are the plane wave vector components
perpendicular to the interfaces in medium one (of refrac-
tive index n;) and medium two (of refractive index n,):

nyw 2 )
kia, = ( c >_k||'

An analogous expression can be derived for the orthogo-
nal transverse magnetic (TM) or extraordinary (e) polar-
ization, which results in different propagation constants.
This important polarization dependence arises from the
different boundary conditions at the interfaces for the two
polarizations and plays a key role in the generation of
polarization entangled photon pairs.

Figure 1 shows a band structure derived from Eq. (3)
for a periodic structure with alternating layers of
Al 4GaggAs and air. The fill fraction of Aly4GaggAs is
0.656. The gray area corresponds to propagating solutions
for TM waves (left panel, negative k) and TE waves
(right panel, positive k). They coincide for normal in-
cidence (k|| = 0). The solid lines in the figure correspond
to light in vacuum (@ = c|k]) and divide the modes in
those accessible to waves from outside the crystal, and
those that are confined by total internal reflection. The
latter modes can be accessed from the side of a sample or
by using a set of prisms [12].
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FIG. 1. Band structure of a periodic structure with

Aly4GaggAs and air layers for TM (left) and TE (right) polar-
ized light. The gray area corresponds to propagating solutions
at a given frequency @ and wave vector k. The solid lines
indicate the “light line” in vacuum: w = clk].

The frequency is specified in multiples of ¢/ A, where
A is the periodicity of the structure. The structures were
designed by first considering the refractive index to be
equal to that at the pump frequency w, (n = 3.4 at A =
750 nm). This allows the selection of a periodicity A such
that the pump photons propagate in the structure. Once
the periodicity is fixed, the frequency dependent refrac-
tive index is used to calculate dispersion surfaces to
search for phase-matching conditions at relevant fre-
quencies. The choice of material is motivated by the large
second order nonlinearity together with the fact that it is
transparent at a pump wavelength of 750 nm, to allow
degenerate down-conversion in the important telecom-
munication window around 1500 nm. Moreover, the fab-
rication of such crystals seems to be feasible by starting
with a periodic structure that has layers of AlAs and
Al 4Gay¢As followed by selective wet etching of the
AlAs [13]. The fill fraction was chosen in order to
maximize birefringence in the long wavelength limit
(A <)), where the Bloch waves are plane waves and
experience an effective medium that behaves as a uniaxial
birefringent material.

The leading terms in the Bloch-wave expansion in
Eq. (2) will phase match when I?l, +G,= K, +G, +
K, + G, where the Gs correspond to the leading é RGS
ensuring efficient down-conversion into these modes. Two
regimes are explored that lead to the generation of en-
tangled photon pairs. We first discuss the long wavelength
limit (A < A) followed by the case where A ~ A.

Figure 2 shows dispersion surfaces in the long wave-
length limit for a structure with periodicity A =
18.75 nm and a pump wavelength of 750 nm (0.05
7rc/A). One set of dispersion surfaces for the down-
converted light, at 1500 nm wavelength, is drawn at the
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FIG. 2 (color online). Dispersion surfaces for degenerate
down-conversion at 1500 nm in a one-dimensional
Al 4GaggAs/air photonic crystal with a periodicity A =
1875 nm and a fill fraction of Aly,GaggAs of 65.6%.
Dispersion surfaces are shown for the pump at a wavelength
of 750 nm (thick lines) and for degenerate down-conversion at
1500 nm (thin lines). The dashed lines correspond to TE
(ordinary) polarization, while the solid lines correspond to
TM (extraordinary) polarization. The pump wave vector in-
dicated by the arrow is extraordinary.

origin; another is drawn at the end of the pump wave
vector in order to obtain a simple geometric construction
of the phase-matching condition. Wave vectors satisfying
the phase-matching condition correspond, in such a dia-
gram, to the intersections between the dispersion surfaces
of the down-converted photons.

The intersections of the thin dotted lines represent the
wave vectors of two ordinary (o) polarized photons,
created by the extraordinary (e) polarized pump field.
This situation is usually referred to as noncolinear
type-I down-conversion. Since the structure is symmetric
under rotations about the optical axis parallel to K, the
circles and ellipses in Fig. 2 should be seen as spheres and
ellipsoids. The intersections of the two down-conversion
spheres for o polarization give a circle, representing a
cone of down-converted light centered on the pump wave
vector. Every pair of photons is emitted in such a way that
they obey the phase-matching condition and so are al-
ways diametrically opposite each other about the pump.

For noncolinear type-II down-conversion, the pump
field is e polarized and the down-converted photon pairs
each have one o polarized and one e polarized photon.
This case corresponds to the intersections of the dashed
thin lines with the solid thin lines in Fig. 2. There are two
pairs of such intersections, each representing an intersec-
tion between a sphere and an ellipsoid. They define two
slightly distorted cones of down-converted light whose
central axes are not aligned. For the direct generation of
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polarization entangled photons as in Eq. (1), the ¢ and o
photons in a pair must be emitted in directions in which e
photons and o photons are indistinguishable except by
their polarization. This happens at the intersections of the
two distorted cones discussed above.

Figure 3 shows dispersion surfaces for a photonic crys-
tal with a periodicity A = 187.5 nm, a factor of 10 greater
than that of Fig. 2 and comparable to the wavelength of
the pump light. The frequency of the pump w = 0.57¢/A
(A = 750 nm) is now above the first stop band for normal
incidence. The dispersion surfaces for the pump are no
longer continuous as some directions are excluded by
Bragg reflection.

For the down-converted photons at a wavelength of
1500 nm, the Bloch waves are essentially plane waves
with wave vectors K and K,. The phase-matching con-
dition in this case reduces to I?p +G, = I?l + 12'2. The
pump wave vector, indicated by the arrow, is chosen to
end in the second Brillouin zone in order to select the
reciprocal lattice vector that corresponds to the dominant
space harmonic of the Bloch wave in Eq. (2). In principle,
phase matching can also be achieved by choosing another
reciprocal lattice vector, but the amplitude of the down-
converted light will be reduced.

The dispersion surfaces of down-converted photons in
Fig. 3 indicated by the thin lines resemble those of the
long wavelength limit. Again there are two different
types of intersections, corresponding to type-I (e — 00)
and type-II (e — eo) down-conversion. As discussed
in the long wavelength limit, polarization entangled
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FIG. 3 (color online). Dispersion diagram in the repeated
zone scheme for a pump wavelength of 750 nm. The periodicity
of the crystal is A = 187.5 nm and the fill fraction of
Aly4GaygAs is a = 0.656. The pump wave vector is indicated
by the arrow.
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photons may be collected at the intersections of the dis-
torted cones.

In the long wavelength limit the phase matching relies
solely on form birefringence. However, when the period-
icity of the crystal is comparable to the wavelength of the
pump, the phase matching also relies on a substantial
change in phase velocity. For frequencies below the stop
band the phase velocity is lower than that in the long
wavelength limit, which works against phase matching
since it adds to the effect of normal index dispersion.
However, if the frequency is above the frequency of the
stop band the phase velocity is increased and compensates
the effect of index dispersion. For large enough index
contrast this can be used to achieve phase matching where
all photons have the same polarization, i.e., e — ee
or o — oo.

We now estimate the efficiency of our scheme com-
pared to that of the scheme based on BBO. There are four
factors that contribute to the relative amplitude: (i) the
ratio of the value of the y®s. (ii) The efficiency per unit
length should be multiplied by the fill fraction of y®
material (0.65). (iii) The scheme phase matches the lead-
ing term of the Bloch waves. The magnitude of this term
is obtained by Fourier analysis of the Bloch wave. This
gives a factor of ~1 and a factor ~0.21 for the structures
in Figs. 2 and 3, respectively. (iv) As for any nonlinear
material we need to consider the tensor properties of the
nonlinearity. Aly4Gag¢As has the 43m point group sym-
metry and for the conventional (100) surface orientation
and our directions this gives a factor of ~0.83 and ~0.53.
Multiplying all factors and squaring to get the relative
efficiency gives ~2500 and ~50 times the efficiency
for BBO.

The example structures we used to illustrate our
scheme have by no means been tailored to maximize
the efficiency. The large value of y@ in Aly4GaggeAs
leaves ample room for tailoring the geometry of the
structure to suit a particular application, while keeping
the process efficient. It should be noted that there is a
trade-off between increasing the strength of the interac-
tion of light with the photonic crystal and the loss in
efficiency associated with the undesired terms in the
Bloch-wave expansion (cf. the efficiency for Figs. 2 and
3). An interesting extension of our work is to consider
down-conversion of pulsed Gaussian beams, which is
accompanied by spatiotemporal walk-off effects that af-
fect the quality of entanglement and the efficiency of the
process. It seems promising to explore the difference
between group velocity and phase velocity in a photonic
crystal to reduce these effects.

The concepts introduced in this Letter can be extended
to two- and three-dimensional photonic crystals. The
change in phase velocity is a result of Bragg reflection
common to all photonic crystals. Form birefringence
relies on polarization dependent boundary conditions
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and is observed in one- and two-dimensional photonic
crystals. Form birefringence can be introduced in three-
dimensional structures by making the individual scatter-
ers elongated which can be achieved in microfabricated
structures [14] or by deforming a colloidal crystal [15].

We presented a phase-matching scheme that uses the
combined effects of form birefringence and a change in
phase velocity in photonic crystals to enable the produc-
tion of entangled photon pairs. Both effects can be tuned
by designing an appropriate structure and are decoupled
from the intrinsic nonlinearity that is determined by the
choice of the constituent materials. We focused primarily
on III-V semiconductors and on AlGaAs, in particular.
These materials have a high nonlinearity together with a
large linear refractive index which contribute to a strong
interaction with light. Microfabrication techniques are
well developed for these materials and an experimental
realization seems feasible. If successful, the structure
could be implemented on optical chips as an integrated
source of entangled photons.
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