Computational Infrastructure for Lattice Gauge Theory

A Strategic Plan

Scientific Objectives
Hardware Plans
Software Infrastructure
Deployment Plan
Funding Profile
Management
Scientific Objectives

• Understand the physical phenomena encompassed by quantum chromo-dynamics (QCD)

• Make precision calculations of the predictions of QCD

Lattice QCD is an integral part of research in high energy and nuclear physics, and is closely coupled to the DOE’s experimental program in these fields.
Close Coupling with the Experimental Program

- Weak Decays of Strongly Interacting Particles
 - BaBar (SLAC)
 - Tevatron B-Meson Program (FNAL)
 - CLEO-c Program (Cornell–Proposed)

- Quark–Gluon Plasma
 - RHIC (BNL)

- Structure and Interactions of Hadrons
 - Bates BNL FNAL JLab SLAC
Some Lattice QCD Achievements

- Qualitative features of QCD
 - Quark confinement
 - Chiral symmetry breaking
 - Quark–gluon plasma

- Examples of quantitative results
 - Temperature of the chiral symmetry restoration phase transition
 - Accurate determination of the light hadron spectrum (quenched)
 - Determination of $\alpha_s(M_Z)$ and masses of the c and b quarks to a few percent.
 - Determination of B and D meson decay constants, and $\bar{B}B$ and $\bar{K}K$ mixing matrix elements to a precision of about 10–20%.
Summary of the determinations of $\alpha_s(M_Z)$ from the Particle Data Group.
Precision Tests of the Standard Model

- Lattice calculations of weak matrix elements are needed to relate experimental results to underlying parameters of the Standard Model.

- Multiple measurements of the same Standard Model parameters in different experiments and calculations will lead to crucial consistency tests.

- In many cases the greatest challenge is to reduce the uncertainties in the lattice calculations.
Impact of Lattice QCD on CKM Matrix Elements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>CKM Matrix Element</th>
<th>Hadronic Matrix Element</th>
<th>Expt. Error</th>
<th>Current Lattice Error</th>
<th>Lattice Error 0.5 TF-Yr</th>
<th>Lattice Error 10 TF-Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔM_{B_d} ($\bar{B}B$ mixing)</td>
<td>$</td>
<td>V_{td}</td>
<td>^2$</td>
<td>$f_{B_d}^2 B_{B_d}$</td>
<td>4%</td>
<td>35%</td>
</tr>
<tr>
<td>$\Delta M_{B_s}/\Delta M_{B_d}$</td>
<td>$</td>
<td>V_{ts}/V_{td}</td>
<td>^2$</td>
<td>$f_{B_s}^2 B_{B_s}/f_{B_d}^2 B_{B_d}$</td>
<td>Not yet measured</td>
<td>10%</td>
</tr>
<tr>
<td>ε ($\bar{K}K$ mixing)</td>
<td>$\text{Im} V_{td}^2$</td>
<td>B_K</td>
<td>2%</td>
<td>20%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>$B \to (\pi^0)/\nu$</td>
<td>$</td>
<td>V_{ub}</td>
<td>^2$</td>
<td>$\langle \pi^0</td>
<td>(V - A)_\mu</td>
<td>B \rangle$</td>
</tr>
</tbody>
</table>

In the table above, f_X is the leptonic decay amplitude for the indicated meson, and B_X is proportional to the matrix element of $\Delta S = 2$ or $\Delta B = 2$ four–quark operators. The last two columns show the improvements in lattice errors that we estimate would be obtained with computers sustaining 0.5 and 10 Tflops for one year.
Constraints on the Standard Model parameters ρ and η (one sigma confidence level). For the Standard Model to be correct, they must be restricted to the region of overlap of the solidly colored bands. The figure on the top shows the constraints as they exist today. The figure on the bottom shows the constraints as they would exist with no improvement in the experimental errors, but with lattice gauge theory uncertainties reduced to 3%. R. Patterson, Cornell University.
The Quark Gluon Plasma

- At high temperatures and/or baryon densities one expects a phase transition or crossover from the state of strongly interacting matter to a plasma of quarks and gluons.

- Lattice QCD simulations are required to calculate properties of strongly interacting matter in the vicinity of the transition.

Phase Diagram
Transition Temperature
Order of the Transition
Equation of State
Role of Instantons
Structure and Interactions of Hadrons

- Hadron mass spectrum
- Electromagnetic Form Factors
- Quark and Gluon Distribution Functions
- Origin of Nucleon-Nucleon Interaction
Hardware Plans

- Simplifying features of lattice QCD calculations make building specially designed computers far more cost effective than buying commercial ones.
 - Uniform grids
 - Regular, predictable communications

- Two hardware tracks:
 - QCD On a Chip (QCDOC)
 - Commodity Clusters

- Each track has its own strengths.

- Each track may prove optimal for different aspects of our work.

- The two track approach positions us to exploit future technological advances, and enables us to retain flexibility.
QCDOC

- The latest of the highly successful Columbia/Riken/BNL special purpose computers.
 - The Columbia group has pioneered the design and construction of special purpose computers for QCD.
 - The QCDSP won the Gordon Bell Prize in 1998 for price performance.

- The QCDOC combines processor, networking and memory on a single chip.

- Partnership with IBM provides access to its technology for chip design and fabrication.

- Targets a price–performance of $1/Mflops for multi-teraflops machines as early as 2003.
Commodity Clusters

- Market forces are producing rapid gains in processor and memory performance
 - Moore’s Law ⇒ 60% growth in performance per year
 - Pentium 4 currently provides exceptional performance for QCD

- Market for interconnects is growing

- Open Source System Software
 - Flexible programming environment
 - SciDAC Scalable Systems Software

- Targeted price–performance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$/Mflops</td>
<td>2.0</td>
<td>1.2</td>
<td>0.9</td>
<td>0.7</td>
</tr>
</tbody>
</table>
SciDAC Software Infrastructure Project

- Create a programming environment that will enable very high performance on the QCDOC and clusters

- Principal Components
 - QCD Application Programming Interface
 - Highly optimized linear algebra routines
 - Highly optimized communications
 - Optimization of computationally intensive subroutines
 - Porting and optimization of major community codes
Deployment Plan

- **QCDOC**
 - **FY 2003:** 1.5 Tflops (Columbia)
 - **FY 2003–4:** 5.0 Tflops (BNL)

- **Clusters**
 - **FY 2002–03:** 0.5 Tflops (FNAL, JLab)
 - **FY 2004:** 1.0 Tflops (FNAL, JLab)
 - **FY 2005:** 6.0 Tflops (FNAL, JLab)
 - **FY 2006:** 8.0 Tflops (FNAL, JLab)
Funding Profile

<table>
<thead>
<tr>
<th>Year</th>
<th>SciDAC</th>
<th>QCDOC</th>
<th>Clusters</th>
<th>Total</th>
<th>Tflops</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>$2.0M</td>
<td>$2.5M</td>
<td></td>
<td>$4.5M</td>
<td>2</td>
</tr>
<tr>
<td>2004</td>
<td>$5.4M</td>
<td>$2.3M</td>
<td></td>
<td>$7.7M</td>
<td>8</td>
</tr>
<tr>
<td>2005</td>
<td>$1.0M</td>
<td>$8.0M</td>
<td></td>
<td>$9.0M</td>
<td>14</td>
</tr>
<tr>
<td>2006</td>
<td>$1.0M</td>
<td>$8.4M</td>
<td></td>
<td>$9.4M</td>
<td>22</td>
</tr>
</tbody>
</table>
Collaboration and Management Structure

- Our collaboration includes nearly all senior lattice gauge theorists in the U.S.
 - Sixty–four senior scientists
 - Lattice gauge theorists, computer scientists, computer engineers

- Management Structure

 Executive Committee

 Richard Brower Boston U.
 Norman Christ Columbia U.
 Michael Creutz BNL
 Paul Mackenzie FNAL
 John Negele MIT
 Claudio Rebbi Boston U.
 Stephen Sharpe U. of Washington
 Robert Sugar (Chair) UC Santa Barbara
 Chip Watson JLab
Scientific Program Committee

Peter Lepage
Robert Mahwinney
Colin Morningstar
John Negele
Claudio Rebbi (Chair)
Stephen Sharpe
Doug Toussaint
Frank Wilczek

Cornell U.
Columbia U.
Carnegie Mellon U.
MIT
Boston U.
U. of Washington
U. of Arizona
MIT

Oversight Committee

Steven Gottlieb (Chair)
Anna Hasenfratz
Gregory Kilcup
Julius Kuti
Robert Pennington
Ralph Roskies
Terry Schalk

Indiana U.
U. of Colorado
Ohio State U.
UC San Diego
NCSA
Director, PSC
UC Santa Cruz

Software Co-ordinating Committee

Richard Brower (Chair)
Carleton DeTar
Robert Edwards
Donald Holmgren
Robert Mawhinney
Celso Mendes
Chip Watson

Boston U.
U. of Utah
JLab
FNAL
Columbia U.
U. of Illinois
JLab
Conclusions

- Lattice QCD is an integral part of research in high energy and nuclear physics, and is closely coupled to the DOE’s experimental program in these fields.

- We need to act now to deploy the infrastructure required for terascale simulations of QCD.
 - Major experiments which require terascale simulations for their interpretation have recently been completed, or will be completed within the next several years.
 - Theorists in Europe and Japan are moving rapidly to secure resources comparable to those we propose.
Lattice gauge theory was invented in the U.S., and U.S. theorists have traditionally been leaders of this field. If U.S. lattice gauge theorists are to play a significant role in the major advances expected in this area over the next five years, we must act now.