
A case study of the impact of increased computational resources on lattice

gauge theory calculations:

Constraints on Standard model parameters

(Dated: January 12, 2004)

Abstract

In this document we discuss the impact of lattice calculations on fits of the parameters of the CKM matrix.

We show the present status and estimate the resources needed to substantially reduce the lattice errors. For

each quantity, we give both a summary and a detailed discussion of the basis of our estimates.

1



I. INTRODUCTION

The present status of CKM determinations is summarized in Fig. 1 [1]. The quantities refered

to in the figure are the ratio of b � u and b � c weak coupling constants (
�
Vub � Vcb

�
), the K0 �

K0 mixing strength εK, the Bd
� Bd mixing amplitude ∆Md , and the Bs

� Bs mixing amplitude

∆Ms. The quantity “sin2β” is determined from measurements of CP-violation in the decay B �
J � ψKs. The quantities ρ̄ and η̄ are the least well known elements of CKM matrix. Each of the

measured quantities constrains ρ̄ and η̄ as shown, with the error band resulting from a combination

of experimental and theoretical errors. At present, all determinations are consistent, with the

allowed region shown by the ovals in the figure.
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FIG. 1: Allowed regions for ρ̄ and η̄. The contours at 68% and 95% probability are shown. The full lines

correspond to the 95% probability constraints given by the measurements of �Vub �����Vcb � , εK , ∆Md and sin2β.

The dotted curve bounds the region selected at 95% by the lower limit on ∆Ms.

It is clear from this figure (as has been the case for some time now) that a substantial reduction

in the error bar in the constraint from ∆Md has the greatest potential to improve the stringency of

the test of the Standard Model (SM). Next in potential is the εK band. In both these quantities
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the lattice error is dominant, as discussed in more detail below. Once ∆Ms is measured, a similar

comment may apply there.

Another way of seeing the importance of the lattice calculations is shown in Fig. 2 [1]. This

displays the allowed ranges of BK and fBd � BBd when these quantities are taken as outputs (which

is possible because the CKM fits are now overconstrained). Present lattice results are consistent

with these ranges, but have errors about as wide as the output bands, and thus add little to present

constraints on CKM parameters. Reducing lattice errors to the few percent level will severely test

the SM.
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FIG. 2: The 68% and 95% contours in the � fBd � BBd , �BK � plane, using the �Vub �����Vcb � , ∆ms and sin2β

constraints.

II. LATTICE CONTRIBUTIONS TO PRESENT ERRORS

Here we collect the standard formulae for the quantities requiring lattice calculations, and de-

scribe the current state of the errors.
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A. εK

CP violation in K0 � K̄0 mixing is parameterized by εK. The standard expression for this is

(see e.g. Ref. [2])

�
εK

���
CεA2λ6η̄

�
η2S � xt � A2λ4 � 1 � ρ̄ ��� charm� contribs �
	BK (1)

where

Cε
� G2

F f 2
KmKm2

W

6 � 2π2∆mK � (2)

is a well measured combination of quantities, A, λ, η̄, ρ̄ are the usual Wolfenstein parameters in

the CKM matrix, η2 is a QCD Wilson coefficient, known to next-to-leading-order (NLO), and BK

is the kaon B-parameter. Only the dominant top quark loop contribution is shown.

This equation is to be used to constrain ρ̄ and η̄. Thus the relevant errors are [1, 2]

�
εK

�
� �
2 � 28 � 0 � 019 ��� 10 � 3

� (3)

Aλ2 � �
Vcb

�����
41 � 4 � 0 � 7 � 0 � 6 ��� 10 � 4

� (4)

λ
�

0 � 2240 � 0 � 0036 � (5)

η2
�

0 � 574 � 0 � 004 (6)

where the first error is statistical, the second (if present) theoretical, except for η2 where the error

is theoretical. Combining all these errors in quadrature one finds that the present errors in all

quantities in eq. (1) aside from 	BK add up to 9.5%. This should be compared to the current error

usually quoted on the lattice result for 	BK used in CKM fits [3]:

	BK
�

0 � 86 � 0 � 06 � 0 � 14 � (7)

Here the first error is a combination of statistical error and that from the use of only one-loop

perturbation theory, while the second is an estimate of the systematic errors due to quenching and

chiral extrapolation. Adding these in quadrature gives an 18% error (typically rounded up to 20%

in the previous reviews).

Thus, the lattice error is roughly twice that from other sources. Important milestones in the

calculation of 	BK are, first, reducing the error to 10%, comparable to the error from other sources,

and second, reducing the error to 5%, half of that from other sources. These require a reduction in

the lattice error by factors of approximately 2 and 4, respectively.
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Note that the size of the “other” error depends on what one is using the result for BK to con-

strain. The discussion here is in the context of constraining ρ̄ and η̄—the standard CKM triangle.

Alternatively, one could use BK to determine the CKM element Im � V 2
td � � A2λ62η̄ � 1 � ρ̄ � , in

which case the “experimental error” comes only from that on εK, A2λ4 and η2 and is considerably

smaller. The latter presentation, with its correspondingly smaller experimental error, was used in

previous SciDAC documents. Here we prefer to uniformly consider the constraints on ρ̄ and η̄.

B. ∆Md

The mass difference in Bd
� Bd mixing is given theoretically by

∆Md
� G2

FM2
W MBd

6π2 ηcS � xt � A2λ6
� � 1 � ρ̄ � 2 � η̄2 � f 2

Bd
	BBd � (8)

Here there is a new perturbative Wilson coefficient, with value at NLO

ηc
�

0 � 55 � 0 � 01 � (9)

The present measurement of the mixing gives

∆Md
�

0 � 503 � 0 � 006ps � 1 � (10)

Adding all non-lattice errors in quadrature one finds 6%. By contrast the value for the lattice result

used in recent CKM fits is [1]

fBd � BBd

�
223 � 33 � 12 MeV � (11)

where the first error is statistical, the second mainly due to uncertainties from the chiral extrapo-

lation. Adding errors in quadrature gives a total error of 15% in fBd � BBd , which should then be

doubled because the square of this quantity appears in eq. (8). Thus the lattice error is about 5

times that from other sources.

To show that this lattice number is fairly robust, we also quote a recent result from the JLQCD

collaboration using two flavors of dynamical improved Wilson quarks and non-relativistic QCD

(NRQCD) for the b-quark [4]:

fBd � BBd

�
215 � 11 � 0� 23

� 15 MeV � (12)

Here the first error is statistical, the second from chiral extrapolations, and the third from other

systematics. This result also serves to emphasize the importance of working at smaller quark
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masses to reduce the error from chiral extrapolations, and that the systematics associated with

perturbative matching can be substantial.

Thus, if we want to lower the error so as to be comparable with other sources of error, we need,

in this case, a reduction of about a factor of 5 (corresponding to an error of 3% in fBd � BBd );

lowering to half of the other errors requires a factor of 10 reduction (corresponding to an error of

1.5% in fBd � BBd ). On the other hand, any significant reduction, e.g. by a factor 2, would have a

large, immediate impact on CKM fits.

C. ∆Ms

The mixing of Bs and B̄s has not yet been measured, but is likely to be so in the next few years

at the Tevatron. Forming a ratio to Bd mixing cancels many factors leaving:

∆Md

∆Ms

� MBd

MBs

λ2
� � 1 � ρ̄ � 2 � η̄2 � 1

ξ2 (13)

where the lattice quantity is

ξ
� fBs � BBs

fBd � BBd

� (14)

The present standard number for ξ from the lattice is [1]

ξ
�

1 � 24 � 0 � 04 � 0 � 06 (15)

where the second error is mainly from chiral extrapolations. Combining in quadrature gives a 6%

error in ξ, and thus a 12% error in ξ2. Even though there is no experimental number to compare

to, a reasonable goal is to reduce this error by a factor of 4, i.e. down to 3% in ξ2. or 1.5% error in

ξ.

The recent JLQCD result for ξ is [4]

ξ
�

1 � 14 � 0 � 03 � 0 � 13� 0 � 02
� 0 � 02 � 0 � 07� 0 � (16)

with the first error statistical, the second from chiral extrapolation, the third from other systematics,

and the last from the uncertainty in the strange quark mass. This is reasonably consistent with

the standard number quoted above, and shows again how errors due to chiral extrapolations are

dominant (and that perturbative errors largely cancel in this ratio).
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D. Vub � Vcb

At present the lattice does not contribute to the constraint from this quantity, but it is likely to

in the future, first in the determination of Vub, and perhaps later in that of Vcb. We thus discuss the

situation for both of these quantities.

Of the two, Vub is less well determined. The best measurement, in terms of experimental errors,

now comes from the exclusive b � u decays B � ρ � ν or B � π � ν. According to Ref. [1] the

present result is �
Vub

� � �
33 � 0 � 2 � 4 � 4 � 6 ��� 10 � 4

� (17)

with the first error experimental, the second from theory (mainly from comparing models). The

theoretical input is the form-factor of the left-handed current; this can be calculated directly on the

lattice for large q2 using B mesons at rest, and for smaller q2 with moving B mesons.

The present lattice errors in the quenched approximation are around 15% [5]. These will be

soon superseded by a FNAL/MILC/HPQCD calculation using existing MILC configurations with

dynamical staggered quarks. With the present experimental error being about 7%, the aim should

be to reduce lattice errors first to this level, and ultimately to about 3%. This may well be easier

than achieving 1.5% errors in fBd � BBd and ξ.

For Vcb the situation is, from the lattice perspective, more complicated. The best measurement

is from measurements of the inclusive semi-leptonic decay rate:

�
Vcb

�����
41 � 4 � 0 � 7 � 0 � 6 ��� 10 � 3

� (18)

with the first error is experimental and the second theoretical. Present lattice methods do not

contribute to the theoretical error. The total combined error is 2.2%. On the other hand, the

lattice does contribute to the measurement from the exclusive B � D � semileptonic decays, which

presently give [1] �
Vcb

�����
42 � 1 � 1 � 1 � 1 � 9 ��� 10 � 3 � (19)

The experimental error is thus 2.6%. The theoretical error enters through the uncertainty in the

end-point B � D � form factor F � 1 � , and is presently estimated as 4.4% in Ref. [1], with the lattice

calculation being a major contributor in this estimate.

Given this situation, an important objective is to reduce the lattice error by about a factor of

three, to about 1.5%, so that it is comparable with the theoretical and experimental errors in the

inclusive measurement.
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III. RESOURCES NEEDED TO ACHIEVE THE DESIRED LATTICE ERRORS

In this section we estimate the computational resources required to substantially reduce the

errors in the lattice matrix elements discussed above. These are based on extrapolations from what

we know from present simulations, and assume no advances in algorithms.

The key issues are reducing the light quark masses so that a controlled chiral extrapolation

can be done, and reducing the lattice spacing so that discretization errors are controlled. In the

near term (resources at the 10 Teraflops scale) calculations will likely be mainly done using dy-

namical improved staggered fermions, which are significantly computationally cheaper than the

alternatives of improved Wilson or Domain-Wall/Overlap fermions. The main disadvantages of

staggered fermions are the practical problem that the continuum and chiral extrapolations are in-

tertwined due to taste symmetry violations, and the theoretical uncertainty introduced by the need

to take fractional powers of the fermion determinant. The strategy will be to calculate a sufficient

number of experimentally measured quantities to high accuracy, so that one can judge the uncer-

tainty from the results themselves, as well as from consistency checks based on the accuracy of

staggered chiral perturbation theory in describing the data.

As resources increase, we will likely begin to shift to Domain-Wall or overlap dynamical

fermions. This is likely to occur when resources reach the 10 Teraflops level. These fermions

have exact or nearly exact chiral symmetry, so that continuum and chiral limits are decoupled,

and one can directly simulate the desired continuum quark content. Improved Wilson fermions,

including twisted mass QCD, are intermediate in computational difficulty and may well be used at

an intermediate stage.

There will need to be a parallel effort at improving certain analytic calculations, in particular

the matching of continuum and lattice operators, the determination of coefficients in improved

fermion actions, and the calculation of the predicted mass and lattice spacing dependence using

staggered chiral perturbation theory.

A. Timing estimates based on MILC simulations

In this section we give estimates of the computer time required to generate lattices using the

“Asqtad” improved staggered fermion action developed by the MILC collaboration. To do this

we use the timing information for existing runs, and extrapolate based on reasonably established
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TABLE I: Estimates of computer time needed to generate 120 independent lattices using improved staggered

fermions. Results are given in Teraflop-years. See text for further discussion.

ml � ms a (fm) Size L (fm) Tfl-yrs mπ � mρ Label

0 � 20 0 � 09 283 � 96 2.5 0.09 0.39 MILC0

0 � 10 0 � 09 403 � 96 3.6 1.5 0.30 MILC1

0 � 05 0 � 09 563 � 96 5.0 23 0.22

0 � 20 0 � 06 423 � 138 2.5 1.5 0.39 MILC1

0 � 10 0 � 06 603 � 138 3.6 25 0.30 MILC2

0 � 05 0 � 06 843 � 138 5.0 390 0.22

0 � 20 0 � 045 563 � 192 2.5 12 0.39

0 � 10 0 � 045 803 � 192 3.6 190 0.30

0 � 05 0 � 045 1123 � 192 5.0 2950 0.22

scaling laws. These laws are conservative—in some cases the scaling is less rapid than what

we assume. Furthermore, it is to be hoped that advances in algorithms will reduce the required

computer time.

The following table summarizes the estimates of the costs of reducing both the quark masses

and lattice spacing, while holding mπL
�

4 � 2 and the number of uncorrelated lattices fixed. The

simulations at ml � ms
�

0 � 2 (where ml is the common mass taken for the up and down quark, and ms

is the strange quark mass, which is kept at or near the physical value) and a
�

0 � 09fm have already

been completed by the MILC collaboration, and we quote the time required for 3000 molecular

dynamics time units, which is about 120 independent configuratons. In scaling to smaller light-

quark masses, we assume that resources needed are proportional to m � 2 � 5
l at fixed lattice spacing

and volume.1 Scaling to smaller lattice spacing at fixed physical volume we assume that resources

vary as a � 7.2 Finally, the resources are assumed to grow proportional to the four-volume when

increasing the size of lattices at fixed a and quark masses.

1 One power of m �
1

l from the inversion of the Dirac operator, another from the reduction in the step size, and a factor

of m �
1

π ∝ m �
0 � 5

l from the increase in the trajectory length needed to generate an independent configuration.
2 Four powers of a �

1 from the change in the number of lattice points, and one power each from the inversion of the

Dirac operator, the decrease in step size, and the increase in trajectory length.
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The increments in the table (by factors of two in quark masses and a2) are chosen to represent

significant changes which would lead to significant reductions in errors, as discussed in more detail

below.

We also quote values for mπ � mρ. This ratio is useful since its square governs the chiral expan-

sion: successive terms are suppressed by m2
π � m2

ρ, up to factors of O � 1 � .
We note in passing that it may not be necessary to use lattices as large as those in the table at

small pion masses. Even if mπL �
�

1, one can still predict the form of correlation functions using

chiral perturbation theory as long as L � 1 � ΛQCD. This is the so-called epsilon regime. On the

other hand, staggered chiral perturbation theory has not been worked out in this regime, so it is

conservative to avoid it. Furthermore, experience suggests that one does not lose statistical power

by working on larger volumes—it is as though one has more samples.

We use the following abbreviations to refer to possible future choices of simulations:

� MILC0: This is the present set of lattices—a suite including a
�

0 � 13fm and a
�

0 � 09fm

with masses running down to ml � ms
�

0 � 2, i.e. running down to the parameters in the first

row of the table. Approximately 0 � 6 Tflop-years of CPU time have been used to generate

these lattices and calculate physical quantites on them.

� MILC1: In this set of simulations one advances by “one step” in the table separately to

smaller ml and a, i.e. one undertakes simulations with parameters listed in the second and

fourth rows of the table. One will need, in addition, to have runs at larger quark masses

at a
�

0 � 06, and to calculate the large number of valence quark propagators needed for

extracting physical quantities. If we assume an overhead of a factor of 2 from these addi-

tional calculations, this step requires � 6 Tflop-years. It is thus at the level accessible to the

QCDOC and planned large clusters.

� MILC2: Here one advances a further step, probably to smaller quark mass at the smaller

lattice spacing (see the discussion of fBd and related quantities below). Whatever the de-

tails, the table shows that this step requires of order 50-60 Tflop-years, and thus the next

generation of machines after that presently being considered.

� DWF1: As noted above, at some stage extensive simulations with dynamical domain-wall

fermions (or other similar discretizations with exact or nearly exact chiral symmetry) will

become feasible. We include a rough estimate of computational requirements for this step,
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using ongoing simulations by the RBC collaboration as a benchmark. The need for a fifth

dimension increases the cost by a factor of at least 12 compared to Wilson fermions, and

thus by at least 12-24 compared to improved staggered fermions. (The range indicates the

uncertainty in the relative number of conjugate gradient iterations needed for domain-wall

and improved staggered fermions. Note that, in a calculation requiring about 500 conjugate

gradient iterations, improved staggered and Wilson simulations have comparable cost, the

factor of four gain with unimproved staggered fermions being counterbalanced by the factor

of two cost increase due to the Naik term and a second factor of two from the calculation of

the fermion force with smeared gauge links.) Thus a simulation with domain-wall fermions

at ml � ms
�

0 � 1 and a
�

0 � 09 fm will require at least 20 � 40 Teraflop-years. A thorough

study of mass and lattice spacing dependence is thus likely to require resources of order 100

Teraflop-years, i.e of a similar scale to the MILC2 sample.

It is reasonable to assume that the chiral and continuum extrapolations will be better con-

trolled than with staggered fermions, since they are almost independent. Thus it is likely

that such a simulation will yield results of comparable precision to those from the MILC2

sample, even though the lattice spacing is larger. Furthermore, it will remove the uncertainty

associated with taking roots of the fermion determinant. We also note that non-perturbative

methods for normalizing operators can be implemented much more easily with domain-wall

fermions than with staggered fermions.

We stress that the scaling of CPU time with domain-wall fermions is less well studied than

with other discretizations, and the algorithms that are used are less developed, so the un-

certainty in this estimate (in both directions) is greater than those for improved staggered

fermions.

B. BK

1. Summary

The present estimated lattice error on BK is 20%, compared to 10% from other sources. Using

the existing MILC0 data set, and one-loop perturbative matching (which has not yet been carried

out for the improved gluon action used as part of Asqtad, although it will be straightforward to

do so) the lattice error should be reduced to 12% (and made much more reliable). The MILC1
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data set, together with staggered chiral perturbation theory (again, which doesn’t yet exist for

this quantity), should lower this error to 10% with one-loop perturbative operator matching. To

achieve a 5% error will require two-loop or non-perturbative operator matching. Once this is

available, further reduction in errors will be possible with the MILC2 or DWF1 ensembles.

2. Details of estimates

In all previous calculations of BK statistical errors with about 100 independent lattices have

been at the 1% level. The use of improved staggered fermions has been found to slightly in-

crease the errors [7] so we assume 2% statistical errors in the following. The precise choice is not

important as other errors dominate.

The first step is to calculate BK using the present MILC0 ensemble and operators containing

some form of smeared links (e.g. HYP smearing). This will result in a substantial reduction in the

largest source of error, namely quenching. To estimate this we compare to the standard quenched

JLQCD calculation [6]. The first issue is the size of discretization errors. The JLQCD calculation

uses unimproved staggered fermions, and finds it necessary to use a minimum lattice spacing of

0 � 05fm in order to carry out a continuum extrapolation accurate to 1%. The use of improved

staggered fermions (in both the action and operators) allows one to work at a larger minimum

lattice spacing for the same continuum extrapolation errors. We take the appropriate minimum

value to be a � 0 � 09 fm.3 Finally, we note that the MILC0 ensemble has only two lattice spacings,

rather than the five used in the JLQCD extrapolation. Thus, to be conservative, we assume a

5% continuum extrapolation error. This is, nevertheless, a substantial reduction from the 14%

quenching error included in the present error budget.

Chiral extrapolation is a sub-leading issue with BK. As long as one uses a kaon with the physical

mass, the dependence on the mass difference between the quark and antiquark in the “kaon” only

enters at next-to-leading order in chiral perturbation theory. Assuming chiral logarithms dominate,

Ref. [8] estimated that using a degenerate quark and antiquark leads to a 5% error. This assumes

3 This is based on two arguments. First, the discretization errors are increased by a factor
�
9 � 5 � 2 (from the change

in lattice spacing) and decreased by a factor of roughly αs (due to improvement), and these approximately cancel.

Second, recent quenched results for BK with improved staggered fermions at a � 0 � 1fm are consistent with the con-

tinuum extrapolated results with uinmproved staggered fermions, while lying significantly below the unimproved

results at a � 0 � 1 fm [7].
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that certain low-energy constants in chiral perturbation theory are not unusually large, which must

be checked. The MILC0 ensemble will allow some checking, but we retain the 5% error estimate.

The difference is that this error will be based on data rather than assumption.

The largest error is from operator matching. In the present quenched calculation, the error from

using one-loop perturbative matching is about 5%. This estimate is obtained by comparing the

results from two different discretizations of the operator, and is consistent with assuming a two

loop term of size 1 � α2
s . This error will increases in the Asqtad ensemble, because the smallest

lattice spacing is larger. The appropriate value of the coupling becomes αs
�

0 � 3, implying a

two-loop error of 9%.

Taking this value and adding the three errors plus statistics in quadrature gives a total error

of 12% from the MILC0 ensemble. We do not include a scale error since BK is dimensionless,

although there is a small uncertainty since BK has a logarithmic dependence on scale. A 12% error

is close to the first goal of 10%.

The MILC1 ensemble will reduce the errors both in the continuum and chiral extrapolations.

Indeed, at this stage one should do a combined continuum-chiral extrapolation using staggered

chiral perturbation theory. The dominant logarithm in BK has a known coefficient (as for fπ and

fK, but not fBd ), which helps, although this is counterbalanced by the fact that the logarithm has

a larger coefficient, so the corrections are larger than for fπ and fK. We use a combined chiral-

continuum error of 2.5% (the value proposed for fBd on the MILC0 ensemble). Combining this

with 2% statistical errors and 9% perturbative errors leads to a total error of 10%.

Clearly the key to further reduction in errors is to use two-loop or non-perturbative matching.

The latter is, in principle, feasible although quite involved using staggered fermions. (A test

case with bilinears has been worked out in Ref. [9].) Since a non-perturbative determination will

involve statistical and systematic errors of its own, it might be quite hard to lower the error below

the 3% obtained with a two-loop analytic calculation. Assuming a 3% matching error, the MILC1

ensemble would yield a total error of about 5%.

Further approaches towards the chiral and continuum errors would presumably lower the error

towards the limiting 3% from matching.
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C. fBd � BBd and ξ

1. Summary

Present errors in fBd � BBd are estimated to be 15%, compared to the “other” error of 3%. In

the near future, an analysis using the MILC0 ensemble and FNAL heavy quarks is expected to re-

duce the errors to 8–13%, with the range resulting from the uncertainty in the size of perturbative

matching errors. The MILC1 ensemble will reduce extrapolation errors leading to an expected to-

tal error of 7–12%, the largest component of which is the error due to use of one-loop perturbation

theory. We estimate that the inclusion of two-lop perturbation theory would reduce this error to

4–5%. To reduce the errors to 3–4% will likely require the MILC2 or DWF1 ensembles, together

with the two-loop matching calculation.

For ξ, present errors are 6% (and there is as yet no measurement to compare with). In the

near future, using MILC0 lattices, this will likely be reduced to 4% (assuming staggered chiral

perturbation theory calculations). With the MILC1 ensemble, the expectation is a reduction to 3%

errors, and a further reduction to 1.5–2% should follow with the MILC2 ensemble and two-loop

perturbative matching. As noted above, we expect the DWF1 ensemble to have similar errors.

2. Details of estimates

We begin by estimating what the errors will be for the calculation presently underway on the

MILC0 ensemble (m � � mphys
s

�
0 � 12 at a

�
0 � 12 fm; m � � mphys

s
�

0 � 22 at a
�

0 � 09). This uses

improved staggered light valence quarks and the “standard” Fermilab approach for heavy quarks,

correct through O � a � and 1 � M. To make these estimates we compare to the recent calculation of

fπ and fK on these lattices using improved staggered valence quarks [10]. This is an appropriate

benchmark since it is the only lattice calculation to date which extrapolates to the physical point

with all sources of error controlled by the simulation. The results are that, for fπ and fK, the errors

are about 2% for the scale, 1 to 1.5% for the chiral plus continuum extrapolations (total, together,

using staggered chiral perturbation theory) and 0.8% for statistics. For the ratio fK � fπ, the errors

are 1.5% for the chiral and continuum extrapolation and 0.5% for statistics, while the scale error

is negligible.

Turning to fBd , the scale errors will remain at 2%. Assuming staggered chiral perturbation

theory for heavy-light mesons has been worked out, the chiral extrapolation plus light quark O � a2 �
14



error will probably be about 2.5% (larger than for fπ because gDD � π is not known very accurately).

We take 3% for the statistical errors: heavy-lights fluctuate more than light-lights, and in old

MILC results fBd had about three times the statistical error of fπ. Two new sources of error enter.

The first is the heavy quark discretization error. We expect this to be smaller with the Fermilab

discretization than the truncation errors of NRQCD, since the continuum limit is approachable.

Our estimate is 3%, about half of the NRQCD truncation errors quoted in Ref. [4]. The second

new error is that due to perturbative matching—this is absent for fπ where one can use the partially

conserved current. If ZqQ is computed in perturbation theory at one loop, the residual error will

be � 10%, since αS � 0 � 3. This may be reduced using the Fermilab trick of calculating the ratio

ZqQ � � ZqqZQQ perturbatively, and � ZqqZQQ nonperturbatively, because the perturbative series

has smaller coefficients. What is not known about this approach at present is the size of the

statistical errors in the non-perturbative determination of � ZqqZQQ. Because of this, we take the

range 5–10% for the matching error.

For the ratio fBs � fBd , we again estimate 2.5% errors from chiral extrapolation plus light quark

discretization errors, while we expect statistical and heavy quark discretization errors to be reduced

to 1% each. Perturbative errors will almost completely cancel in the ratio.

For the B-parameter BBd we estimate that the chiral plus light quark discretization error will be

2% (smaller than that for fBd since the chiral extrapolation is less steep), the statistical error will be

5% (larger than for the decay constant since this is the matrix element of a four-fermion operator),

the heavy-quark discretization error will be 2% (smaller than those for the decay constants since

BBd is a ratio), and the perturbation error will be 5-10% (as for fBd ).

For the ratio of B-parameters, BBs � BBd , we keep the same 2% estimate of the chiral plus light

quark discretization error as for BBd , but we expect, based on prior experience, some cancellation

in statistical and heavy-quark discretization errors, and we assume 4% and 1% respectively.

Adding errors in quadrature gives a 7–11% error for fBd , and 8–13% for fBd � BBd . For fBs � fBd ,

the above considerations give 3%, and 4% for ξ. These of course would be already a lot better

than the “current” errors quoted in the previous section.

We stress that the errors will increase if staggered chiral perturbation theory for heavy-light

particles has not been worked out. Then one would have to extrapolate to the continuum at fixed

light quark mass, and fit to continuum forms. Judging from fπ and fK, the light quark errors

will roughly double (and it is also no longer so clear that the light and heavy quark errors can be

largely disentangled). This would boost the fBd error by about 1% to 8–12%, the error in fBd � BBd
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to 9.5–13.5%, the fBs � fBd error to 5.2% and the ξ error to 6%.

We next consider the reduction in errors with the MILC1 ensemble. We estimate that better con-

tinuum and chiral extrapolations will reduce light quark errors in decay constants to � 1 � 5% (1%

for B � parameters), while better control of the calculations used for setting the scale may reduce

the scale errors in decay constants to 1.5%. For the heavy quark, having a smaller lattice spacing

may reduce the putative 3% to 2% in decay constants, and from 2% to 1% in B � parameters. With

more sets to fit, statistical errors should also be improved, say to 2% in decay constants, 3% in

B � parameters. This gives 6–10% for fBd (and 7–12% for fBd � BBd ), where the assumed 5–10%

1-loop perturbative error is what is holding things up. The ratios are a lot better, though. Assuming

again a light quark error of 1.5% for fBs � fBd and somewhat improved statistical and heavy quark

errors of 0.8% each, gives a 2.2% total error. For ξ, we estimate that this will increase to 3%.

Clearly, the key to further improvement in fBd is the reduction of the perturbative errors, using

two loop (automated) perturbation theory. This reduces the 5–10% to a 1–3% perturbative error,

to be compared to the sum of other lattice errors which is 3.5%. The result would be a total error

of 3.5–4.5% in fBd , and 4–5% in fBd � BBd .

To go further, the MILC2 ensemble looks at present like the best next step: we expect that

moving to somewhat lighter quarks at the smallest lattice spacing (where the taste violations and

heavy quark errors are smallest) will pay better than pushing to very small mass on the coarser

lattices (a
� � 12 or 0.09 fm). (Making the quark mass smaller doesn’t help too much when the

splittings are as large as the Goldstone mass.) We estimate that for decay constants this will reduce

light quark, scale and statistical errors to 1% each, and heavy quark errors to 1.5% (heavy quark

errors improve more slowly than light quark because of O � a � vs. O � a2 � —of course the O � a2 �
Fermilab version would help further). For B � parameters, we estimate 0.6% light quark errors,

1.5% for statistical errors, and 0.8% for heavy quark discretization errors. Assuming a two-loop

macthing calculation, this would give total errors of 2.5–3.8% in fBd calculation, and 2.7–4.2% on

fBd � BBd . For the ratios, perturbation theory is not important. Assuming 1% light quark errors

and 0.5% heavy quark and statistical errors, gives 1.2% for fBs � fBd and 1.5–2% for ξ.
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D. b � u semileptonic form factors

1. Summary

We concentrate on the form factor f � in B � π � ν decays at small pion recoil momenta. Present

lattice errors are estimated to be about 15%, compared to experimental errors of 7%. We find that

using the existing MILC0 ensemble will reduce the errors to 10–13%, where the range is due to

the uncertainty in the size of perturbative errors on the MILC0 data set. These will improve to

7.5–12% on the MILC1 data set (or 5.5-6.5% with 2-loop perturbation theory), and 4–5% errors

on the MILC2 ensemble (assuming 2-loop perturbation theory).

2. Details of estimates

Many errors in heavy-light semileptonic decays are very similar to those in the heavy-light

leptonic decay constants discussed in the previous section. We therefore make an estimate of

errors for B � π � ν form factors by doing a comparison with those for fBd (expressing them as

the ratio of percentage error in the form factor f � to that in fBd ). Our estimates are based on

our quenched studies of both quantities, using the same set of lattices and gauge configurations.

The computational effort associated with the B � π study was higher, because additional quark

propagators were needed to compute the three-point functions. Since we have results only for

small pion recoil momenta, pπ
�

1 GeV, the following statements are for this case only.

We find the following:

� Statistical errors increase by a factor of 1 � 3 � 1 � 5 in comparison with those for fBd , due to

the finite pion momentum.

� Chiral extrapolation errors are harder to estimate. It is not clear if we can assume that there

will be a staggered chiral perturbation theory analysis available for this case. We assume a

factor of 2 increase for this error.

� For the semileptonic decays, we saw lattice spacing dependence, which was similar in size

to the statistical errors, while it was smaller than the statistical errors in the fBd case. Hence

we estimate a factor of 2 increase for this error.
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� Errors due to heavy quark discretization and (one-loop) perturbative matching are about the

same in both cases.

� The error due to the uncertainty in a (scale) is smaller for form factors than for fBd , since

they are dimensionless. This error is reduced by a factor of 2.

Combining these estimates with those of the previous section for fBd yields 10–13% errors on the

MILC0 data set (assuming 1-loop perturbation theory), 7.5–12% errors on the MILC1 data set

with 1-loop perturbation theory, 5.5–6.5% on the MILC1 data set with 2-loop perturbation theory,

and 4–5% errors on the MILC2 data set (assuming 2-loop perturbation theory).

E. Contributing to the determination of Vcb

The aim here, as discussed above, is ultimately to reduce the errors to the 1.5% level. The

present situation on the lattice is that the methodology for a very precise calculation has been

developed, but there are as yet only quenched calculations for which it is difficult to reliably

estimate the total error.

Our estimates are based on the Fermilab calculations of the endpoint form factors, F � 1 � , for

B � D � ν and B � D � � ν, using the ratio method. With the ratio method, the errors scale with

F � 1 � � 1, and are in general much smaller than in the fBd case. As a result, the statistical, pertur-

bative, and lattice spacing and scale errors are expected to be multiplied by a factor of 0 � 3.

The error due the chiral extrapolation is similarly suppressed, but due to the likely lack of

knowledge of staggered chiral perturbation theory, we estimate a factor of 0 � 7. Combining these

estimates with those for fBd yields 3–4% errors on the MILC0 data set (assuming 1-loop pertur-

bation theory), 2.3–3.4% errors on the MILC1 data set with 1-loop perturbation theory, 1.8–2.0%

on the MILC1 data set with 2-loop perturbation theory, and 1–1.4% errors on the MILC2 data set

(assuming 2-loop perturbation theory).
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