Astronomy 1 - Winter 2011

Gaseous Pillars in M16 • Eagle Nebula Hubble Space Telescope • WFPC2

Lecture 10; January 282011

Previously on Astro-1

- A most valuable tool: the Doppler effect
- The discovery of extrasolar planets
- Telescopes: astronomers' tools of the trade
- Basic optics
- Refractors
- Reflectors
- Light gathering power and resolution
- Telescopes and the atmosphere
- Space Telescopes

Today on Astro1

- A tour of the solar system
- Terrestrial Planets
- Jovian Planets
- Satellites/Moons
- Trans-Neptunian objects
- Asteroids and comets

The Solar System is a diverse place...

Sulfuric acid clouds

Barren, cratered landscapes

Gas giants

Frozen ice-balls

Hydrocarbon lakes

Desolate deserts

Planets in our Solar System

Terrestrial planets
Small, high density, rocky

Jovian planets
Large, low density, gaseous

Figure 7-1
Universe, Eighth Edition
© 2008 W.H. Freeman and Company

- Orbits not random
- In nearly same plane
- Orbit in same direction (nearly all also rotate in that direction)

Table 7-1 illustration

Four inner (Terrestrial) Planets

Small, low mass, high density, rocky

Table 7-I Characteristics of the Planets

		The Inner (Terrestrial) Planefs		
	Mercury	Venus	Earth	Mars
Average distance from Sun (10 $\left.{ }^{6} \mathrm{~km}\right)$	57.9	108.2	149.6	227.9
Average distance from Sun (AU)	0.387	0.723	1.000	1.524
Orbital period (years)	0.241	0.615	1.000	1.88
Orbital eccentricity	0.206	0.007	0.017	0.093
Inclination of orbit to the ecliptic	7.00°	3.39°	0.00°	1.85°
Equatorial diameter (km)	4880	12,104	12,756	6794
Equatorial diameter (Earth =1)	0.383	0.949	1.000	0.533
Mass (kg)	3.302×10^{23}	4.868×10^{24}	5.974×10^{24}	6.418×10^{23}
Mass (Earth $=1)$	0.0553	0.8150	1.0000	0.1074
Average density $\left(k g / \mathrm{m}^{3}\right)$	5430	5243	5515	3934

Table 7-1 part 1
Universe, Eighth Edition
© 2008 W. H. Freeman and Company

Four outer (Jovian) Planets

Large, high mass, low density, gaseous Visible "surface" = cloud formations

Table 7-I Characteristics of the Planets

	The Outer (Jovian) Planets			
	Jupiter	Safurn	Uranus	Neptune
Average distance from Sun ($10^{6} \mathbf{~ k m}$)	778.3	1429	2871	4498
Average distance from Sun (AU)	5.203	9.554	19.194	30.066
Orbital period (years)	11.86	29.46	84.10	164.86
Orbital eccentricity	0.048	0.053	0.043	0.010
Inclination of orbit to the ecliptic	1.30°	$2.48{ }^{\circ}$	0.77°	1.77°
Equatorial diameter (km)	142,984	120,536	51,118	49,528
Equatorial diameter (Earth $=1$)	11.209	9.449	4.007	3.883
Mass (kg)	1.899×10^{27}	5.685×10^{26}	8.682×10^{25}	1.024×10^{26}
Mass (Earth = 1)	317.8	95.16	14.53	17.15
Average density ($\mathbf{k g} / \mathbf{m}^{\mathbf{3}}$)	1326	687	1318	1638

[^0]
How do we know?

Distance: Kepler's Third Law ($\mathrm{P}^{\wedge} 2 / \mathrm{a}^{\wedge} 3=$ constant $)$
Size: observed angular size and distance
Mass: if satellite - Kepler's Third Law
flyby by spacecraft, gravitational pull, deflects path
Density: mass/volume

Question 10.1 (iclickers!)

-Suppose that in the near future a series of extrasolar planets are discovered with the following characteristics: spherical solid surfaces; mean densities about four times that of water; radii about 4000 km ; low density atmospheres. How would these planets be classified in terms of our solar system
-A) Jovian Planets
-B) Cometary nuclei
-C) Asteroids
-D) Terrestrial Planets

Satellites

Table 7-2 The Seven Giant Satellites

Table 7-2
Universe, Eighth Edition
© 2008 W. H. Freeman and Company

- Seven large satellites almost as big as terrestrial planets
- Comparable in size to Mercury
- Remaining satellites (>140 known today!) much smaller

Saturn's satellite Titan

Figure 7-3a

Titan: only satellite with a substantial atmosphere

Chemical composition

The spectrum of sunlight reflected from Titan

- Dips: due to absorption by hydrogen atoms (H), oxygen molecules $\left(\mathrm{O}_{2}\right)$, and methane molecules $\left(\mathrm{CH}_{4}\right)$
- Only methane actually present in Titan's atmosphere

Interpreting Titan's spectrum

Jupiter's moon Europa

Figure 7-4a
Universe, Eighth Edition
© 2008 W. H. Freeman and Company

The spectum of light reflected from Europa
Figure 7-4b
Universe, Eighth Edition
© 2008 W.H. Freeman and Company

Europa:

- No atmosphere
- Sun light reflected from surface

Figure 7-6
Universe, Eighth Edition
© 2008 W.H. Freeman and Company

Mars:

- Composed mostly of heavy elements (iron, oxygen, silicon, magnesium, nickel, sulfur) \rightarrow red surface
- Atmosphere thin, nearly cloudless
- Olympus Mons $=$ extinct volcano, nearly 3 times height of Mount Everest

Clouds in Jupiter's atmosphere

Figure 7-5
Universe, Eighth Edition
© 2008 W.H. Freeman and Company

Jupiter:

- Composed mostly of lightest elements (hydrogen, helium), colorless
- Colors: trace amounts of other substances
- Giant storm $=$ Great Red Spot, >300 years old

How do we know?

Chemical composition: soil probes (Venus, Earth, Moon, Mars) spectroscopy
average density color

Table 7-3 Comparing Terrestrial and Jovian Planets

Terrestrial Planets

Distance from Less than 2 AU the Sun

Size
Composition
Mostly rocky materials containing iron, oxygen, silicon, magnesium, nickel, and sulfur

Density

Jovian Planets
More than 5 AU

Large
Mostly light elements such as hydrogen and helium

Question 10.2 (iclickers!)

- A ground based telescope is pointed at the atmosphere of Titan and a spectrum is obtained. The spectral lines observed in this spectrum:
-A) Can only be features of Titan
-B) can be characteristic of the Earth's atmosphere as well as Titan's atmosphere
-C) Can be characteristic of the cooler outer layers of the Sun's atmosphere as well as of Titan's atmosphere
-D) can be characteristic of the atmosphere of Titan and the Earth and also of the cooler outer layers of the Sun's atmosphere.

The Surface of Terrestrial Planets and the Moon: Impact Craters

Figure 7-10a
Universe, Eighth Edition
© 2008 W. H. Freeman and Company

- Asteroids/Comets on elongated orbits, can collide with planet/satellite
- Jovian planets: swallowed by atmosphere
- Terrestrial planets: impact crater (central peak!)

Figure 7-10a
Universe, Eighth Edition
© 2008 W.H. Freeman and Company
Moon:

- Surface with craters of all sizes
- Large crater equal to length of San Francisco Bay

Earth:

- Only < 200 craters
- Manicouagan Reservoir in Quebec
- Relic of a crater formed >200 million years ago; eroded by glaciers

Figure 7-10c
Universe, Eighth Edition
© 2008 W. H. Freeman and Company

Mars:

- Lowell Crater in the southern highlands, 201 km (125 miles) across
- Craters on top of craters
- Light-colored frost: condensation of carbon dioxide from atmosphere

Observations:

- SMALLER worlds (the Moon, Mercury, Mars) have more craters than larger worlds (Earth, Venus)
- LARGER worlds have more geological activity (volcanoes, faults,
 etc.)
- What's the connection?

Geological activity erases craters
Planeł \#2

How do we know?

Geological activity: number of craters
Inner core: if geologically active \rightarrow at least partially molten

The Inner (Terrestrial) Planets Close to the Sun - Small diameter, small mass - High density

	Mercury	Venus	Earth	Mars
Average distance from Sun (AU)	0.387	0.723	1.000	1.524
Equatorial diameter (Earth = 1)	0.383	0.949	1.000	0.533
Mass (Earth = 1)	0.0553	0.8150	1.0000	0.1074
Average density (kg/m3)	5430	5243	5515	3934

Cosmic Connections 7a
Universe, Eighth Edition
© 2008 W.H. Freeman and Company

The Outer (Jovian) Planets Far from the Sun - Large diameter, large mass - Low density

	Jupiter	Safurn	Uranus	Nepfune
Average distance from Sun (AU)	5.203	9.554	19.194	30.066
Equatorial diameter (Earth = 1)	11.209	9.449	4.007	3.883
Mass (Earth = 1)	317.8	95.16	14.53	17.15
Average density (kg/m3)	1326	687	1318	1638

Cosmic Connections 7c
Universe, Eighth Edition
© 2008 W.H. Freeman and Company

Measuring Magnetic Fields

Terrestrial Planets

Cosmic
nections 7b
Universe, Eighth Edition
© 2008 W.H. Freeman and Company

- High atmospheric temperatures (close to sun)
- H2 and He light elements, fast, escape
- CO2, N2, O2, H2O remain

Jovian Planets

- Low temperatures (far from sun)
- Massive, strong gravity, can hold H, He

Official International Astronomical Union definition of a planet

A planet is a celestial body that:
1.is in orbit around the Sun,
2.has sufficient mass to assume hydrostatic equilibrium (a nearly round shape), and
3.has "cleared the neighbourhood" around its orbit.

The second-largest asteroid, Vesta

If a solar system body only meets the first two criteria (and is not a satellite) it is called a "dwarf planet". All others: "small solar system bodies".

Small bodies in the solar system

Asteroids

- Rocky objects between Mars and Jupiter in "asteroid belt"
- Left-overs that did not form a planet
- Combined mass < Moon

Asteroids

- 33 km (21 mi) long and 13 km (8 mi) wide
- Gravity too weak to have pulled it into a spherical shape
- Image taken March 2000 by NEAR Shoemaker, first spacecraft to orbit around and land on an asteroid.

Question 10.3 (iclickers!)

-In general small bodies in the solar system are less likely than large bodies to possess a planet-wide magnetic field. Why should we expect size and magnetism to be correlated?
-A) A small body cools more rapidly and is less likely to possess a molten liquid interior.
-B) Small bodies are more likely to be heavily cratered and such impacts can destroy the mechanism that produces the magnetic field
-C) Magnetic fields are produced by the entire volume of a body. Smaller bodies have smaller volumes and therefore smaller magnetic fields
-D) Small bodies necessarily rotate more slowly and a rapid rotation rate is one requirement for a planet wide magnetic field

Trans-Neptunian Objects (TNOs) = Kuiper Belt Objects (KBOs)

Universe, Eighth Edition
© 2008 W.H.Freeman and Company

- Rocky \& icy objects beyond Neptune (> 900 known; maybe up to 35,000 ?)
- High eccentricities
- Pluto is first discovered TNO (1930) and second biggest
- Reside in Kuiper belt (30-50 AU from sun)
- Debris left over from formation of solar system

Trans-Neptunian Objects $(\mathrm{TNOs})=$ Kuiper Belt Objects (KBOs)

Pluto and Eris (2003 UB313):

- Two largest Trans-Neptunian Objects
- Orbits steeply inclined to the ecliptic

Table 7-4 Seven Large Trans-Neptunian Objects

	Quasar	2003 EL61	Sedna	2005 FY9	Pluto	Charon (satellite of Pluto)	Eris
Average distance from Sun (AU)	43.54	43.34	489	45.71	39.54	39.54	67.67
Orbital period (years)	287	285	10,800	309	248.6	248.6	557
Orbital eccentricity	0.035	0.189	0.844	0.155	0.250	0.250	0.442
Inclination of orbit to the ecliptic	$8.0{ }^{\circ}$	28.2°	$11.9{ }^{\circ}$	$29.0{ }^{\circ}$	17.15°	17.15°	44.2°
Approximate diameter (km)	1250	1500	1600	1800	2274	1190	2900
(Note: To date astronomers have been able to make images of the surfaces of Pluto and Charon only.)							

Table 7-4

Universe, Eighth Edition
© 2008 W.H. Freeman and Company

Dysnomia

Eris

Pluto

2003 EL61

Sedna

2005 FY9

Quaoar

New Horizons spacecraft

- Launch 2006
- Pluto/Charon flyby in 2015, then flyby of at least one (other) Kuiper belt object

- Picture of Jupiter and Io

Comets ("Dirty Snowballs in Space")

- Rocky \& icy objects on eccentric orbits that come close to sun.
- Few tens of km in diameter
- From Kuiper Belt or even further out (Oort Cloud; 50,000 AU)
- e.g. if collision of two KBOs, a fragment can be knocked off and diverted into elongated object, brings it close to sun

Comets

Hale-Bopp: (April 1997)

- Near Sun: solar radiation vaporizes some icy material
- Bluish tail of gas, white tail of dust
- Tails can extend for tens of millions of kilometers

Summary

- Properties of the Planets:

- Orbits in the same plane and direction
- Inner (terrestrial) planets are small and made of heavy elements
- Outer (Jovian) planets are big and made of light elements
- Other bodies in the Solar system
- There are seven large satellites (like the moon)
- Asteroids in Asteroid Belt between Mars and Jupiter
- Outer solar system is populated by TNO and comets
- How do we learn about solar system bodies?
- We send probes
- Spectroscopy reveals the composition of atmospheres
- Craters and magnetic fields reveal the presence of a liquid melted core

The End

[^0]: Table 7-1 part 2
 Universe, Eighth Edition
 © 2008 W.H. Freeman and Company

