
Astronomy 1 – Winter 2011

Gaseous Pillars in M16 · Eagle Nebula Hubble Space Telescope · WFPC2

PRC95-44a · ST Scl OPO · November 2, 1995 · J. Hester and P. Scowen (AZ State Univ.), NASA

Lecture 10; January 28 2011

Previously on Astro-1

- A most valuable tool: the Doppler effect
 - The discovery of extrasolar planets

Telescopes: astronomers' tools of the trade

- Basic optics
- Refractors
- Reflectors
- Light gathering power and resolution

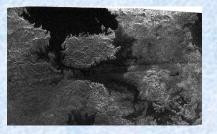
Telescopes and the atmosphere

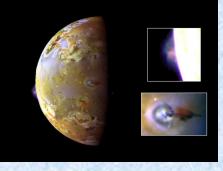
Space Telescopes

Today on Astro1

- A tour of the solar system
- Terrestrial Planets
- Jovian Planets
- Satellites/Moons
- Trans-Neptunian objects
- Asteroids and comets

The Solar System is a diverse place...


Exotic volcanoes



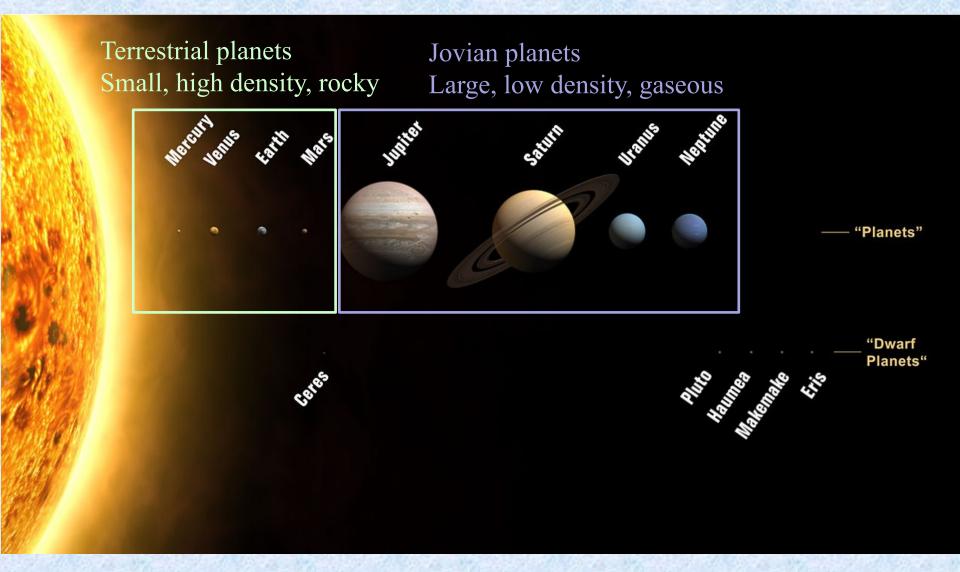
Sulfuric acid clouds

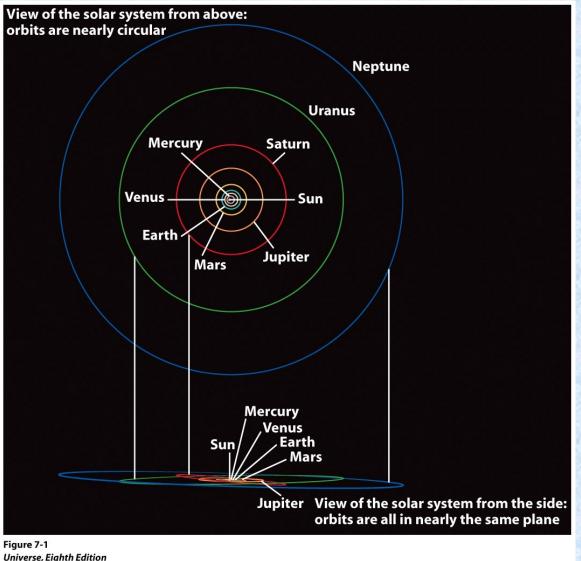
Barren, cratered landscapes

Hydrocarbon lakes

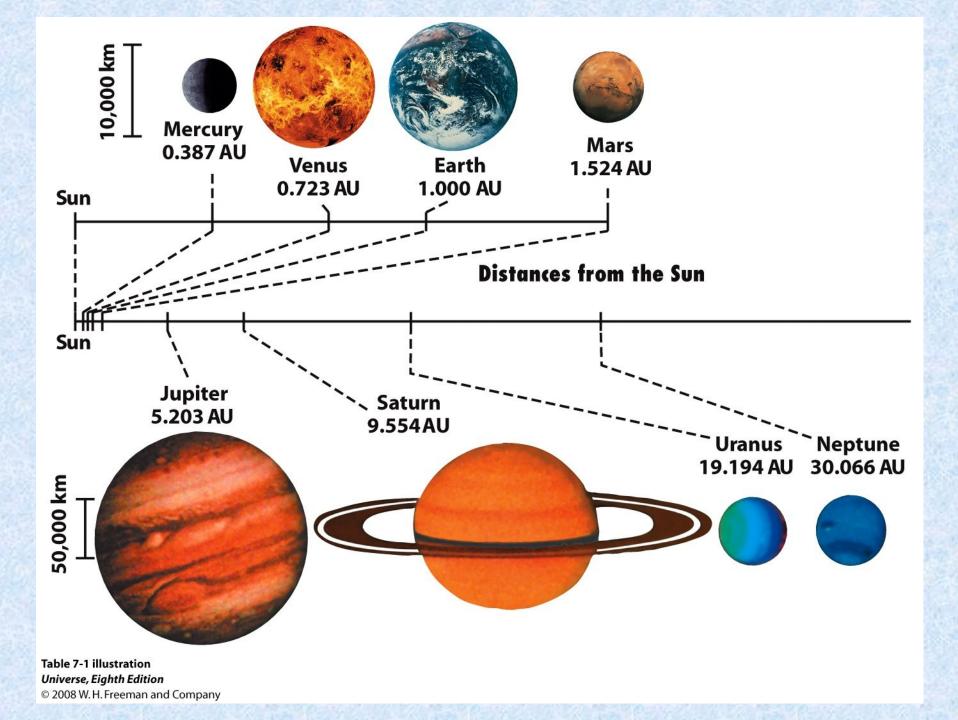
Desolate deserts

Gas giants


Frozen ice-balls



Why does it look the way it does'



Planets in our Solar System

- © 2008 W.H. Freeman and Company
- Orbits not random
- In nearly same plane
- Orbit in same direction (nearly all also rotate in that direction)

Four inner (Terrestrial) Planets

Small, low mass, high density, rocky

Table 7-1 Characteristics of the Planets

	The Inner (Terrestrial) Planets			
	Mercury	Venus	Earth	Mars
Average distance from Sun (10 ⁶ km)	57.9	108.2	149.6	227.9
Average distance from Sun (AU)	0.387	0.723	1.000	1.524
Orbital period (years)	0.241	0.615	1.000	1.88
Orbital eccentricity	0.206	0.007	0.017	0.093
Inclination of orbit to the ecliptic	7.00°	3.39°	0.00°	1.85°
Equatorial diameter (km)	4880	12,104	12,756	6794
Equatorial diameter (Earth $=$ 1)	0.383	0.949	1.000	0.533
Mass (kg)	3.302 × 10 ²³	4.868 × 10 ²⁴	5.974 × 10 ²⁴	6.418 × 10 ²³
Mass (Earth = 1)	0.0553	0.8150	1.0000	0.1074
Average density (kg/m ³)	5430	5243	5515	3934

Table 7-1 part 1 Universe, Eighth Edition © 2008 W.H. Freeman and Company

Four outer (Jovian) Planets

Large, high mass, low density, gaseous Visible "surface" = cloud formations

Table 7-1 Characteristics of the Planets

	The Outer (Jovian) Planets			
	Jupiter	Saturn	Uranus	Neptune
Average distance from Sun (10 ⁶ km)	778.3	1429	2871	4498
Average distance from Sun (AU)	5.203	9.554	19.194	30.066
Orbital period (years)	11.86	29.46	84.10	164.86
Orbital eccentricity	0.048	0.053	0.043	0.010
Inclination of orbit to the ecliptic	1.30°	2.48°	0.77°	1.77°
Equatorial diameter (km)	142,984	120,536	51,118	49,528
Equatorial diameter (Earth = 1)	11.209	9.449	4.007	3.883
Mass (kg)	1.899 × 10 ²⁷	5.685 × 10 ²⁶	8.682 × 10 ²⁵	$1.024 imes 10^{26}$
Mass (Earth = 1)	317.8	95.16	14.53	17.15
Average density (kg/m³)	1326	687	1318	1638

Table 7-1 part 2 Universe, Eighth Edition © 2008 W. H. Freeman and Company How do we know?

Distance: Kepler's Third Law (P^2/a^3=constant)

Size: observed angular size and distance

Mass: if satellite – Kepler's Third Law flyby by spacecraft, gravitational pull, deflects path

Density: mass/volume

Question 10.1 (iclickers!)

•Suppose that in the near future a series of extrasolar planets are discovered with the following characteristics: spherical solid surfaces; mean densities about four times that of water; radii about 4000 km; low density atmospheres. How would these planets be classified in terms of our solar system

- •A) Jovian Planets
- •B) Cometary nuclei
- •C) Asteroids
- •D) Terrestrial Planets

Satellites

Table 7-2 The Seven Giant Satellites

	Moon	lo	Europa	Ganymede	Callisto	Titan	Triton
Parent planet	Earth	Jupiter	Jupiter	Jupiter	Jupiter	Saturn	Neptune
Diameter (km)	3476	3642	3130	5268	4806	5150	2706
Mass (kg)	$7.35 imes 10^{22}$	8.93 × 10 ²²	4.80 × 10 ²²	1.48 × 10 ²³	$1.08 imes 10^{23}$	$1.34 imes10^{23}$	2.15 × 10 ²²
Average density (kg/m ³)	3340	3530	2970	1940	1850	1880	2050
Substantial atmosphere?	No	No	No	No	No	Yes	No

Table 7-2Universe, Eighth Edition© 2008 W.H. Freeman and Company

- Seven large satellites almost as big as terrestrial planets
- Comparable in size to Mercury
- Remaining satellites (>140 known today!) much smaller

Saturn's satellite Titan

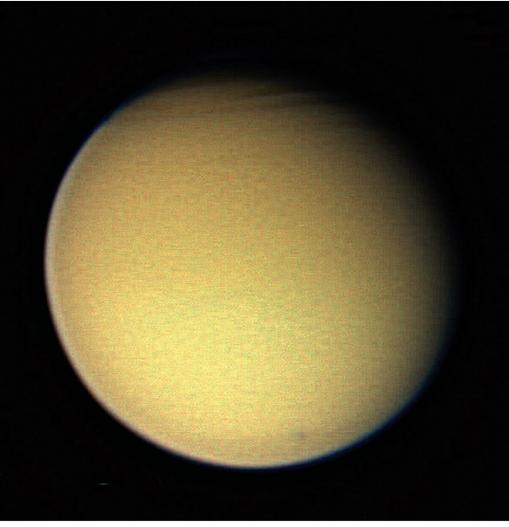
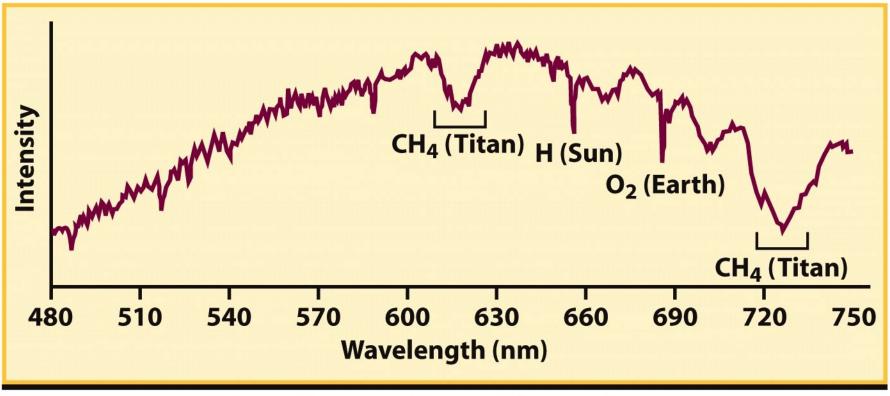



Figure 7-3a Universe, Eighth Edition © 2008 W. H. Freeman and Company

Titan: only satellite with a substantial atmosphere

Chemical composition

The spectrum of sunlight reflected from Titan

Figure 7-3b Universe, Eighth Edition © 2008 W.H. Freeman and Company

- Dips: due to absorption by hydrogen atoms (H), oxygen molecules (O₂), and methane molecules (CH₄)

- Only methane actually present in Titan's atmosphere

Interpreting Titan's spectrum

Figure 7-3c Universe, Eighth Edition © 2008 W.H. Freeman and Company

Jupiter's moon Europa

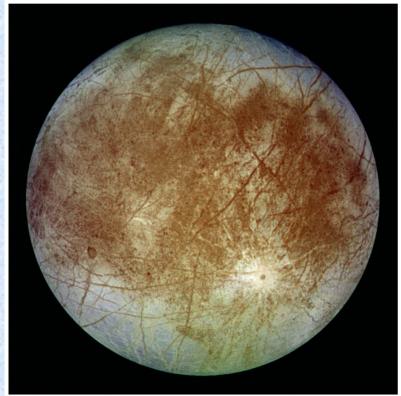
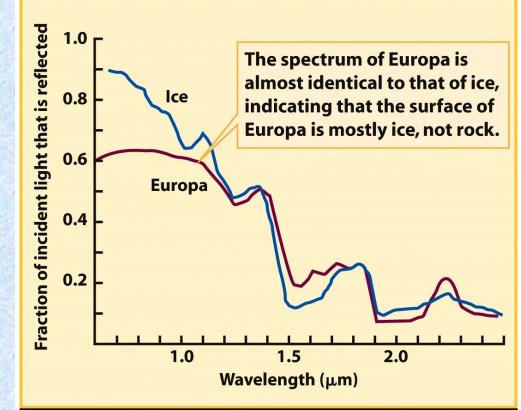
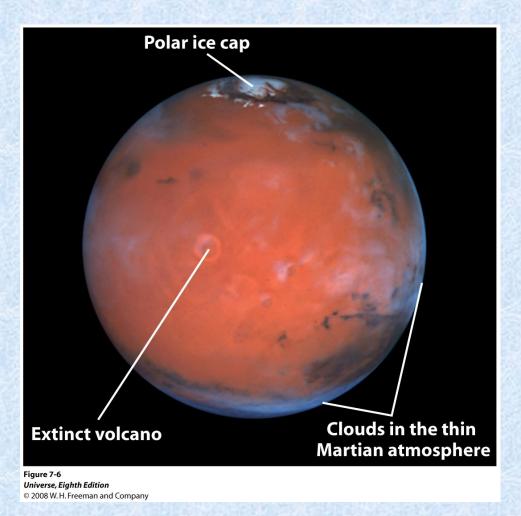



Figure 7-4a Universe, Eighth Edition © 2008 W.H. Freeman and Company



The spectum of light reflected from Europa

Figure 7-4b Universe, Eighth Edition © 2008 W.H. Freeman and Company

Europa:

- No atmosphere
- Sun light reflected from surface

Mars:

- Composed mostly of heavy elements
- (iron, oxygen, silicon, magnesium, nickel, sulfur) \rightarrow red surface
- Atmosphere thin, nearly cloudless
- Olympus Mons = extinct volcano, nearly 3 times height of Mount Everest

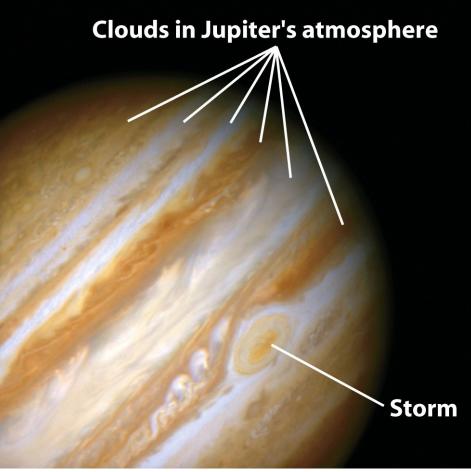


Figure 7-5 Universe, Eighth Edition © 2008 W. H. Freeman and Company

Jupiter:

- Composed mostly of lightest elements (hydrogen, helium), colorless
- Colors: trace amounts of other substances
- Giant storm = Great Red Spot, >300 years old

How do we know?

Chemical composition: soil probes (Venus, Earth, Moon, Mars) spectroscopy average density color

Table 7-3	Comparing Terrestrial and
	Jovian Planets

	Terrestrial Planets	Jovian Planets
Distance from the Sun	Less than 2 AU	More than 5 AU
Size	Small	Large
Composition	Mostly rocky materials containing iron, oxygen, silicon, magnesium, nickel, and sulfur	Mostly light elements such as hydrogen and helium
Density	High	Low

Question 10.2 (iclickers!)

•A ground based telescope is pointed at the atmosphere of Titan and a spectrum is obtained. The spectral lines observed in this spectrum:

- •A) Can only be features of Titan
- •B) can be characteristic of the Earth's atmosphere as well as Titan's atmosphere

•C) Can be characteristic of the cooler outer layers of the Sun's atmosphere as well as of Titan's atmosphere
•D) can be characteristic of the atmosphere of Titan and the Earth and also of the cooler outer layers of the Sun's atmosphere.

The Surface of Terrestrial Planets and the Moon: Impact Craters

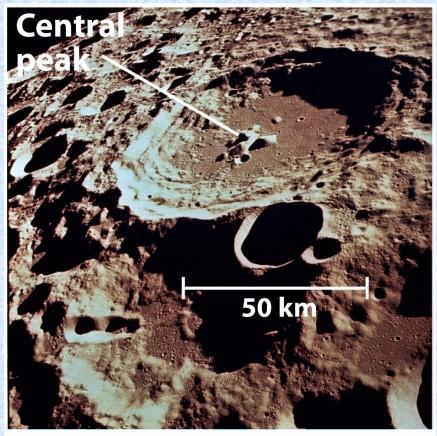


Figure 7-10a Universe, Eighth Edition © 2008 W.H. Freeman and Company

- Asteroids/Comets on elongated orbits, can collide with planet/satellite

- Jovian planets: swallowed by atmosphere
- Terrestrial planets: impact crater (central peak!)

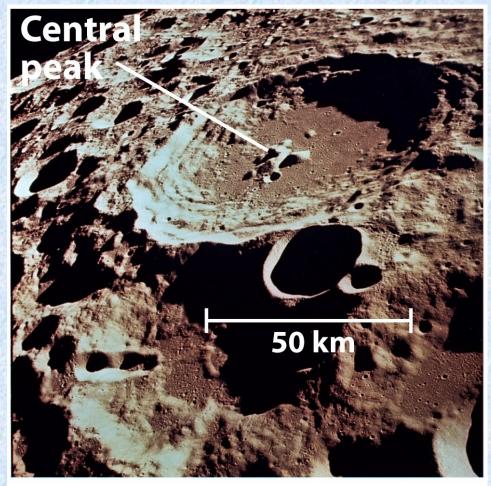


Figure 7-10a Universe, Eighth Edition © 2008 W.H. Freeman and Company

Moon:

- Surface with craters of all sizes
- Large crater equal to length of San Francisco Bay

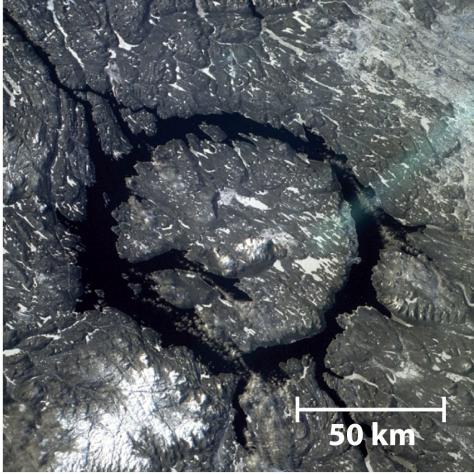


Figure 7-10b Universe, Eighth Edition © 2008 W.H. Freeman and Company

Earth:

- Only < 200 craters
- Manicouagan Reservoir in Quebec
- Relic of a crater formed >200 million years ago; eroded by glaciers

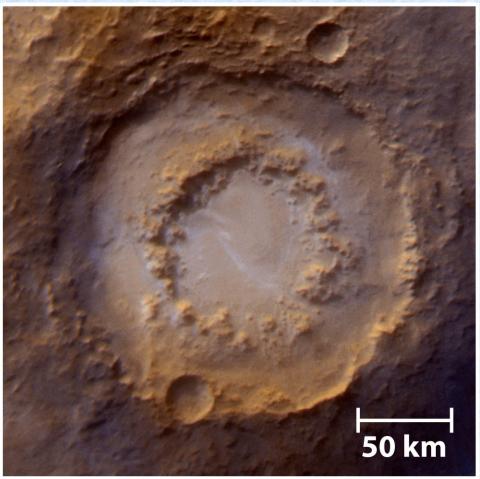


Figure 7-10c Universe, Eighth Edition © 2008 W. H. Freeman and Company

Mars:

- Lowell Crater in the southern highlands, 201 km (125 miles) across
- Craters on top of craters
- Light-colored frost: condensation of carbon dioxide from atmosphere

Observations:

• SMALLER worlds (the Moon, Mercury, Mars) have more craters than larger worlds (Earth, Venus)

• LARGER worlds have more geological activity (volcanoes, faults, etc.)

• What's the connection?

Geological activity erases craters

Planet #1

Planet #2

Figure 7-11 Universe, Eighth Edition © 2008 W. H. Freeman and Company

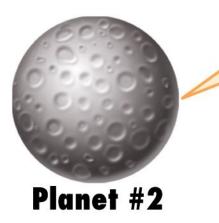


Figure 7-11 Universe, Eighth Edition © 2008 W. H. Freeman and Company Compared to planet #1, planet #2: — has 1/2 the radius

- has 1/4 the surface area (so it can lose heat only 1/4 as fast)
- but has only 1/8 the volume (so it has only 1/8 as much heat to lose)

Hence compared to planet #1, planet #2:

- will cool off more rapidly
- will sustain less geologic activity
- will have more craters

How do we know?

Geological activity: number of craters

Inner core: if geologically active \rightarrow at least partially molten

The Inner (Terrestrial) Planets Close to the Sun - Small diameter, small mass - High density						
Mercury	Venus	Earth	Mars			
0.387	0.723	1.000	1.524			
0.383	0.949	1.000	0.533			
0.0553	0.8150	1.0000	0.1074			
5430	5243	5515	3934			
	Mercury 0.387 0.383 0.0553	MercuryVenus0.3870.7230.3830.9490.05530.8150	MercuryVenusEarth0.3870.7231.0000.3830.9491.0000.05530.81501.0000			

Cosmic Connections 7a Universe, Eighth Edition © 2008 W.H. Freeman and Company

The Outer (Jovian) Planets Far from the Sun - Large diameter, large mass - Low density

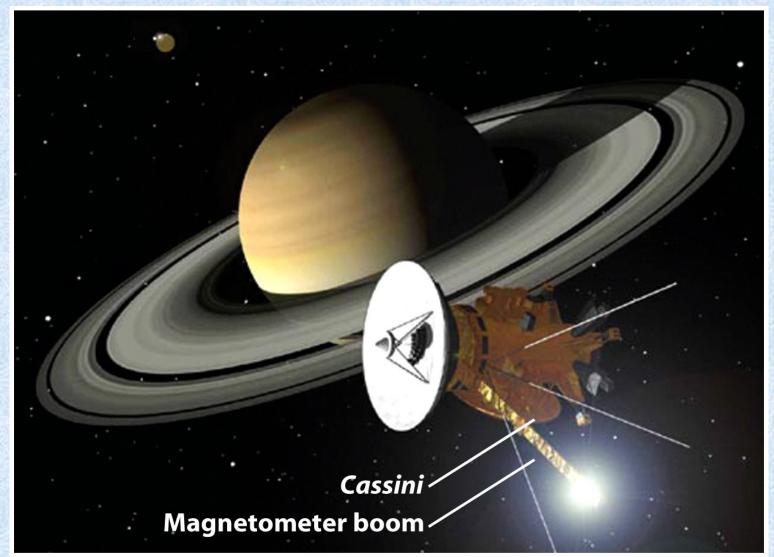
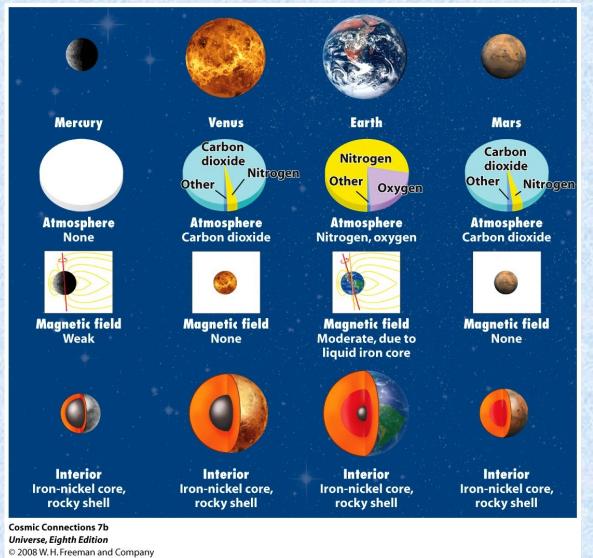
	Jupiter	Saturn	Uranus	Neptune
Average distance from Sun (AU)	5.203	9.554	19.194	30.066
Equatorial diameter (Earth = 1)	11.209	9.449	4.007	3.883
Mass (Earth = 1)	317.8	95.16	14.53	17.15
Average density (kg/m ³)	1326	687	1318	1638

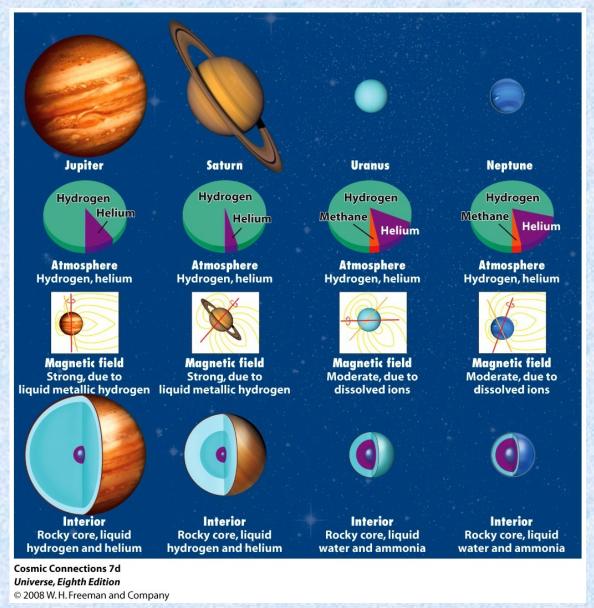
Cosmic Connections 7c

Universe, Eighth Edition

© 2008 W. H. Freeman and Company

Measuring Magnetic Fields

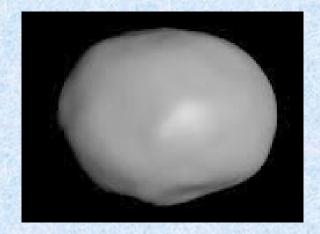




Figure 7-14 Universe, Eighth Edition © 2008 W. H. Freeman and Company

Terrestrial Planets

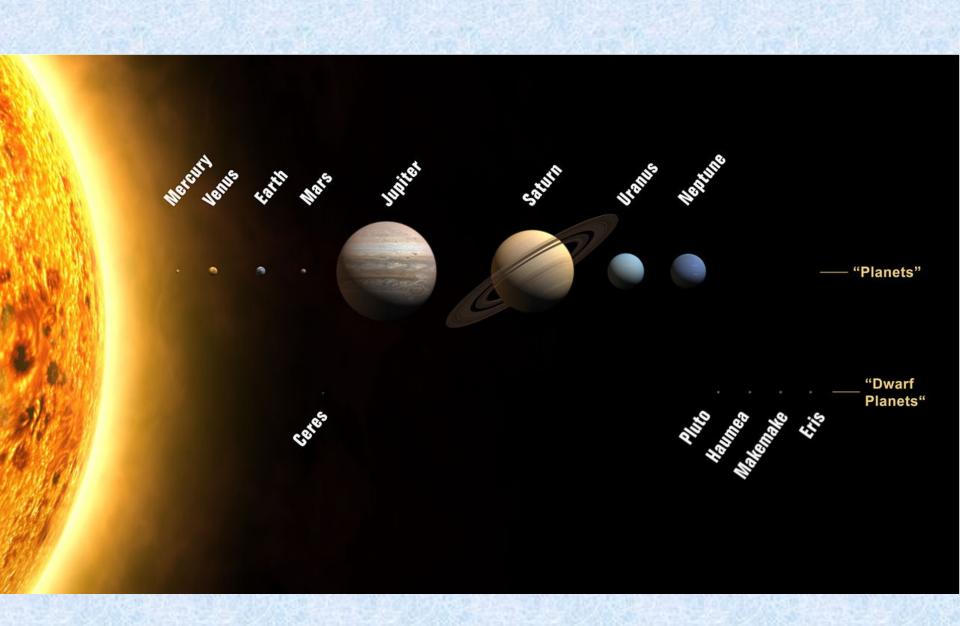
High atmospheric temperatures (close to sun)
H2 and He light elements, fast, escape
CO2, N2, O2, H2O remain

Jovian Planets

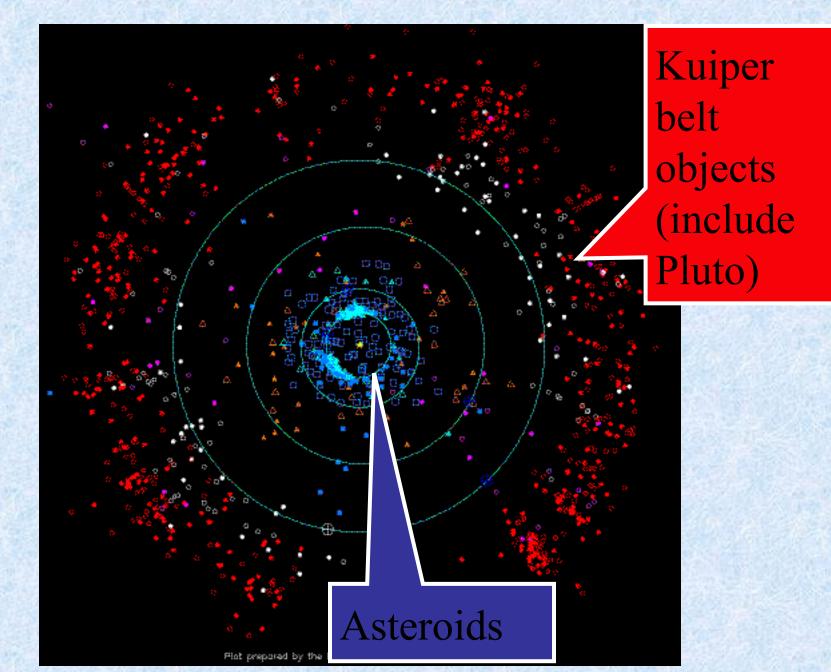


Low temperatures (far from sun)Massive, strong gravity, can hold H, He

Official International Astronomical Union definition of a planet


A planet is a celestial body that:

1.is in orbit around the Sun,2.has sufficient mass to assume hydrostatic equilibrium (a nearly round shape), and3.has "cleared the neighbourhood" around its orbit.



The second-largest asteroid, Vesta

If a solar system body only meets the first two criteria (and is not a satellite) it is called a "dwarf planet". All others: "small solar system bodies".

Small bodies in the solar system


Asteroids

Figure 7-7 Universe, Eighth Edition © 2008 W. H. Freeman and Company

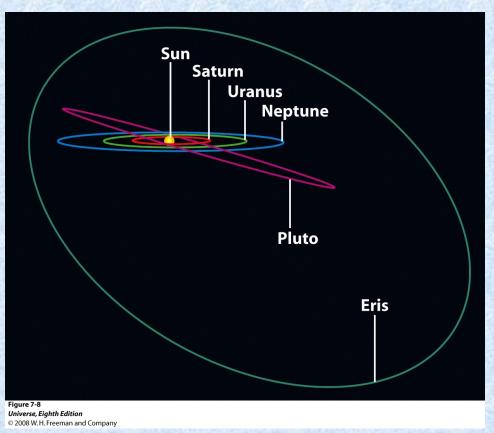
- Rocky objects between Mars and Jupiter in "asteroid belt"
- Left-overs that did not form a planet
- Combined mass < Moon

Asteroids

- 33 km (21 mi) long and 13 km (8 mi) wide
- Gravity too weak to have pulled it into a spherical shape
- Image taken March 2000 by *NEAR Shoemaker*, first spacecraft to orbit around and land on an asteroid.

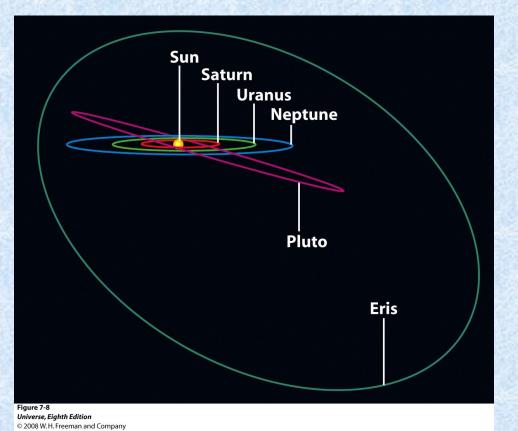
Question 10.3 (iclickers!)

•In general small bodies in the solar system are less likely than large bodies to possess a planet-wide magnetic field. Why should we expect size and magnetism to be correlated?


•A) A small body cools more rapidly and is less likely to possess a molten liquid interior.

•B) Small bodies are more likely to be heavily cratered and such impacts can destroy the mechanism that produces the magnetic field

•C) Magnetic fields are produced by the entire volume of a body. Smaller bodies have smaller volumes and therefore smaller magnetic fields


•D) Small bodies necessarily rotate more slowly and a rapid rotation rate is one requirement for a planet wide magnetic field

Trans-Neptunian Objects (TNOs) = Kuiper Belt Objects (KBOs)

- Rocky & icy objects beyond Neptune (> 900 known; maybe up to 35,000?)
- High eccentricities
- Pluto is first discovered TNO (1930) and second biggest
- Reside in Kuiper belt (30-50 AU from sun)
- Debris left over from formation of solar system

Trans-Neptunian Objects (TNOs) = Kuiper Belt Objects (KBOs)

Pluto and Eris (2003 UB313):

- Two largest Trans-Neptunian Objects
- Orbits steeply inclined to the ecliptic

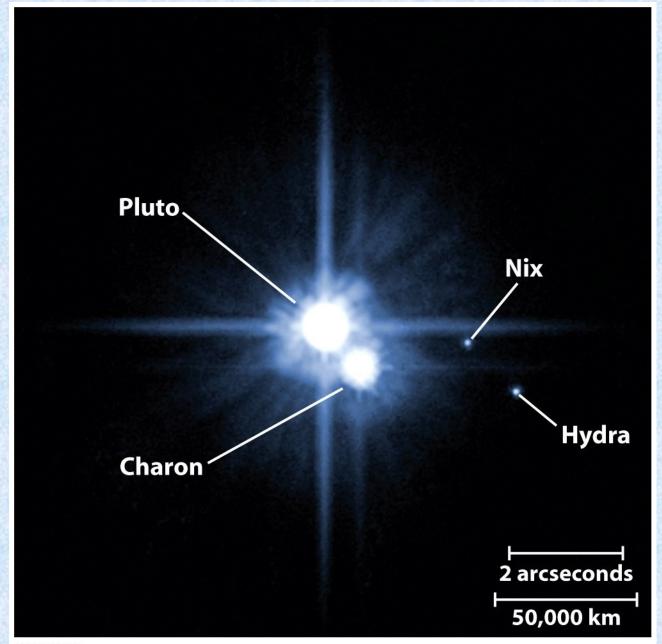
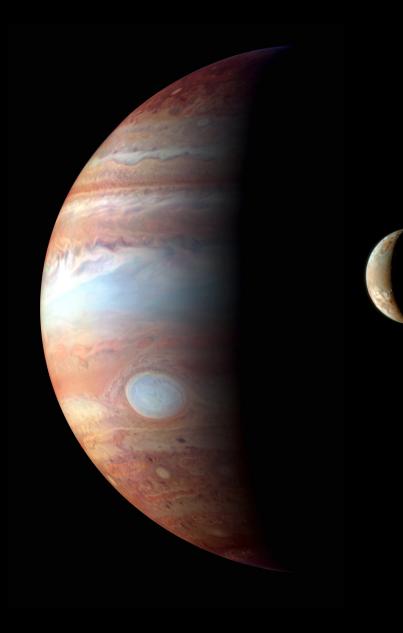


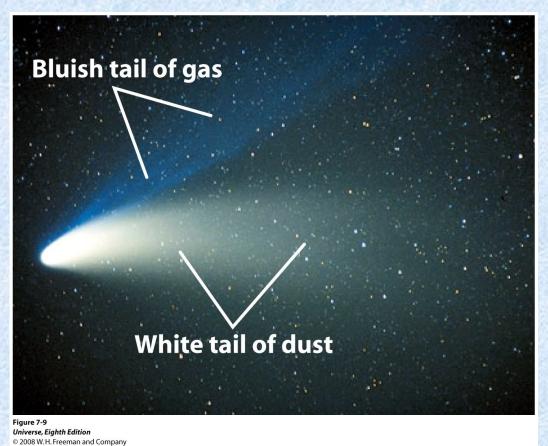
Figure 14-19 Universe, Eighth Edition © 2008 W.H. Freeman and Company

Table 7-4 **Seven Large Trans-Neptunian Objects** Charon 2003 EL61 Sedna 2005 FY9 (satellite of Pluto) Quaoar Pluto Eris Average distance from Sun (AU) 39.54 39.54 43.54 43.34 489 45.71 67.67 **Orbital period (years)** 287 10,800 248.6 557 285 309 248.6 **Orbital eccentricity** 0.035 0.189 0.155 0.250 0.250 0.844 0.442 Inclination of orbit to the ecliptic 8.0° 11.9° 29.0° 17.15° 44.2° 28.2° 17.15° Approximate diameter (km) 2274 2900 1250 1500 1600 1800 1190 Charon 3476 km = diameter of the Earth's Moon 2003 EL61 Sedna 2005 FY9 Pluto Eris Quaoar (Note: To date astronomers have been able to make images of the surfaces of Pluto and Charon only.) RIVUXG (Images of Pluto and Charon: Alan Stern, Southwest Research Institute; Marc Buie, Lowell Observatory; NASA; and ESA)

Table 7-4 Universe, Eighth Edition © 2008 W.H. Freeman and Company


Figure 14-20 Universe, Eighth Edition © 2008 W.H. Freeman and Company

New Horizons spacecraft


- Launch 2006
- Pluto/Charon flyby in 2015, then flyby of at least one (other) Kuiper belt object

• Picture of Jupiter and Io

Comets ("Dirty Snowballs in Space")

Rocky & icy objects on eccentric orbits that come close to sun.
Few tens of km in diameter

- From Kuiper Belt or even further out (Oort Cloud; 50,000 AU)
- e.g. if collision of two KBOs, a fragment can be knocked off and diverted into elongated object, brings it close to sun

Comets

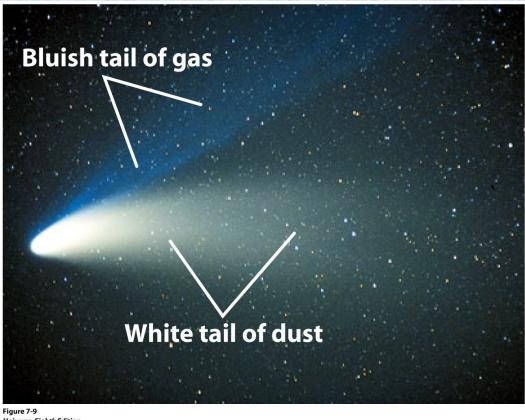


Figure 7-9 Universe, Eighth Edition © 2008 W.H. Freeman and Company

Hale-Bopp: (April 1997)

- Near Sun: solar radiation vaporizes some icy material
- Bluish tail of gas, white tail of dust
- Tails can extend for tens of millions of kilometers

Summary

Properties of the Planets:

- Orbits in the same plane and direction
- Inner (terrestrial) planets are small and made of heavy elements
- Outer (Jovian) planets are big and made of light elements

Other bodies in the Solar system

- There are seven large satellites (like the moon)
- Asteroids in Asteroid Belt between Mars and Jupiter
- Outer solar system is populated by TNO and comets
- How do we learn about solar system bodies?
 - We send probes
 - Spectroscopy reveals the composition of atmospheres
 - Craters and magnetic fields reveal the presence of a liquid melted core

