Astronomy 1 - Winter 2011

Lecture 20; February 252011

Previously on Astro-1

- The Sun
- Internal structure
- Energy source
- Neutrinos and the solar neutrino problem
- Sunspots and the sun cycle

Today on Astro-1

- Introduction to stars
- Measuring Distances
- Inverse square law: luminosity vs brightness
- Colors and spectral types
- Masses of stars

The closest stars to the

 sun.
But how do

 we know the distance to them?

Figure 17-1
Universe, Eighth Edition
© 2008 W. H. Freeman and Company

Parallax

 measuring the distance to a star $\mathrm{d}=1 / \mathrm{p}$$\mathrm{p}=$ parallax in
arcsec
$\mathrm{d}=$ distance in
parsecs
$1 \mathrm{pc}=3.26 \mathrm{ly}$

- Nearby star

Parallax

measuring the

 distance to a star$\mathrm{d}=1 / \mathrm{p}$
$\mathrm{p}=$ parallax in arcsec
$\mathrm{d}=$ distance in
parsecs

$$
1 \mathrm{pc}=3.26 \mathrm{ly}
$$

Remember 1 pc is the distance at which 1 AU subtends 1 arcsec

Parallax of a nearby star
Figure 17-2a
Universe, Eighth Edition
© 2008 W. H. Freeman and Company

Example A star has a parallax of 0.1". What is its distance?
 $\mathrm{d}=1 / \mathrm{p}$
 $\mathrm{p}=$ parallax in
 arcsec
 $\mathrm{d}=$ distance in
 parsecs
 $$
\mathrm{d}=1 / 0.1=10 \mathrm{pc}
$$

Parallax of a nearby star
Figure 17-2a
Universe, Eighth Edition
© 2008 W. H. Freeman and Company

Question 20.1 (iclickers!)

-Consider two stars, star 1 and star 2. Star 1 has a parallax of 0.05 arcsec. Star 2 has a parallax of 0.40 arcsec. How far away are the two stars?
-A) Star 1: 5 pc, Star 2: 40 pc
-B) Star 1: $1 / 5 \mathrm{pc}$, Star 2: $1 / 40 \mathrm{pc}$
-C) Star 1: 10 pc, Star 2: 25 pc
-D) Star 1: 20 pc, Star 2: 2.5 pc

Inverse square law determining the luminosity of a star

$\mathrm{b}=\mathrm{L} / 4 \pi \mathrm{~d}^{2}$
$b=$ brightness of star as we see it $\mathrm{L}=$ luminosity of star (wattage) d = distance to star

The Inverse-Square Law
Radiation from a light source illuminates an area that increases as the square of the distance from the source. The apparent brightness decreases as the square of the distance. The brightness at $d=2$ is $1 /\left(2^{2}\right)=1 / 4$ of the brightness at $d=1$, and the brightness at $d=3$ is $1 /\left(3^{2}\right)=1 / 9$ of that at $d=1$.

Question 20.2 (iclickers!)

- At the distance of the Earth from the Sun (1 AU) the intensity of sunlight is 1370 watts $/ \mathrm{m}^{2}$. What is the intensity at the distance of Saturn from the Sun (10 AU)?
A. 13,700 watts $/ \mathrm{m}^{2}$
B. 1370 watts $/ \mathrm{m}^{2}$
C. 137 watts $/ \mathrm{m}^{2}$
D. 13.7 watts $/ \mathrm{m}^{2}$

(a) A cool star with surface temperature 3000 K emits much more red light than blue light, and so appears red.

(b) A warmer star with surface temperature 5800 K (like the Sun) emits roughly equal amounts of all visible wavelengths, and so appears yellow-white.

(c) A hot star with surface temperature $\mathbf{1 0 , 0 0 0} \mathrm{K}$ emits much more blue light than red light, and so appears blue.

Figure 17-7
Universe, Eighth Edition
© 2008 W.H. Freeman and Company

Figure 17-8
Universe, Eighth Edition
© 2008 W. H. Freeman and Company

Table 17-I Colors of Selected Stars

Star	Surface temperature (K)	$\boldsymbol{b}_{\mathbf{v}} / \boldsymbol{b}_{\mathbf{B}}$	$\boldsymbol{b}_{\mathbf{B}} / \boldsymbol{b}_{\mathbf{U}}$	Apparent color
Bellatrix (γ Orionis)	21,500	0.81	0.45	Blue
Regulus (α Leonis)	12,000	0.90	0.72	Blue-white
Sirius (α Canis Majoris)	9400	1.00	0.96	Blue-white
Megrez (δ Ursae Majoris)	8630	1.07	1.07	White
Altair (α Aquilae)	7800	1.23	1.08	Yellow-white
Sun	5800	1.87	1.17	Yellow-white
Aldebaran (α Tauri)	4000	4.12	5.76	Orange
Betelgeuse (α Orionis)	3500	5.55	6.66	Red

Source: J.-C. Mermilliod, B. Hauck, and M. Mermilliod, University of Lausanne

The Stars

distances - from parallax
luminosites - from $\mathrm{b}=\mathrm{L} / 4 \pi \mathrm{~d}^{2}$
temperatures - from color and spectrum
Hot
Cold
O B A F G K M L T \square

Spectra of stars with different surface temps

Question 20.3 (iclickers!)

- A star has a radius half of that of the Sun and a luminosity equal to 60% of that of the Sun. What's the star's surface temperature? The surface temperature of the Sun is 5800 K .
A. 7220 K
B. 6650 K
C. 4660 K
D. 3610 K

Figure 17-15a
Universe, Eighth Edition
© 2008 W.H. Freeman and Company

(a) A Hertzsprung-Russell (H-R) diagram

(b) The sizes of stars on an H-R diagram

Universe, Eighth Edition
© 2008 W. H. Freeman and Company

The mass of stars

Figure 17-19
Universe, Eighth Edition
© 2008 W. H. Freeman and Company
To determine stellar mases we rely on binary star systems. As seen from Earth, the two stars that make up this binary system are separated by less than $1 / 3$ arcsecond. For simplicity, the diagram shows one star as remaining stationary; in reality, both stars move around their common center of mass

A "binary system" of two children

H-R diagram with masses

The main sequence is a mass sequence!

Summary

- Parallax is a tool to measure distances
- The Inverse-Square Law relates luminosity and brightness
- Low luminosity stars are more common than more luminous ones
- Colors and spectral types measure a star's temperature
- The Hertzsprung-Russell (H-R) diagram is a graph plotting luminosity vs temperature
- Most stars belong to the main sequence. Other important classes are giants, supergiants and white dwarfs.
- Spectral typing can be used to determine distances
- Masses can be determined for binaries. The main sequence is a mass sequence!!

The End

See you on monday!

