Homework 1 Solutions
Astro 2 Spring 2013

Jared Brooks
Department of Physics: University of California, Santa Barbara
Updated April 17, 2013

24.34 (a) You would expect to find Type II Cepheids in globular clusters because globular clusters contain Population II stars. You would expect to find Type I Cepheids in the disks of spiral galaxies because that is where Population I stars are found.

(b) From Figure 19-19 we see that Type I Cepheids are more luminous than Type II Cepheids. Therefore, Hubble underestimated the luminosity of the Cepheids in M31, which caused him to underestimate the distance to M31.

24.37 (a) In 4 months a maser traveling at 1000 km/s will travel

\[
\frac{1000 \text{ km}}{1 \text{ s}} \times 4 \text{ mo} \times \frac{30 \text{ d}}{1 \text{ mo}} \times \frac{24 \text{ h}}{1 \text{ d}} \times \frac{3600 \text{ s}}{1 \text{ h}} = 1.04 \times 10^{10} \text{ km}
\]

\[
= 1.04 \times 10^{10} \text{ km} \times \frac{1 \text{ AU}}{1.496 \times 10^{8} \text{ km}} = 69 \text{ AU}
\]

(b) Using the small angle formula from Box 1-1, the distance to the galaxy is

\[
d = \frac{206.265D}{\alpha} = \frac{(206.265)(1.04 \times 10^{10} \text{ km})}{1 \times 10^{-5} \text{ arcsec}}
\]

\[
= 2.15 \times 10^{20} \text{ km}
\]

\[
d = 2.15 \times 10^{20} \text{ km} \times \frac{1 \times 10^{6} \text{ ly}}{9.46 \times 10^{18} \text{ km}} = 23 \text{ Mly}
\]

\[
= 23 \times 10^{6} \text{ ly} \times \frac{1 \text{ pc}}{3.26 \text{ ly}} \times \frac{1 \text{ Mpc}}{10^{6} \text{ pc}} = 7 \text{ Mpc}
\]
24.41 (a) We must use the relativistic formula:

\[
\frac{v}{c} = \frac{(z + 1)^2 - 1}{(z + 1) + 1} = \frac{(5.34 + 1)^2 - 1}{(5.34 + 1) + 1} = .951
\]

Then \(v = .95c = 2.85 \times 10^5 \text{ km/s.}\)

(b) The low z formula would give \(v = 5.34c\), which is a huge error.

(c) Using the Hubble Law,

\[
d = \frac{v}{H_0} = \frac{2.85 \times 10^5 \text{ km/s}}{73 \text{ km/s/Mpc}}
\]

\[= 3904 \text{ Mpc} = 12.73 \text{ billion light years}\]