Exotic W^+W^-Z Signals at the LHC

Jared Evans jaevans@ucdavis.edu w/ M.Luty and S.Chang

Department of Physics University of California - Davis

WCLHC

Purpose of talk:

イロト イヨト イヨト イヨト

Purpose of talk:

Show how to find TWO Higgs bosons in the early LHC

• • • • • • • • • • • • •

Purpose of talk:

- Show how to find TWO Higgs bosons in the early LHC
- 2HDM = Simplified Model for spin-0 resonances

Purpose of talk:

- Show how to find TWO Higgs bosons in the early LHC
- 2HDM = Simplified Model for spin-0 resonances
- \blacktriangleright Higgs \rightarrow heavier \Rightarrow Higgs sector \rightarrow more strongly coupled
- Handle on signals of Strong EWSB!

Purpose of talk:

- Show how to find TWO Higgs bosons in the early LHC
- 2HDM = Simplified Model for spin-0 resonances
- \blacktriangleright Higgs \rightarrow heavier \Rightarrow Higgs sector \rightarrow more strongly coupled
- Handle on signals of Strong EWSB!

Fermion masses in Strong EWSB by $(\Psi\Psi^c) \sim H_{SM}$ $\mathcal{L} \ni \frac{c}{\Lambda^{d-1}} Q(\Psi\Psi^c) t^c \sim c \left(\frac{v}{\Lambda_t}\right)^{d-1} Qt^c = m_{top}Qt^c$

Fermion masses in Strong EWSB by $(\Psi \Psi^c) \sim H_{SM}$ $\mathcal{L} \ni \frac{c}{\Lambda^{d-1}} Q(\Psi \Psi^c) t^c \sim c \left(\frac{v}{\Lambda_t}\right)^{d-1} Q t^c = m_{top} Q t^c$ $(\Psi \Psi^c) \sim v^d + \dots$

Fermion masses in Strong EWSB by $(\Psi \Psi^c) \sim H_{SM}$ $\mathcal{L} \ni \frac{c}{\Lambda^{d-1}} Q(\Psi \Psi^c) t^c \sim c \left(\frac{v}{\Lambda_t}\right)^{d-1} Q t^c = m_{top} Q t^c$ $(\Psi \Psi^c) \sim v^d + \dots$

Discrete Symmetries $\Rightarrow (\Psi \Psi^c)$ decomposes

$$I^{P_i} = 0^{+...} + 1^{+...} + 0^{-...} + 1^{-...} + \ldots$$

Fermion masses in Strong EWSB by $(\Psi \Psi^c) \sim H_{SM}$ $\mathcal{L} \ni \frac{c}{\Lambda^{d-1}} Q(\Psi \Psi^c) t^c \sim c \left(\frac{v}{\Lambda_t}\right)^{d-1} Q t^c = m_{top} Q t^c$ $(\Psi \Psi^c) \sim v^d + \dots$

Discrete Symmetries $\Rightarrow (\Psi \Psi^c)$ decomposes

$$I^{P_i} = 0^{+...} + 1^{+...} + 0^{-...} + 1^{-...} + \dots$$

⇒ new BSM spin-0 resonances produced through GGF … a lot like a 2HDM

WWZ at LHC

Fermion masses in Strong EWSB by $(\Psi \Psi^c) \sim H_{SM}$ $\mathcal{L} \ni \frac{c}{\Lambda^{d-1}} Q(\Psi \Psi^c) t^c \sim c \left(\frac{v}{\Lambda_t}\right)^{d-1} Q t^c = m_{top} Q t^c$ $(\Psi \Psi^c) \sim v^d + \dots$

Discrete Symmetries $\Rightarrow (\Psi \Psi^c)$ decomposes

$$I^{P_i} = 0^{+...} + 1^{+...} + 0^{-...} + 1^{-...} + \dots$$

⇒ new BSM spin-0 resonances produced through GGF … a lot like a 2HDM

2HDM can mimic low-lying strong scalars

Fermion masses in Strong EWSB by $(\Psi \Psi^c) \sim H_{SM}$ $\mathcal{L} \ni \frac{c}{\Lambda^{d-1}} Q(\Psi \Psi^c) t^c \sim c \left(\frac{v}{\Lambda_t}\right)^{d-1} Q t^c = m_{top} Q t^c$ $(\Psi \Psi^c) \sim v^d + \dots$

Discrete Symmetries $\Rightarrow (\Psi \Psi^c)$ decomposes

$$I^{P_i} = 0^{+...} + 1^{+...} + 0^{-...} + 1^{-...} + \dots$$

⇒ new BSM spin-0 resonances produced through GGF … a lot like a 2HDM

2HDM can mimic low-lying strong scalars

Electroweak Precision Data?

$$V = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{4} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{4} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)^2 + \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \left(\left[\lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)$$

イロト イヨト イヨト

$$V = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{4} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{4} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)^2 + \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \left(\left[\lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)$$

Force
$$SU(2)_L \times SU(2)_R (\Rightarrow \rho \simeq 1)$$

イロト イヨト イヨト

$$V = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{4} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{4} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)^2 + \frac{\lambda_5}{\lambda_5} \left(\Phi_1^{\dagger} \Phi_2 \right)^2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \left(\left[\lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)$$

Force $SU(2)_L \times SU(2)_R (\Rightarrow \rho \simeq 1)$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$V = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{4} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{4} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)^2 + \frac{\lambda_5}{\lambda_5} \left(\Phi_1^{\dagger} \Phi_2 \right)^2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \left(\left[\lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)$$

Force $SU(2)_L \times SU(2)_R (\Rightarrow \rho \simeq 1)$

• $m_{1,2}^2$ and $\lambda_{1,2,3,4} \rightarrow v, m_h, m_H, m_A$ and angles α and β

< < >> < <</p>

$$V = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{4} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{4} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)^2 + \frac{\lambda_5}{4} \left(\Phi_1^{\dagger} \Phi_2 \right)^2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \left(\left[\lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)$$

- Force $SU(2)_L \times SU(2)_R (\Rightarrow \rho \simeq 1)$
- $m_{1,2}^2$ and $\lambda_{1,2,3,4} \rightarrow v, m_h, m_H, m_A$ and angles α and β
- ▶ H^+ , H^- and $A \in SU(2)_C$ triplet \Rightarrow Same mass

$$V = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{4} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{4} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)^2 + \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \left(\left[\lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)$$

- Force $SU(2)_L \times SU(2)_R (\Rightarrow \rho \simeq 1)$
- $m_{1,2}^2$ and $\lambda_{1,2,3,4} \rightarrow v, m_h, m_H, m_A$ and angles α and β
- ▶ H^+ , H^- and $A \in SU(2)_C$ triplet \Rightarrow Same mass
- (b-quark neglected; 2HDM Type I or Type II)

Resonances: h^0 , H^0 and $\mathbf{A} = (A^+ A^0 A^-)$

(Note: $A \rightarrow WW$, ZZ by CP and $h^0 \neq h_{SM}$)

Resonances:
$$h^0$$
, H^0 and $\mathbf{A} = (A^+ A^0 A^-)$

(Note: $A \rightarrow WW$, ZZ by CP and $h^0 \neq h_{SM}$)

New resonances can be composite or elementary particles

Resonances:
$$h^0$$
, H^0 and $\mathbf{A} = (A^+ A^0 A^-)$

(Note: $A \rightarrow WW$, ZZ by CP and $h^0 \neq h_{SM}$)

New resonances can be composite or elementary particles

Final States: LOTS of these!

$$H^{0} \rightarrow \begin{cases} W^{+}W^{-} \\ ZZ \\ t\bar{t} \\ b\bar{b}/\tau^{+}\tau^{-} \\ A^{0}Z/W^{\mp}A^{\pm} \\ W^{+}W^{-}h^{0} \\ h^{0}h^{0} \\ \end{pmatrix} \begin{cases} t\bar{t} \\ b\bar{b}/\tau^{+}\tau^{-} \\ W^{+}W^{-}Z \\ h^{0}Z/H^{0}Z \\ \end{pmatrix} \begin{pmatrix} W^{+}W^{-} \\ ZZ \\ t\bar{t} \\ b\bar{b}/\tau^{+}\tau^{-} \\ A^{0}Z/A^{\pm}W^{\mp} \\ A^{0}Z/A^{\pm}W^{\mp} \\ \end{pmatrix}$$

New states \rightarrow massive gauge bosons, heavy quarks and each other!

Resonances:
$$h^0$$
, H^0 and $\mathbf{A} = (A^+ A^0 A^-)$

(Note: $A \rightarrow WW$, ZZ by CP and $h^0 \neq h_{SM}$)

New resonances can be composite or elementary particles

Final States: LOTS of these!

New states \rightarrow massive gauge bosons, heavy quarks and each other! Signals not being looked for!

Signals for Early LHC?

- ▶ $m_A < 2m_t$
- $\blacktriangleright m_A > m_h + m_Z$
- ▶ $m_h > 2m_W$

イロト イ団ト イヨト イヨト

Signals for Early LHC?

- ▶ $m_A < 2m_t$
- $m_A > m_h + m_Z \Rightarrow W^+ W^- Z$ at 7 TeV LHC
- $m_h > 2m_W$

Signals for Early LHC?

- $m_A > m_h + m_Z \Rightarrow W^+ W^- Z$ at 7 TeV LHC

 $h m_h > 2 m_W$

- $m_A = 330 \text{ GeV}$
- $m_h = 200 \, \mathrm{GeV}$
- $m_H = 1 \text{ TeV}$
- $\sin \alpha = 1$
- $\tan \beta = 1$

• □ > • # # > • = > •

- 14

Signals for Early LHC?

- ▶ $m_A < 2m_t$
- $m_A > m_h + m_Z \Rightarrow W^+ W^- Z$ at 7 TeV LHC
- $m_h > 2m_W$

- $m_A = 330 \text{ GeV}$
- $m_h = 200 \text{ GeV}$
- $m_H = 1 \text{ TeV}$
- $\sin \alpha = 1$
- $\tan\beta = 1$

< ロ > < 同 > < 回 > < 回 >

Backgrounds: WWZ+jets, $t\bar{t}Z$ +jets and WZ+jets

Backgrounds: WWZ+jets, $t\bar{t}Z$ +jets and WZ+jets

Cut	Signal	Background
4 Leptons	2.20 fb	0.067 fb

Cuts: Need > $4e/\mu$ with $\eta_e < 2.4$, $\eta_\mu < 2.1$, $p_{t,e\mu} > 8$ GeV either one *e* with $p_{t,e} > 20$ GeV or μ with $p_{t,\mu} > 15$ GeV

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Backgrounds: WWZ+jets, $t\bar{t}Z$ +jets and WZ+jets

Cut	Signal	Background
4 Leptons	2.20 fb	0.067 fb

Cuts: Need > $4e/\mu$ with η_e < 2.4, η_μ < 2.1, $p_{t,e\mu}$ > 8 GeV either one *e* with $p_{t,e}$ > 20 GeV or μ with $p_{t,\mu}$ > 15 GeV

Simple Search!!! 3 fb⁻¹ of data, 6-7 signal events to no background

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Early LHC Signal: 3 leptons + 2 jets: Cuts

Process	C1	C2	C3	C4	C5	C6
Z+ jets	???	???	???	???	???	???
WZ+ jets	5.53	4.96	4.69	3.56	1.03	0.241
$t\bar{t}Z+$ jets	0.718	0.669	0.519	0.366	0.223	0.037
WWZ+ jets	0.129	0.114	0.107	0.084	0.062	0.008
$Wt\overline{t}+$ jets	0.347	0.339	0.036	0.015	0.003	0.002
Total	6.72	6.08	5.25	4.04	1.35	0.288
Signal	12.4	10.8	9.29	6.79	4.12	3.05

All cross-sections in units of fb

- **C1:** $\geq 3e/\mu$ ($\eta_e < 2.4$, $\eta_\mu < 2.1$, $p_{t,l} > 8$ GeV) ≥ 2 jets ($\eta_j < 2.5$, $p_{t,j} > 30$ GeV) either one *e* with $p_{t,e} > 20$ GeV or μ with $p_{t,\mu} > 15$ GeV **C2:** $\not{E}_T > 20$ GeV **C3:** Reconstruct leptonic *Z* ($|m_{ll} - m_Z| < 7$ GeV)
 - **C4:** Force hardest remaining lepton $+\not\!\!\!E_T$ to make *W* (2 solutions)
 - **C5:** Reconstruct hadronic $W (|m_{jj} m_W| < 25 \text{ GeV})$
 - **C6:** *m*_{WWZ} < 2*m*_{top}

Early LHC Signal: 3 leptons + 2 jets: Cuts

Process	C1	C2	C3	C4	C5	C6
Z+ jets	???	???	???	???	???	???
WZ+ jets	5.53	4.96	4.69	3.56	1.03	0.241
$t\bar{t}Z+$ jets	0.718	0.669	0.519	0.366	0.223	0.037
WWZ+ jets	0.129	0.114	0.107	0.084	0.062	0.008
$Wt\overline{t}+$ jets	0.347	0.339	0.036	0.015	0.003	0.002
Total	6.72	6.08	5.25	4.04	1.35	0.288
Signal	12.4	10.8	9.29	6.79	4.12	3.05

All cross-sections in units of fb

 $\begin{array}{l} \textbf{C1:} \geq 3e/\mu \; (\eta_e < 2.4, \; \eta_\mu < 2.1, \; p_{t,l} > 8 \; \text{GeV}) \\ \geq 2 \; \text{jets} \; (\eta_j < 2.5, \; p_{t,j} > 30 \; \text{GeV}) \\ \text{either one } e \; \text{with} \; p_{t,e} > 20 \; \text{GeV} \; \text{or} \; \mu \; \text{with} \; p_{t,\mu} > 15 \; \text{GeV} \\ \textbf{C2:} \; {\not\!\!\!\!E_T} > 20 \; \text{GeV} \\ \textbf{C3:} \; \text{Reconstruct leptonic} \; Z \; (|m_{ll} - m_Z| < 7 \; \text{GeV}) \\ \textbf{C4:} \; \text{Force hardest remaining lepton} \; + {\not\!\!\!E_T} \; \text{to make} \; W \; (2 \; \text{solutions}) \\ \textbf{C5:} \; \text{Reconstruct hadronic} \; W \; (|m_{jj} - m_W| < 25 \; \text{GeV}) \\ \textbf{C6:} \; m_{WWZ} < 2m_{top} \end{array}$

Z+ jets: C1 $\sim 10^{-3}$, C2 $\sim 10^{-2}$, C3, C4 ~ 1 , C5 $\sim 10^{-1}$, C6 $\sim 10^{-1} \Rightarrow 10^{-7}$

Early LHC Signal: 3 leptons + 2 jets: Results

15 signal to 2 background at 5 fb⁻¹ \Rightarrow very promising!

Evans	(UCD)	
	·/	

April 14, 2011 9 / 11

Early LHC Signal: 3 leptons + 2 jets: Results

15 signal to 2 background at 5 fb⁻¹ \Rightarrow very promising! Possibly TWO Higgs bosons at early LHC!!!

Early LHC Signal: 3 leptons + 2 jets: Results

15 signal to 2 background at 5 fb⁻¹ \Rightarrow very promising!

Possibly TWO Higgs bosons at early LHC!!!

Needs a full experimental analysis!

Evans (UCD)

WWZ at LHC

Other Interesting Signals

• $gg \rightarrow A^0 \rightarrow Zh^0 \rightarrow Zb\bar{b}$ (enhanced signal for boosted Higgs)

3

Image: A math a math

Other Interesting Signals

▶
$$gg \rightarrow A^0 \rightarrow Zh^0 \rightarrow Zb\bar{b}$$
 (enhanced signal for boosted Higgs)

•
$$gg/W^+W^- \rightarrow h^0/H^0 \rightarrow ZA^0 \rightarrow Zt\bar{t}/Zb\bar{b}$$

►
$$gg/W^+W^- \rightarrow h^0/H^0 \rightarrow W^-A^+ \rightarrow W^-t\bar{b}$$

æ

イロト イヨト イヨト

Other Interesting Signals

▶
$$gg \rightarrow A^0 \rightarrow Zh^0 \rightarrow Zb\bar{b}$$
 (enhanced signal for boosted Higgs)

•
$$gg/W^+W^-
ightarrow h^0/H^0
ightarrow ZA^0
ightarrow Zt\bar{t}/Zb\bar{b}$$

►
$$gg/W^+W^- \rightarrow h^0/H^0 \rightarrow W^-A^+ \rightarrow W^-t\bar{b}$$

►
$$gg/W^+W^- \rightarrow H^0 \rightarrow h^0 h^0$$

イロト イヨト イヨト

▶
$$gg \rightarrow A^0 \rightarrow Zh^0 \rightarrow Zb\bar{b}$$
 (enhanced signal for boosted Higgs)

•
$$gg/W^+W^- \rightarrow h^0/H^0 \rightarrow ZA^0 \rightarrow Zt\bar{t}/Zb\bar{b}$$

$$\blacktriangleright gg/W^+W^- \to h^0/H^0 \to W^-A^+ \to W^-t\bar{b}$$

•
$$gg/W^+W^- \rightarrow H^0 \rightarrow h^0 h^0$$

- ▶ $gg/W^+W^- \rightarrow H^0 \rightarrow ZA^0 \rightarrow ZZh^0 \rightarrow ZZb\bar{b}$
- $\blacktriangleright ~gg/W^+W^- \rightarrow H^0 \rightarrow W^+A^- \rightarrow W^+W^-h^0 \rightarrow W^+W^-W^+W^-$

▶
$$gg \rightarrow A^0 \rightarrow Zh^0 \rightarrow Zb\bar{b}$$
 (enhanced signal for boosted Higgs)

•
$$gg/W^+W^- \rightarrow h^0/H^0 \rightarrow ZA^0 \rightarrow Zt\bar{t}/Zb\bar{b}$$

►
$$gg/W^+W^- \rightarrow h^0/H^0 \rightarrow W^-A^+ \rightarrow W^-t\bar{b}$$

•
$$gg/W^+W^- \rightarrow H^0 \rightarrow h^0 h^0$$

- ▶ $gg/W^+W^- \rightarrow H^0 \rightarrow ZA^0 \rightarrow ZZh^0 \rightarrow ZZb\bar{b}$
- $\blacktriangleright ~gg/W^+W^- \rightarrow H^0 \rightarrow W^+A^- \rightarrow W^+W^-h^0 \rightarrow W^+W^-W^+W^-$

▶ ...

> 2HDM yields interesting BSM signals observable at the LHC

- > 2HDM yields interesting BSM signals observable at the LHC
- 2HDM = simplified model for strong(er) EWSB

A D M A A A M M

- > 2HDM yields interesting BSM signals observable at the LHC
- 2HDM = simplified model for strong(er) EWSB
- Evidence or discovery of two Higgs bosons in early LHC data

- 2HDM yields interesting BSM signals observable at the LHC
- 2HDM = simplified model for strong(er) EWSB
- Evidence or discovery of two Higgs bosons in early LHC data
- Masses can be reconstructed!

- 2HDM yields interesting BSM signals observable at the LHC
- 2HDM = simplified model for strong(er) EWSB
- Evidence or discovery of two Higgs bosons in early LHC data
- Masses can be reconstructed!
- Other exciting signals exist to be explored!