Detecting a Strongly Coupled Higgs sector at the LHC

Vikram Rentala (U. Arizona/ UC Irvine)

With J. Shu and H. Murayama arxiv/hep-ph 1105.xxxx

Strongly Coupled Higgs Sector

- EWSB similar to chiral symmetry breaking in QCD with 2 flavors
- $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
- Chiral Lagrangian with gauged SU(2)_L and hypercharge
- Longitudinal modes of the W,Z gauge bosons are the pseudo-goldstone bosons of chiral symmetry breaking i.e. the pions
- π π scattering is unitarized through exchange of heavy resonances such at the ρ
- Resonance might be very broad / No visible peak in the W-Z invariant mass plot

Can we detect a strongly coupled Higgs sector without directly observing the resonance?

If we do observe a resonance can we discern some properties of its interactions with SM gauge bosons?

Look back at QCD

• π - π scattering picks up a phase shift!

• This can be parametrized as a form factor

Partial waves and unitarity

Quick review of elastic scattering $\pi\pi\to\pi\pi$

- Incoming partial wave
- Outgoing partial wave can only pick up a phase shift from unitarity $e^{i2\delta_J}$

$$\mathcal{T}_J \propto e^{i2\delta_J} - 1$$
$$= \sin \delta_J e^{i\delta_J}$$

What is the phase shift in QCD? LET - Low energy theorem $U = e^{i \frac{\pi^a T^a}{f_{\pi}}}$ $\mathcal{L}_{chiral} = \frac{f_{\pi}^2}{4} \operatorname{Tr}[\partial_{\mu}U\partial^{\mu}U^{\dagger}]$

- Without a resonance amplitudes growing like
 - ~ s would violate unitarity
- In QCD, resonances restore unitarity

WZ scattering

- What does this imply for WZ scattering?
- Only longitudinal modes pick up a phase from scattering in the high energy limit

T. Barklow, G. Burdman, Chivakula, Dobrescu ... hep-ph/9704217

Longitudinal WZ modes pick up this phase shift!

Is this phase shift observable?

WZ production at LHC

Look for W⁺Z fully leptonic modes

Rotating the Decay Plane

- All orientations of the decay plane are related by an application of the operator $U(\vec{n},\phi)=e^{i(\vec{J}.\vec{n})\phi}$
- Rotating the decay plane about the axis of motion of the parent particle

$$J_z = \vec{J}.\hat{p} = (\vec{s} + \vec{r} \times \vec{p}).\hat{p} = \vec{s}.\hat{p} = h$$

$$\mathcal{M}_{decay}(\phi) = e^{+ih\phi} \mathcal{M}_{decay}(\phi = 0)$$

Quantum Interference of Helicity States

If multiple helicity states are produced this phase dependence is observable

$$rac{d\sigma}{d\phi} \propto \left| \sum_{h} \mathcal{M}_{prod} e^{ih\phi} \mathcal{M}_{decay}(\phi = 0) \right|^2$$

- True within the validity of the narrow width approximation ("weakly coupled" physics)
- As a result of interference the differential cross-section develops a $cos(n\phi)$ dependence, where $n = h_{max}-h_{min} = 2s$.

Spin Measurement

Scalar:
$$\frac{d\sigma}{d\phi} = A_0$$

Spinor: $\frac{d\sigma}{d\phi} = A_0 + A_1 \cos \phi$

Vector boson:
$$\frac{d\sigma}{d\phi} = A_0 + A_1 \cos \phi + A_2 \cos 2\phi$$

Tensor (spin-2): $\frac{d\sigma}{d\phi} = A_0 + A_1 \cos \phi + A_2 \cos 2\phi + A_3 \cos 3\phi + A_4 \cos 4\phi$

Look for the highest cosine mode to determine the spin!

M.Buckley, W. Klemm, H. Murayama and VR hep-ph/0711.0364 H. Murayama, VR hep-ph/0904.4561

Back to WZ ...

Interference of helicity states New phase shift in the longitudinal modes!

$$\mathcal{M}_{\uparrow} \propto e^{i\phi_{1}}$$
$$\mathcal{M}_{0} \propto F(q^{2}) = Ae^{i\delta(s)}$$
$$\mathcal{M}_{\downarrow} \propto e^{-i\phi_{1}}$$
$$\frac{d\sigma}{d\phi} \propto \left| \sum_{h} \mathcal{M}_{prod} e^{ih\phi} \mathcal{M}_{decay}(\phi = 0) \right|^{2}$$
$$\frac{d\sigma}{d\phi} = A_{0} + A_{1} \cos(\phi + \delta) + A_{2} \cos 2\phi$$
$$= A_{0} + A_{1} \cos\phi + B_{1} \sin\phi + A_{2} \cos 2\phi$$

Interference of helicity states New phase shift in the longitudinal modes!

$$\mathcal{M}_{\uparrow} \propto e^{i\phi_{1}}$$

$$\mathcal{M}_{0} \propto F(q^{2}) = Ae^{i\delta(s)}$$

$$\mathcal{M}_{\downarrow} \propto e^{-i\phi_{1}}$$

$$\frac{d\sigma}{d\phi} \propto \mathbf{M}_{errod}e^{ih\phi}\mathcal{M}_{decay}(\phi = 0) \Big|^{2}$$

$$\mathbf{NEW}$$

$$\mathbf{NEW}$$

$$\mathbf{NEW}$$

$$\mathbf{NEW}$$

$$\mathbf{M}_{decay}(\phi = 0) \Big|^{2}$$

$$\mathbf{NEW}$$

Look for sin ϕ mode to tell you if the Higgs sector is strongly coupled !

The sign of $\sin \varphi$

• If the lepton is moving upwards $\sin \phi > 0$

• If the lepton is moving downwards $\sin \phi < 0$

Define a new observable

$$AS = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

• N^+ is the number of leptons going above the plane

• N^- is the number of leptons going below the plane

Counting Experiment

$$AS = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

- The error in AS is from counting
- Background is negligible* and zero at tree level
- Can calculate ΔAS for a given integrated luminosity
- Significance is defined as $S = \frac{AS}{\Delta AS}$

* after cuts

Cuts

- $\Delta r > 0.4$ between leptons or lepton and jet
- p_t >20 GeV and η < 2.5 cuts on the leptons and jets
- Invariant mass cut on the W Z system between M 3 Γ and M + 3 Γ
- Cos θ cut (0.4 0.6) on the W in the CM frame to maximize the interference

Significance with $\sqrt{s} = 14 \text{ TeV}$ (500 fb⁻¹ integrated luminosity)

$\frac{\Gamma/M}{Mass}$	10%	20%	30%	40%
800 GeV	6.56	6.84	4.46	4.72
1 TeV	3.59	3.89	2.1	2.4
1.2 TeV	1.54	2.21	1.08	1.48
			N 7+	<u>N</u> 7—

 $AS = \frac{N - N}{N^+ + N^-}$

Conclusions

- Looking for up-down asymmetry can be a good probe of a strongly coupled Higgs sector in the absence of a resonance
- Even when a resonance can be observed, AS is a probe of the nature of interactions
- Need large integrated luminosity, large phase shift and enhancement in longitudinal modes (Best case Form factor)
- Need to optimize cuts
- Need to compute the SM background at loop level

QUESTIONS, COMMENTS, SUGGESTIONS?

Backup Slides

Orientation of the plane

• W^+ preferentially emitted in the direction of the u-quark

• Use this to guess the direction of the u-quark

Practical Issues at the LHC

- Cuts
- Orientation of the plane
- True and False solution (asymmetry does not depend on this)

THEORY ISSUES

- Really should look at phi1-phi2
- WZ fusion more dominant