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Abstract

Studying quantum dynamics in driven degenerate gases

by

Alec Jiahua Cao

Dynamical control of out-of-equilibrium quantum matter represents a rapidly advanc-

ing frontier in quantum science and technology. Recently ultracold atom experiments

have greatly pushed forward the field of Floquet engineering, the control of quantum

systems with a time-periodic drive. In this thesis, I will discuss experimental efforts uti-

lizing a 7Li Bose-Einstein condensate (BEC) in a periodically modulated laser potential

as a tool for understanding and controlling quantum Floquet dynamics across a broad

range of physical contexts. In particular, I will discuss 3 primary efforts: an application

of dynamical band-structure engineering for probing the foundational nature of quantum

decay, a realization of how transport properties of quantum gases connect to the topol-

ogy of classical phase space orbits, and an exploration of the emergence of many-body

quantum chaos in interacting Floquet matter.
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4.2 Poincaré Topology and Bloch Transport under Slow Amplitude Modulation 35

5 Investigation of the Many-Body Quantum Kicked Rotor 45
5.1 Diffusive Chaos in the Classical Kicked Rotor . . . . . . . . . . . . . . . 45
5.2 Localization in the Quantum Kicked Rotor (QKR) . . . . . . . . . . . . 48
5.3 Prethermalization and Delocalization in the Interacting Kicked Rotor . . 56
5.4 Time Reversal with Quantum Resonances . . . . . . . . . . . . . . . . . 67
5.5 Many-body Dynamical Localization (MBDL) in Kicked XXZ Chains . . . 76

A Numerical TDSE Simulation with Time-Splitting Spectral Methods 81
A.1 Time-Splitting Spectral Integration . . . . . . . . . . . . . . . . . . . . . 82
A.2 Floquet-Bloch Atom Interferometry . . . . . . . . . . . . . . . . . . . . . 88

x



B Fringe Removal for Absorption Images 92
B.1 Absorption Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.2 Ideal Reference Fringe Removal Algorithm . . . . . . . . . . . . . . . . . 94

C Derivation of Ideal QKR OTOC 101

D Probining non-exponential decay in Floquet-Bloch bands (preprint) 106

E Transport controlled by Poincare orbit topology in a driven inhomoge-
neous lattice gas (preprint) 114

F Prethermal Dynamical Localization and the Emergence of Chaos in a
Kicked Interacting Quantum Gas (preprint) 120

Bibliography 138

xi



Chapter 1

Introduction

The quantum nature of large ensembles of particles becomes manifest at low tempera-

tures. At room temperature, the properties of gases are often well described by simple

classical kinetic theory and statistical mechanics; the quantum waviness of the particles

is ignorable due to the large average distance between constituents, and the statistical

properties of the system are described by the famous Boltzmann distribution 1/eE/kBT .

Quantum mechanics dictates however that each atom (of a single atomic number, iso-

tope, etc.) is identical and indistinguishable (in principle, not just in practice), and

this causes an ever so slight modification to the Boltzmann distribution 1/(eE/kBT ± 1)

(+1 for fermions, -1 for bosons). For the bosonic case, this seemingly inconsequential

change leads to the remarkable phenomena of Bose-Einstein condensation (BEC). As the

temperature of the gas is lowered through a critical value and the wavefunctions of the

atoms begin to overlap, a phase transition occurs wherein a macroscopic fraction of the

ensemble all enter into the lowest quantum energy level.

BEC is now a widely-studied platform across the world, providing physicists an ex-

tremely versatile tool for preparing an ensemble of many particles into a desired quantum

state and observing their behavior under different dynamical evolution protocols. In some
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Introduction Chapter 1

cases, we are interested in using the extreme level of control over the BEC to engineer

certain dynamical responses, which may help to experimentally verify long-standing the-

oretical predictions or which could be used as quantum sensors for practical metrological

applications. In others, we seek to use this platform as a quantum simulator to answer

complicated questions in many-body condensed matter physics which are intractable to

current computing capabilities and are obscured by imperfections in real world mate-

rials. In this thesis, I will describe a variety of experimental (and slightly theoretical)

works I have performed in Prof. David Weld’s lab which touches conceptually on these

many possibilities in using BEC for quantum exploration (of course there are many, many

more!). The work here focuses particularly on the dynamics of BEC’s subjected to op-

tical lattices, artificial crystals formed by interfering laser beams, which are additionally

periodically modulated in time. These experiments are particularly well-suited to study-

ing transport/localization phenomena and the dynamics of external/kinetic degrees of

freedom.

1.1 Permissions and Attributions

1. The content of chapter 3 is the result of a collaboration with Cora J. Fujiwara,

Roshan Sajjad, Ethan Q. Simmons, Eva Lindroth and David Weld, and has previ-

ously appeared in the Zeitschrift für Naturforschung A [1]. It is reproduced here

with the permission of Zeitschrift für Naturforschung A: https://www.degruyter.

com/document/doi/10.1515/zna-2020-0020/html.

2. The content of chapter 4 is the result of a collaboration with Roshan Sajjad, Ethan

Q. Simmons, Cora J. Fujiwara, Toshihiko Shimasaki, and David M. Weld, and has

previously appeared in the Physical Review Research [2]. It is reproduced here

with the permission of Physical Review Research: https://journals.aps.org/
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prresearch/abstract/10.1103/PhysRevResearch.2.032032.

3. The content of chapter 5 is the result of a collaboration with Roshan Sajjad, Hector

Mas, Ethan Q. Simmons, Jeremy L. Tanlimco, Eber Nolasco-Martinez Toshihiko

Shimasaki, Esat Kondakci, Victor Galitski, and David M. Weld [3]. The preprint

can be found here: https://arxiv.org/abs/2106.09698.
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Chapter 2

Background

The experiments outlined in this thesis largely concern the ultracold 7Li apparatus. The

details of our 7Li BEC production are extensively outlined in the theses of Zachary

Geiger [4], Kevin Singh [5] and Cora Fujiwara [6], and will not be detailed further here.

A good introductory review of making BEC can be found in [7]. The bread and butter of

the experiment is examining BEC dynamics in optical lattices, for which a good review

can be found in [8]. Some other useful and very thorough reviews on understanding BEC

can be found in [9, 10].

2.1 BEC Dynamics

Here I discuss the simplified theoretical framework for understanding the behavior of

BECs. This discussion largely follows Pethick and Smith [11]. For N identical particles,

a general Hamiltonian capturing two body interactions can be written as

H =
N∑

i=1

[
p2
i

2m
+ V (ri)

]
+

1

2

N∑

i=1

N∑

j 6=1

U(ri − rj). (2.1)

4



Background Chapter 2

Here V describes a single particle external potential and U the two-body interaction. We

in general consider a pseudopotential describing contact interactions

U(r) = U0δ(r) =
4π~2aS
m

δ(r). (2.2)

This pseudopotential is characterized by only one parameter which is the s-wave scatter-

ing length aS. The BEC is generically a many-body quantum system which in first quan-

tization is described by a many-body wavefunction Ψ with the normalization 〈Ψ|Ψ〉 = N .

Because the particles are condensed into a single state, the many-body wavefunction is

simply a tensor product of identical single-particle wavefunctions |φ〉 in the many-body

Hilbert space |Ψ〉 = |φ〉 ⊗ |φ〉 . . .. The free energy is then computed as

F [Ψ] =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 − µ 〈Ψ|Ψ〉 = N

∫
dr

[
~2

2m
|∇φ|2 + (V (r)− µ) |φ|2 +

N − 1

2
U0|φ|4

]
.

(2.3)

We then introduce the condensate wavefunction and particle density

ψ(r) =
√
Nφ(r), n(r) = |ψ(r)|2. (2.4)

Minimizing the free energy (2.3) with respect to ψ∗, we get the time-independent Gross-

Pitaevskii equation

[
− ~2

2m
∇2 + V (r) + U0|ψ|2

]
ψ = µψ. (2.5)

This describes the steady-state solution and has the form of a nonlinear time-dependent

Schrodinger equation. To describe our interacting condensate after held in the optical

dipole trap (ODT), it is useful to make the Thomas-Fermi approximation where the

5
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kinetic energy term is ignored. Then one can directly solve for the position-space density

as

n(r) =
µ− V (r)

U0

. (2.6)

So in the ODT, the condensate density can be seen to have a parabolic profile as the

trapping potential is Gaussian and thus has leading order quadratic behavior. This profile

is a signature of BEC and can be clearly seen in our absorption images. The condensate

vanishes in the ith direction for a trapping potential of ωi outside of radii

Ri =
2µ

mωi
. (2.7)

In general, one will still observe Gaussian tails beyond this radius due to finite thermal

population outside of the condensate.

Next we seek an equation to describe the dynamics of the condensate. This is com-

puted in the Lagrangian formalism. One can define the Lagrangian density L as

L =
i~
2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
−
[
~2

2m
|∇ψ|2 + V (r)|ψ|2 +

U0

2
|ψ|4

]
. (2.8)

Then applying the variational principle for the action, we find the time-dependent Gross-

Pitaevskii equation

i~
∂ψ

∂t
=

(
− ~2

2m
∇2 + V (r, t) + U0|ψ|2

)
ψ. (2.9)

Once again this simply looks like a time-dependent nonlinear Schrodinger equation, with

the nonlinearity corresponding to a mean-field energy proportional to the local condensate

density. Here I’ve allowed the external potential to possess arbitrary time-dependence,

6
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though dynamical instability can develop; even in time-independent cases there can in

principle be large quantum fluctuations which make this description inaccurate. The

mean-field energy is tunable in the 7Li experiment by manipulating a magnetic field

which varies the scattering length around the Feshbach resonance. The approximate

dependence of the scattering length on the field is given by

aS = abg

(
1− ∆

B −B0

)
(2.10)

Detailed numbers can be found in [4, 12]. For many experiment, we are able to set

aS ≈ 0 to a great approximation. In these cases, this allows us to study a noninteracting

wavefunction which is simply governed by a single-particle Schrodinger equation

i~
∂ψ

∂t
=

(
− ~2

2m
∇2 + V (r, t)

)
ψ. (2.11)

In this last case the normalization can be taken as
∫

dr |ψ|2 = 1.

2.2 Band Theory and Tight-Binding Models

The most common potential considered on the 7Li experiment is a 1-dimensional

optical lattice of pancakes. This is formed by applying counter-propagating laser beams

which are far red-detuned from resonance. In this case, the average effect on time-scales

much slower than optical frequencies is a trapping AC Stark shift. One can compute this

from first principles given laser beam parameters, but in practice we typically calibrate

for the so-called lattice depth V0 using techniques such as Kapitza-Dirac diffraction and

modulation spectroscopy. Many times the transverse dynamics within the pancakes are

ignorable, so that the external potential for light of wavelength λ (or wavevector kL =

7
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2π/λ) is given by

V (x) = −V0

2
cos(2kLx). (2.12)

This potential is spatially periodic. Namely it has lattice spacing d = λ/2 such that

V (x+ d) = V (x). (2.13)

This motivates us to review simple band theory of condensed matter physics that is

used routinely on the 7Li experiment. Band theory is the single-particle approximation

to solid-state systems which have spatially periodic crystalline structure. Here I will

restrict to 1D for notational simplicity, though generalization to multiple dimensions is

fairly trivial. Bloch’s theorem states that for Hamiltonians with the spatial periodicity

property (2.13), the eigenstates of the time-independent Schrodinger equations can be

decomposed as

ψ(x) = eikxuk(x), uk(x+ d) = uk(x). (2.14)

So the eigenfunctions are plane waves modulated by envelopes with the spatial periodicty

of the lattice. The normalization of the Bloch waves is over a unit cell

∫ d

0

|uk(x)|2dx = 1. (2.15)

Acting H on these states we can derive the so-called Bloch Hamiltonian

Hk =
(p+ ~k)2

2m
+ V (x), (2.16)

8
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which defines the eigenvalue problem

Hkunk(x) = Enkunk(x). (2.17)

The index n is introduced since the eigenvalue problem in general has an infinite spec-

trum of discrete solutions. Here k denotes the quasimomentum which can be restricted

to the first Brillouin zone, which in the 1D case can be taken to be [−π/d, π/d]. This

is because V (x) admits a Fourier decomposition which contains only coefficients for in-

teger multiples of the reciprocal lattice vector 2kL, and thus couples only states at the

same quasimomentum in different Brillouin zones. Similarly, one can perform the same

decomposition for the unk. Letting G denote reciprocal lattice vectores, explicitly we

write

V (x) =
∑

G

VGe
iGx, unk(x) =

∑

G

ck+Ge
iGx. (2.18)

Inserting into the eigenvalue problem defined by (2.16) and (2.17), we have a matrix

equation defined by

~2(k +G)2

2m
ck+G +

∑

G′

VG−G′ck+G′ = Enkck+G. (2.19)

For the cosine optical lattice (2.12), VG only has two coefficients which are V±2kL = −V0/4.

Thus we simply have a tridiagonal matrix with constants −V0/4 on the first off-diagonal

and a kinetic energy ~2(k + 2jkL)2/2m for integer j on the diagonal. This can be easily

solved using any standard diagonalization package. To compute the first n band energies,

one should truncate the matrix at N � n and take the lowest n eigenvalues; repeating

for varying k will yield the first n band dispersions across the Brillouin zone. One can

also get the coefficients ck+G this way and reconstruct the periodic part of the Bloch

9
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wavefunctions using (2.18).

Another helpful perspective is the so-called tight-binding limit. We can define spa-

tially localized Wannier orbitals by Fourier transforming the Bloch waves in a given band.

The nth Wannier orbital is then given by

wn(x) =
d

2π

∫

BZ

e−ikxψnk(x). (2.20)

Note that the factor 2π/d is the 1D Brillouin zone volume. A complete set for the nth

band can be generated by translating wn(x) to every site in the lattice. The Wannier

orbitals are not uniquely defined due to the U(1) symmetry of the Bloch wavefunctions

(i.e. we can define a smooth gauge f(k) that transforms ψnk → eif(k)ψnk). The orbitals

are orthonormal with respect to site and band index. To write down the tight-binding

Hamiltonian, we simply write down the matrix elements of Hamiltonian in the Wannier

basis. Because of the localization properties, it is often only necessary to consider over-

lap integrals between neareset neighbor sites; this is a better approximation for deeper

lattices. In the 1D case, this gives the following Hamiltonian:

HTB = En
∑

j

c†jcj − J
∑

j

[
c†j+1cj + h.c.

]
(2.21)

Here En is the average energy of the nth band and J is a tunneling energy given by

J =

∫
w∗(x− d)Hw(x) dx. (2.22)

The c†j is a creation operator for a particle in the Wannier orbital at site j. The tight-

binding Hamiltonian is diagonalized by a Fourier transform, yielding the following dis-

10



Background Chapter 2

persion

ETB(k) = En − 2J cos(kd). (2.23)

This is the derivation of the famous statement that the bandwidth ∆ is given by 4J .

2.3 Tilted Lattices

Given particles in a lattice, a natural question is to ask how those particles respond to

the application of a force. For instance, we seek to characterize the conductivity proper-

ties of solids upon application of an applied voltage. In the 7Li experiment, we routinely

apply a magnetic field gradient on the atoms in the direction of the lattice to observe

Bloch oscillation transport. Here I will outline a number of theoretical perspectives on

this problem. A thorough review of the relevant theory can be found in refs. [13, 14].

Realization of Bloch oscillations on the 7Li experiment can be found in ref [15].

The Hamiltonian we consider is given by

H =
p2

2m
+ V (x)− Fx. (2.24)

Once again V (x) is spatially periodic, but the total potential along with the force is not.

The simplest treatment is to make the following gauge transformation into the frame

with linearly increasing momentum

UFt = exp

(
i
F t

~
x

)
. (2.25)

This is a momentum shift operator which acts by p → p + Ft. When making a generic
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unitary transform, one should use the prescription

H → UHU † + i~ (∂tU)U † (2.26)

|ψ〉 → U |ψ〉 (2.27)

Our transformed Hamiltonian is then

H ′ =
(p+ Ft)2

2m
+ V (x). (2.28)

This Hamiltonian restores translational invariance so the steps to compute band structure

can be reapplied. We see everything is the same except for the famous acceleration

theorem:

k(t) = k0 +
F

~
t. (2.29)

So if we initialize a Bloch state with quasimomentum k0, it’s quasimomentum will evolve

linearly (cyclically) in time. This is the phenomenon of Bloch oscillations. While histori-

cally Bloch oscillations were only possible to observe in momentum space, the light mass

of lithium enables such oscillations to be visible in position space as well. A rigorous

treatment is challenging, but the idea amounts to a group velocity being associated with

the momentum space derivative of the nth band dispersion

vn(k) =
1

~
∂Enk
∂k

. (2.30)

Of course this is a periodic function in momentum space. Using the acceleration theorem,
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one can then compute the following oscillatory position space trajectory

x(t) =

∫ t

0

vn(k0 + Ft′/~) dt′. (2.31)

For deep lattices, we can get an analytic expression by using the tight-binding dispersion

(2.23). We find

xTB(t) ∼ 2J

F
cos

(
2π

TB
t

)
. (2.32)

The amplitude of this oscillation defines the Wannier-Stark localization length

lWS =
2J

F
. (2.33)

Here we see the energy difference between adjacent lattice sites due to the force also

defines the oscillation time scale called the Bloch period:

TB =
Fd

2π~
. (2.34)

So far the analysis has been restricted to purely semiclassical single band effects. By

inspection, the tilted lattice problem defined in (2.24) is a pathological Hamiltonian

without a ground-state energy. In position space, a particle which is Wannier-Stark

localized anywhere in the lattice (i.e. Bloch oscillating) can and necessarily will tunnel a

toward negative infinite energy in the +x direction. In momentum space, every time the

particle cycles around the Brillouin zone it crosses an avoided crossing at either k = 0

or π/d. Only in the adiabatic limit where TB → ∞ will the particle strictly remain in

its original band. In this lowest order approximation, one can apply the Landau-Zener
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tunneling formula to calculate the per cycle decay rate from band n to n+ 1:

P (n→ n+ 1) = exp

(
− π2∆2

n,n+1

2~ωB
(
|E ′n|+

∣∣E ′n+1

∣∣)
)

(2.35)

Here E ′ denotes the slope of the bands with respect to dimensionless quasimomentum at

the point of the bandgap in the limit that gap goes to 0: ∆n,n+1 → 0.

Alternatively, one can consider the so-called Wannier-Stark ladder of resonances.

With respect to the tight-binding model in (2.21), the leading correction is to shift the

on-site energies by Fd for each site:

H ′TB =
∑

j

(En + Fdj)c†jcj − J
∑

j

[
c†j+1cj + h.c.

]
. (2.36)

This shift breaks the degeneracy of the orbitals and thus localizes the eigenstates of

the Hamiltonian. Letting |j〉 denote the jth Wannier orbital, one finds that (2.36) is

diagonalized by the so-called Wannier-Stark resonance states

|Ψm〉 =
∑

j

Jm−j

(
lWS

d

)
|j〉 . (2.37)

with the energy spectrum

Em,n = En + Fdm. (2.38)

In the above Jm−j denotes a Bessel function of order m−j. We find that the amplitude of

Bloch oscillations is indeed manifest in the localization of these resonance states. These

are only resonances because they clearly do not contain any decay. The full spectrum
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exists in the complex plane such that

Em,n = Em,n − i
Γn
2
. (2.39)

Γn is the decay rate of a resonance state associated with the nth level Wannier orbitals.

It can be approximated through (2.35); an exact calculation of the states and their decay

rates is complicated and can be found in [14].

2.4 Floquet Theory

Here I review the relevant Floquet theory to establish the basis for discussion of

periodically driven quantum systems. For references on Floquet theory for driven optical

lattices, see [16, 17]. In terms of the mathematics, the Bloch’s theorem encountered

previously is in fact no more than a specific application of Floquet theory. Within the

context of quantum mechanics, Floquet physics commonly refers to applications with

time-periodic quantum systems such that the Hamiltonian obeys

H(t+ T ) = H(t). (2.40)

In such cases we define the so-called Floquet Hamiltonian

HF = H(t)− i~ ∂
∂t
. (2.41)

The usual time-dependent Schrodinger equation is then

HF |ψ(t)〉 = 0. (2.42)
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Just as in the Bloch theorem case, the generalized stationary states obey

|ψn(t)〉 = e−iεnt |un(t)〉 , |un(t+ T )〉 = |un(t)〉 . (2.43)

Here the ψn are the Floquet states and the un are referred to as Floquet modes which

exist in the extended Hilbert space of square-integrable and time-periodic functions. The

scalar product on this space is given by

〈〈un|um〉〉 =
1

T

∫ T

0

dt 〈un|um〉. (2.44)

The eigenvalue problem can then be rewritten as

HF |un(t)〉 = εn |un(t)〉 . (2.45)

An alternative formulation can be given in terms of the stroboscopic time-evolution

operator for which

U(T ) |un(t)〉 = e−iεnT |un(t)〉 . (2.46)

The εn are called the quasienergies. Letting ω = 2π/T be the drive frequency, this last

eigenvalue problem makes it clear the quasienergies are only uniquely defined up to a

“Brillouin zone” of width ~ω. A general state can be decomposed as

|ψ(t)〉 =
∑

n

cn e
−iεnt |un(t)〉 . (2.47)

The power of this technique is that the evolution of an explicitly time-dependent problem

(which is typically extremely challenging) can then be completely solved by finding time-
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independent coefficients cn. This supposes one has knowledge of the Floquet modes and

quasienergies.

The primary application of this in the Weld lab so far has been for computing so-called

Floquet-Bloch bands of an amplitude modulated lattice described by

H =
p2

2m
+
V0

2
[1 + α sin(ωt)] cos(2kLx). (2.48)

This is discussed in ref. [6], and I outline it here for completeness. What one does is

numerically calculate U(T ) by Trotterizing the time-evolution operator (breaking up the

time-evolution into a bunch of discrete steps ∆t) and writing down the Hamiltonian at

each step explicitly in a single basis. The Hamiltonian can be written for a given quasi-

momentum k in momentum space using the strategy in section 2.2. This Hamiltonian will

be slightly different at each time step due to the varying lattice depth, and multiplying

together a bunch of matrix exponentials exp(−iH(V0(tj))∆/~) over a drive period pro-

duces Uk(T ). By exact diagonalization, one can get the quasienergies εnk via (2.46). This

should then be repeated for varying k, and further to compute clean Floquet-Bloch bands

one needs to project the states onto the static Bloch states. For weak drive amplitudes

α, one generally finds only significant mixing between undriven states near resonance

points where ~ω ≈ En,k − Em,k for the undriven bands E ; at stronger drives we can get

higher-order processes with coupling of states separated by j~ω for different integers j.

At these points, the bands cross in the dressed state picture and an avoided crossing

opens up. In fact, Floquet theory in this context is essentially the same as the dressed

state picture in atomic physics where the procedure of folding energy levels into a single

Brillouin zone corresponds to dressing states with different numbers of photons. Many

analytic approximate expansions exist based on this notion of different order photon

processes and could be useful for new applications of Floquet theory in the group.
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Given the discussion in section 2.3, it is natural to ask how Bloch oscillations are

affected in these Floquet-Bloch bands. In practice, we are often in the regime where

the gap that opens up between Floquet-Bloch bands is much larger than the energy

scale of the forcing potential. In these cases, we can apply semiclassical dynamics to

the numerically calculated Floquet-Bloch bands to excellent approximation; see ref [18]

for examples. This can alternatively be understood as rapid adiabatic passage between

bands, where the Bloch oscillation takes the role of what is traditionally a detuning

sweep. By weakening the coupling, one must then consider tunneling events between

Floquet-Bloch bands, and this will be the focus of the next section.
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Chapter 3

Engineering Tunable

Floquet-Bloch-Zener Decay

Decay is a ubiquitous phenomena in quantum physics. For instance, excited electronic

states in an atom are in actuality only meta-stable resonances with a finite lifetime τ

or alternatively a decay rate Γ = 1/τ . On fairly general grounds, we expect this decay

parameter to describe a generic exponential form e−Γt. For cold atoms in an optical

lattice, we have already encountered one such instance of a decay process: the Wannier-

Stark problem. However, the exponential decay is only an approximation (a very good

one for sure) and in fact, the study of the Wannier-Stark ladder with the cold atom

platform has played a major role in confirming our understanding of quantum mechanical

decay processes beyond this approximation. One goal of the 7Li experiment is to explore

and engineer non-Markovian decay dynamics by utilizing Bloch decay in tunable Floquet

band structures. In this chapter I overview some basic theoretical grounds for non-

exponential decay and progress made toward realizing tunable tunneling in the Floquet

band structure.

The arXiv preprint version of this work is displayed in Appendix D [19].
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3.1 Nonexponential Quantum Decay

We begin by giving an discussing nonexponential behavior in quantum systems at

a high level. An overview of the topic can be found in a supplementary section of

the popular textbook Sakurai [20]. To the best of my knowledge, the first account of

nonexponential quantum decay was given by Khalfin in 1958 [21]. Other useful theoretical

discussions and reviews can be found in [22, 23, 24].

To understand nonexponential violations, it is useful to first discuss perspectives on

why decay should be exponential in the first place. From a classical perspective, an

exponential law accompanies any process occuring at a constant rate (or probability per

discrete time interval). In such cases, the rate of change of a given parameter scales with

the magnitude of that parameter:

dN

dt
∼ λN. (3.1)

Such an equation is solved generically by the exponential form. In classical probability

theory, we associate such processes with the memoryless or Markov property since the

decay at any given instance only depends on the current configuration (i.e. the instanta-

neous value of the parameter) and not at all on the history of the evolution. The simplest

model to understand quantum decay is then to consider a quantum wavefunction local-

ized in a semi-infinite box (infinite wall on one side and barrier of variable width and

height on the other). Essentially the particle will bounce back and forth between the

walls if it has less energy than the barrier height, and every bounce there will be a finite

transmission/tunneling/decay probability out of the box. Because energy is conserved,

this probability is constant in time and thus the remaining density inside the box must

decay exponentially.
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A generic isolated quantum system is described by a wavefunction which can be ex-

panded in a basis of true eigenstates. Here we take energy to be continuous for simplicity:

|ψ(t)〉 =

∫ ∞

−∞
c(E)e−iEt/~ |E〉 dE. (3.2)

We define the survival amplitude as the overlap with the initial state

A(t) = |〈ψ0|ψ(t)〉|2 =

∫ ∞

−∞
|c(E)|2e−iEt/~dE. (3.3)

The measureable survival probability P (t) is then defined as the absolute square ampli-

tude |A(t)|2. Clearly, the survival amplitude is simply the Fourier transform of the energy

distribution of the initial state. If one consider a true stationary state |c(E)|2 = δ(E−E0),

we indeed find P (t) = 1. For a quasistationary resonance however, c(E) will have a finite

width and thus the survival probability must decay. Metastable states often exhibit a

Breit-Wigner/Lorentzian lineshape:

|c(E)|2 =
1

2π

Γ

(E − E0)2 + Γ2/4
. (3.4)

Indeed the Fourier transform of a Lorentzian is exponential and so we find

P (t) = |A(t)|2 = e−Γt/~. (3.5)

This can be confirmed explicitly by contour integration over a semicircle in the lower

half plane. Given how common the Lorentzian lineshape is, this establishes fairly general

grounds for expecting exponential decay across many quantum mechanical processes.

Now we are prepared to understand nonexponential violations. In general, one finds

deviations both at short and long times. The short-time deviations result from the fact
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Figure 3.1: Survival probability for the truncated Breit-Wigner distribution for vary-
ing ratios between the resonance energy E0 and decay energy Γ. When the trunca-
tion/ground state energy (taken to be E = 0) is located within 1-2 linewidths of the
resonance, strong deviations from pure exponential decay can be observed at all times,
with slower decay at very late times.

that the rate of change of the survival probability must initially be 0, and thus the

leading order behavior of the probability decay is only quadratic, precluding exponential

behavior. Physically, this is because at short times the energy structure of the states

is not yet resolved. This was first observed in Raizen’s 1997 cold atom Wannier-Stark

experiments [25], and a thorough decay calculation for the problem beyond the two-level

Landau Zener formalism can be found in [26].

Our particular goal is to focus more on long-time corrections which haven’t been

observed until more recently [27, 28]. These long-time violations are understood by the

simple argument that real quantum systems exhibit a ground state. This ground state

should have finite energy, and thus in (3.3) one must bound the integral from below.

Alternatively, we should only consider (3.4) as approximate. If the ground states is

located at an energy where |c(E)|2 is still reasonably large, the subsequent corrections

to the survival probability (3.5) may also be observable. In particular, one can use the
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Figure 3.2: Heat map of the survival probability over time normalized to an expo-
nential decay for varying E0/Γ. The green dashed line indicates the predicted onset
of long-time decay as given by (3.7), and the darker regions indicate where strong
deviations are actually observed. If one can get the ratio E0/Γ of order unity, the
onset is almost immediate and is experimentally feasible to observe.

Paley-Wiener theorem to eventually show (see [21] for details) that the decay must be

slower than exponential

P (t) ≥ exp(−γ|t|q), γ > 0, q < 1. (3.6)

This result states that the long-time decay behavior must be slower than exponential.

One can confirm this by numerical computation of the integral in (3.3) with the lower

bound set to 0 and assuming a distribution of (3.4). This is shown in Fig. 3.1, where

oscillations are seen to emerge before indeed leveling off to slower than exponential at late

times. (3.6) does not tell us anything about when such behavior should occur. Defining

τ = ~/Γ, an approximate criterion given in [22] for the timescale τL where the long-time
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behavior sets in is given by

τL ∼ 3τ ln

(
E0

Γ

)
. (3.7)

As seen in Figure 3.2, this equation follows reasonably well at low E0/Γ but isn’t so useful

at larger ratios; anyway, for large ratios the corrections are so exponentially small that

experimental observation is unfeasible in most cases. Ultimately, this analysis shows that

the critical parameter for observing late time non-Markovian dynamics requires achieving

E0/Γ around unity. The calculations presented in this section are done using Matlab’s

standard numerical integration package.

3.2 Tunable Decay in Driven Lattices

As discussed in section 2.3, particles in a forced lattice feature decay processes out

of the band in which the particles are Bloch oscillating. At lowest order, Landau-Zener

tunneling events happen once per Bloch period at the inversion symmetric points of the

Brillouin zone k = 0, π/a. When the optical lattice is amplitude modulated, new Floquet

band gaps can open up symmetrically away from these points. From generic knowledge

of Rabi oscillations, these gaps are carefully tunable through the amplitude modulation

parameter, providing a new potential degree of control for decay experiments. Here I will

discuss experiments demonstrating this tunable Bloch-Zener decay in Floquet bands.

Ultimately the goal would be to apply these techniques for realizing the physics outlined

in section 3.1.

Since much of the discussion up to this point has been theoretical, I will first describe

the details of our typical modulated lattice experiment since the same essential ingredients

are used in a variety of different contexts. We begin with a BEC of about 105 7Li
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atoms captured in a crossed optical dipole trap. The atoms are in the |F = 1,mF = 1〉

state with the magnetic field along the z direction set by a pair of Helmholtz coils

so that the scattering length is aS = 240a0. The dipole beams are in the x − y plane

(however not perpendicular) with gravity in the z direction. I don’t have a recent accurate

measurement of the trap frequency, though I believe the average to be about 40 Hz;

we typically observe Thomas-Fermi radii of about 25-30 µm. At this point, for non-

interacting experiments we ramp the magnetic field by about 200 Gauss in 100 ms to reach

a regime of negligible interparticle interactions. The lattice is then adiabatically ramped

on to the desired depth of V0 in 100 ms, and roughly one achieves a k = 0 1D Bloch state

with Gaussian envelope along the lattice direction; for the most part we do not seem to

saturate the expected momentum width bound based on the uncertainty principle given

the imaged size of the BEC. We typically do not observe any strong transverse dynamics

for trapped lattice experiments. At this point the optical dipole traps are snapped off

and the atoms feel a force along the axial direction from the local magnetic gradient

produced by another set of magnetic field generating coils. This magnetic potential is

close to harmonic, and the relevance of the field curvature varies from experiment to

experiment. In this chapter, I will assume a uniform force to explain the dynamics. As

the dipole traps are snapped off at t = 0, we also begin sinusoidal modulation of the

lattice depth. The system is then well-described by the 1D Hamiltonian

H =
p2

2m
+
V0

2
[1 + α sin(ωt)] cos(2kLx)− Fx. (3.8)

The lattice lasers are λ = 1064 nm so that kL = 2π/λ. Of course m = 7 amu. V0

and α are controlled by laser intensity and F can be set by changing the current in the

push coils. The typical energy scale of the lattice is given in recoils of the 1064 laser

ER = ~2k2
L/2m. The recoil frequency is ωR = ER/~ ≈ 25.17 kHz. Typically we take the
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lattice depth to be around 5 ER so position space dynamics are observable. The forces

we can apply typically correspond to Bloch periods TB in the range of 15-20 ms. Thus

the energy scale of the Stark ladder is much smaller than any band gap and single-band

Bloch oscillations are a good approximation in the absence of modulation; in the presence

of a weak drive, we expect that Bloch oscillations also dictate dynamics away from any

drive resonances.

The modulation however sets a new energy scale by opening up a band gap. We

consider a drive frequency ω such that we are near resonance between the lowest two

bands E2,k−E1,k away from the Brillouin zone center/edge; care has to be taken to avoid

coupling to higher bands but I will assume this to be the case for the analysis. Because

the modulation is quasimomentum conserving, at any stage in the system evolution we

can model the dynamics in a two-level formalism; see Dan Steck’s online quantum optics

notes for a review [29]. In the rotating-wave approximation, we have the matrix

H2(k) =



E2,k

~Ω(k)
2
e−iωt

~Ω(k)
2
eiωt E1,k


 (3.9)

Here the Rabi frequency is given by

Ω(k) =
αV0

~

∫ d

0

u∗1,k(x)u2,k(x) sin2(kLx)dx. (3.10)

Here I switched from cos(2kLx)/2 → sin2(kLx) so that Ω is postive for bands with the

same parity; the absolute value which is the only thing that matters for the gap size is

the same. These Rabi frequencies are always real. We dress the excited state by a drive
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photon to get the effective Hamiltonian

H̃2(k) = ~



−δ(k) Ω(k)

2

Ω(k)
2

0


 (3.11)

with δ(k) = ω − (E2,k − E1,k)/~. To apply the Landau-Zener formalism, the band gap ∆

should be defined near the resonant quasimomentum k0 that obeys δ(k0) = 0. For this

we have

∆1,2 = ~|Ω(k0)|. (3.12)

The overlap integral is typically order ∼ 0.1, and so the Floquet band gap will be or-

der αV0/10, which for weak modulations α on the level of a few percent brings it to a

comparable scale as the forcing potential. At a practical level for the 7Li experiment,

this is an important capability as the push coils simply don’t have the capacity to get to

ER level couplings, preventing the study of static Bloch-Zener transitions (without going

to exceedingly small lattice depths which is not ideal). One could eventually imagine

implementing accelerating lattices to resolve this (which also has further potential appli-

cations beyond this), but already we see that Floquet engineering enables our experiment

to access decay physics.

The simple analysis here suggests that we can fine-tune the direct band gap between

any two bands in an optical lattice at any quasimomentum (except for the Brillouin

zone edge and center where the matrix element vanishes for opposite parity bands due

to the perturbation being parity preserving). I explicitly used labels for bands 1 and 2

here for concreteness, but this analysis follows for any pair of bands. Returning to the

Landau-Zener formula (2.35), we can write down an explicit expression for the tunneling
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Figure 3.3: Measurement of Landau-Zener band tunneling with position-space Flo-
quet-Bloch oscillations. Images are taken after half a Bloch period with drive res-
onantly coupling the lowest two bands; the relative population in the ground band
(above dashed line) is plotted is plotted as blue circles in the right panel. Here
V0 = 3.5ER, TB = 27.8 ms and ω = 2π×55 kHz. Red theory line is based on equation
(3.13) with no fit paramters.

probability during each pass of the Bloch oscillation:

P (1→ 2) = exp

(
− π2α2V 2

0 I
2

2~ωB(|E ′1|+ |E ′2|)

)
. (3.13)

Here I denotes the integral in (3.10). One difference to note in the application of this

formula as compared to the static lattice case is that the energies here are taken in the

limit of α→ 0 with V0 held constant, so the E here are actual band energies as opposed

to free particle energies (recall there we took the limit as the static band gap vanished

which is equivalent to V0 → 0). So in addition to having linear control over Floquet band

gaps, we expect to be able to exponentially tune tunneling rates over orders of magnitude

in the modified Floquet Wannier-Stark problem.

While this dressed state analysis assists in getting an analytic form for the transition
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probability, it is less helpful in visualizing how an experiment could measure this effect.

However, we know the physics away from the transition points is dominated by semi-

classical dynamics. The slope of the bands gives the velocity, and thus position-space

Bloch oscillations map out the Floquet bands themselves. Because of 7Li’s light mass,

after the tunneling event occurs the band populations spatially separate and can be read

out. Thus simply allowing the BEC to evolve for half a Bloch period under the Hamilto-

nian (3.8), we are able to trivially probe band structure tunneling in real space. This is

demonstrated in Fig. 3.3 where we perform the experiment at varying modulation index

α. The observable in the right panel matching to (3.13) is the fraction of the population

remaining in the ground band. This is a subtle difference with respect to the static lattice

case as the tunneling event across the Floquet-Bloch gap is from a single static Bloch

band back to itself and adiabatic passage corresponds to transfer between static bands.

In the undriven case, it is exactly opposite where tunneling corresponds to static Bloch

band transfer. This figure demonstrates the tremendous tunability of Landau-Zener de-

cay in Floquet-Bloch bands, which we hope will be the basis for realizing non-exponential

late time decay with cold atoms as well as atom interferometry in modulated lattices (see

section A.2).

3.3 Toward Nonexponential Floquet-Bloch Decay

Historically, one of the primary hurdles in observing late time violations has been

a lack of tunability in decay parameters for common experimental platforms such as

radioactive nuclei [30]. The decay control provided by Floquet engineering serves as a

useful technique to overcoming these challenges. However, there is another challenge that

warrants serious consideration in relation to realization within the 7Li experiment. The

argument given for late time violations in section 3.1 is the existence of a ground state
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at an energy relevant to the linewidth of the metastable resonance. In a Wannier-Stark

ladder model however, the ground-state is in some sense ill-defined as one can always

translate over a lattice site to reduce the energy. In the real world of course the ladder

will not extend infinitely, but for an accelerating optical lattice the ground state is likely

too far away to make significant corrections.

In the 7Li experiment there is a true ground state, namely the forcing potential is

actually harmonic and features a minimum. However, as seen in previous explorations of

long-range transport on this apparatus [18], the atoms do not decay to this minimum but

simply oscillate back and forth between two symmetric positions across this harmonic

potential. Conceptualizing how the decay processes work out in detail for this experiment

is something that remains a task for future work. For instance, one simple solution that

has been discussed is adding in a spatially local resonant light beam which removes atoms

that have decayed (tunneled to higher bands) from the lattice. Does this lead to any

complications? Are you able to change the effective ground state energy if you put the

resonant beam at different points along the harmonic trap?
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Chapter 4

Transport Controlled by

Semiclassical Poincare Topology

Understanding the transport dynamics of particles in periodic potentials is a fundamental

question of condensed matter physics. Transport under a uniform applied force is of

course a standard protocol, and for clean periodic potentials the phenomena of Bloch

oscillations is now deeply understood. Over the past decade or so, the interplay between

Bloch oscillations and an external drive has unveiled a whole host of novel transport

protocol. In this chapter, I’ll discuss new interpretations of driven Bloch oscillation

dynamics through the topological properties of Poincaré orbits in the semiclassical phase

space.

The arXiv preprint version of this work is displayed in Appendix E [31].
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4.1 Dynamic Localization and Super Bloch Dynam-

ics

Much interest has been put into 1D force modulated lattices at low frequencies where

the physics is single-band. This regime has the benefit of being simple and tractable while

also possessing a wealth of rich behaviors. Experiments include observation of coherent

delocalization [32, 33], photon-assisted tunneling [34], Wannier-Stark ladder resonances

[35] and super Bloch oscillations [36]. The theoretical literature is also rich [37, 38, 39,

40, 41]. For a review of modulated lattices that covers all of these experiments and more,

see [17]. The main concept of interest from these works to our experiment is that of

dynamic localization. This term refers to the rescaling of a characteristic scale in the

problem due to the drive, and in this case refers to renormalization of the Wannier-Stark

localization length (2.33) due to the force modulation.

There are subtleties in the calculation but the essential idea is as follows. Suppose we

consider noninteracting atoms in an optical lattice and subject them to a time-periodic

force with zero average:

F (t) = F (t+ T ),
1

T

∫ T

0

F (τ)dτ = 0. (4.1)

Once again we consider a regime where single-band approximation is valid. Using a

similar unitary transformation from section 2.3 to derive the acceleration theorem, we

can make the Hamiltonian periodic in both time and space. This allows us to then

apply both Bloch and Floquet theory, i.e. we have spatiotemporal Bloch waves with a

time-averaged band. This band dispersion is given by

ε(k) =
1

T

∫ T

0

E(qk(t))dt (4.2)
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where the acceleration theorem implies

qk(t) = k +
1

~

∫ t

0

F (τ)dτ. (4.3)

In tight-binding, the dispersion is E(q) = −2J cos(qd), and so for sinusoidal modulation

at frequency ω and amplitude F , we get the analytic expression

ε(k) = −2JJ0

(
Fd

~ω

)
cos(kd). (4.4)

Here J0 is a zero order Bessel’s function which rescales the tunneling J . For certain

values of the force amplitude with respect to the drive frequency, the band completely

collapses and one has strong dynamical suppression of transport.

When one adds in an additional static force (i.e.
∫ T

0
F (t)dt 6= 0), one has to be

a bit more careful but can arrive at similar results showing rescaled tunnelings. In

addition, there is a new frequency scale set in the problem of the ladder spacing and the

dynamics end up strongly depending on the detuning of the modulation with respect to

this frequency. In the case of small detuning δω (here δ denotes a small number), it was

shown that for an initial quasimomentum k the center of mass evolution is given by [40]

x(t) ≈ −Jd
δω
J1

(
Fd

~ω

)
[sin(KF + δωt)− sinKF ] , KF = kd+

Fd

~ω
cosφ− φ. (4.5)

Here φ is the phase of the force drive. This clearly shows that there are position space

oscillations at the detuning δω with a localization length which is rescaled not only by

a Bessel’s function but also by the inverse detuning. On resonance, we have a divergent

tunneling which corresponds to the fact that drive photons resonantly couple the entire

Wannier-Stark ladder. In this case, one finds directed linear transport that depends on

the phase of the drive relative to the initial quasimomentum.
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To understand this visually, one can consider the micromotion during a drive period.

First I’ll consider the case of resonant driving. On resonance for a sinusoidal forcing

about a non-zero mean, the Bloch period is exactly equal to the drive period and so we

can figure out the average dynamics by considering a single period. Suppose we start at

k = 0. For a sine function drive, then traversing the positive side of the group velocity

from k = 0 to k = π is done more quickly than at the static force background, and so

we get less transport. On the other hand, the quasimomentum goes across the negative

side of the group velocity from k = π/a to k = 0 over a longer time frame and thus we

get more transport in this direction. The net effect is then transport in the negative x

direction over a single period, and this leads to an average nonzero group velocity. If

one flips the drive phase by π (or alternatively begins the Bloch oscillation at k = π/a),

the argument just flips and transport is directed in the other direction. For in between

phases, the average velocity will smoothly interpolate between these two extremes. In

the next section, I will derive a simple result for the cycle-averaged velocity for a weak

amplitude modulation, but the result holds similar intuition for the force modulation

case described here.

If one is at nonzero detuning, the quasimomentum does not exactly map back to itself.

However for small detunings such that the change in quasimomentum per drive period is

small compared to the width of the Brillouin zone, one can use a perturbative argument.

Each drive cycle there is a net transport one way or the other as in the resonant case,

and the effect of the detuning is to slightly modify the phase (starting quasimomentum)

for the next cycle. Each cycle there will be some net transport dictated by the current

phase, and then since the Bloch cycle doesn’t complete exactly due to the detuning

the phase is modified slightly. Iterating this idea repeatedly leads one to conclude that

the stroboscopic dynamics are position space oscillations across a Brillouin phase-space

cylinder. This schematic argument qualitatively derives much of the super Bloch behavior
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measured in ref. [36], and will be expanded upon and visualized in the next section.

4.2 Poincaré Topology and Bloch Transport under

Slow Amplitude Modulation

A natural question to ask is whether slow lattice amplitude modulation leads to

similar dynamics as force modulation. The super Bloch oscillations of the last section

could be understood as a rescaling of the Wannier-Stark localization length by modulating

one of its parameters, namely 1/F . The localization length also depends on J , and so it

seems possible that lattice depth modulation could produce similar effects. Indeed tuning

effective tunneling with amplitude modulation was demonstrated in [42]; this experiment

is also described by (3.8) in the large V0 regime for both negligible static tunneling

and interband coupling. In this section we consider a similar experimental setup, but

with two key differences: non-negligible tunneling/spatial transport in the absence of

the drive and a significant harmonic curvature to the external forcing potential. This

combination of features significantly modifies the transport dynamics from any of the

previously mentioned experiments, which we ultimately describe through an analysis of

semiclassical orbits in phase space. Specifically, the parameters considered for the data

in the rest of the chapter are V0 = 4.3ER, ω = 2π× 53.56 Hz, α = 0.24 and TB = 16.75

ms.

The scheme for directed transport is shown in figure 4.1. Since the force is weak,

at every instance in time we can calculate a band dispersion and corresponding group

velocity which describes the instantaneous dynamics. For a resonant drive with respect

to the Bloch frequency, it is then possible to compute an effective band dispersion and

group velocity which dictates the transport every period. From the group velocity, it is
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Figure 4.1: Schematic of directed transport in amplitude modulated optical lattices
driven on Wannier-Stark resonance. Treating the force semiclassically, the atoms see
an effective modulated band structure due to time variation of the lattice (right).
Equivalently, the atoms experience a asymmetric group velocity across the Brillouin
zone amenable to directed transport.

easy to then integrate over the Brillouin zone to obtain the average group velocity which

will be nonzero except when the drive and Bloch oscillation are exactly π/2 out of phase

(in the sense established in the previous section).

In fact one can write down an analytic expression for the transport using some ap-

proximations. Assuming a small lattice depth modulation, we can expand the tunneling

modulation to linear order as

J [V (t)] ≈ J(V0) [1− α0 sin(ωt+ ϕ)] . (4.6)

Here V0 is the static lattice depth and J depends on time only parametrically through

the instantaneous lattice depth; the scaled modulation index α0 = α|J ′(V0)|V0/J(V0) can

be computed explicitly using Mathieu function relations for the band edges [16]. In the
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Figure 4.2: Center of mass trajectories for slow amplitude modulation under a mag-
netic force gradient for two drive phases. Theory is based on semiclassical equations
of motion. Additionally, a drive frequency chirp is shown to be able to extend the
transport range against the force gradient (up the magnetic potential).

tight-binding regime, the group velocity can be taken as

vg(t) =
2J [V (t)]d

~
sin(k(t)d). (4.7)

Integrating this expression for the resonant driving case ωB = ω where k(t) = (ωt+π)/d

(here the π is just to be consistent with experimental protocol) and using the small

modulation tunneling approximation, we compute a cycle-averaged group velocity of

vg =
α0v0

2
cosϕ, v0 =

2J(V0)d

~
. (4.8)

Indeed the analysis shows a group velocity which oscillates appropriately with respect to

the phase between drive and Bloch oscillations.

In fact this analysis is correct in producing the center-of-mass dynamics of the Hamil-

tonian (3.8) in the stated parameter regime, and it qualitatively explains some of the
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dynamics observed in the experiment. Namely we do indeed see the ability to direct

slow, stroboscopic transport by varying the drive phase. However, figure 4.2 reveals that

it is quantitatively wrong. At ϕ = π/2 where (4.8) predicts zero net transport, we ex-

perimentally observe ideal pumping along the direction of the force. On the other hand

at ϕ = π which should yield maximal transport against the force, we observe a rapid

trajectory reversal after just a few cycles. The reason for this deviation from the analytic

expression resides in the fact that our experimental system features a harmonic potential

rather than a constant force. Moreover the light mass of lithium means that the ampli-

tude of Bloch oscillations can be over many lattice sites even in the tight-binding regime,

so the local force can significantly change without violating semiclassical assumptions.

Thus our experiment features not only an externally imposed tunneling modulation but

also a parametric force modulation via the position space micromotion over a Bloch/drive

period. It should be noted that we were successfully able to delay the turning around by

applying a frequency chirp to the modulation, enabling further pumping against a force

gradient. This is shown in the chirp data of figure 4.2. This can be roughly understood

as compensating for the average change in force per pumping cycle.

At this point it is simplest to model the dynamics numerically by integrating differ-

ential equations. Explicitly, the Hamiltonian we consider is given by

H =
p2

2m
+
V0

2
[1 + α sin(ωt+ ϕ)] cos(2kLx) +

1

2
mω2

0x
2 − Fx. (4.9)

Here ω0 = 2π× 15.5 Hz is the magnetic harmonic potential frequency. The semiclassical

dynamics are then described by

ẋ =
2J [V0(1 + α sin(ωt+ ϕ)] d

~
sin(kd), k̇ = F −mω2

0x. (4.10)
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Figure 4.3: (a) and (c) Time traces of the cloud evolution for drive phases of
ϕ = π/2, 3π/2. (b) and (d) Corresponding semiclassical simulations. The π/2 drive
yields stable wavepacket transport with minimal deviations in the spatial width. At
3π/2, we instead observe a rapid oscillation dephasing and significant expansion after
just a couple drive cycles. The standard deviation of the distributions is plotted in
(e), with fairly good agreement between experiment and theory.

For simulations, we approximate J = 4∆ and calculate ∆ numerically from the instanta-

neous lattice depth. The lines in figure 4.2 are computed using this simulation technique

and demonstrate excellent agreement.

A phenomenon we did not anticipate was the observation of strong asymmetry in

the spatial moment dynamics with respect to drive phase. As shown in figure 4.3, the

opposite phases of π/2 and 3π/2 yield drastically different dynamics. In the first case,

the wavepacket stays compact and the most prominent short time behavior is simply

stroboscopic directed transport. At the opposite phase, there is no center-of-mass trans-

port at all; instead the cloud rapidly broadens and largely enters a bimodal distribution

with some interesting oscillatory structure. While the semiclassical equations (4.10) are

typically intended to only describe the center-of-mass dynamics for an appropriately con-

structed wavepacket, here we find that treating them as essentially Hamilton’s equations

leads to a quantitatively correct description of the spatial moment dynamics. We sample

a Gaussian weighted ensemble of initial conditions to simulate the evolution of a classical
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phase-space density under the equations (4.10), and then construct a density which is

plotted in panels (b) and (d) of figure 4.3. We find that it almost exactly reproduces the

measured quantum squared wavefunction density visually (in both cases!), and quanti-

tatively it closely matches the observed spatial spread behavior. We take the parameters

of the Gaussian weighting to be σx = 60d and σk = 0.1kL; the σk is larger than one

would expect for BEC, but this is because we believe there to be inhomogeneous forces

broadening the distribution during the adiabatic lattice ramping.

While the theory works nicely here for modeling purposes, it is rather unsatisfying

in providing a deeper, physical understanding for why the curvature produces such a

drastic changes. For this, we return to the discussion at the outset of this chapter and

investigate the underlying semiclassical phase space structure. Namely, we can use the

Poincaré section technique to understand the strobosocpic properties of the system. I

will refrain from using the word Floquet here because the semiclassical equations are

nonlinear and Floquet typically refers to linear system analysis. First I will note that the

equations of motion (4.10) are actually that of a parametrically modulated pendulum

with coordinate and momentum swapped. This becomes a bit more transparent by

deriving the second order equation for k as

k̈ = −2J [V0(1 + α sin(ωt+ ϕ)]mω2
0d

~
sin kd. (4.11)

Clearly this has the form θ̈ = −ω2
eff(t) sin θ which is the pendulum equation of motion,

but with the angle represented by quasimomentum. Note that the curvature is critical

here, and without it k simply follows the acceleration theorem. The phase space topology

of a pendulum is that of a cylinder, and the extended axis here is position in place of

angular momentum. For the experiment where we remain on one side of the harmonic

potential, this corresponds to the regime of purely rotating solutions which means that
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Figure 4.4: Poincaré sections for amplitude modulated atoms in (a) homogeneously
and (b) inhomogeneously tilted lattices. In the former case at finite detuning, the
quasimomentum repeatedly wraps around the Brillouin zone and this can be under-
stood in terms of the perturbative arguments given at the end of section 4.1. The
sign of detuning characterizes the direction in which the trajectories wrap around the
Brillouin cylinder. On resonance (inset), the trajectories unwrap for linear spatial
transport yielding the profile of (4.8). In the presence of curvature, two fixed points
of different stabilities leads to a separatrix-like feature with a region of stroboscopic
trajectories which do not wrap the cylinder. (c) Stable wavepacket transport and
rapid spreading observed in the data can be visualized through the flow of trajectories
around the different fixed points in this Poincaré map.

the compact variable winds only in one direction in continuous time (the distinction of

continuous time is important), i.e. the angular momentum of the pendulum does not

change sign. Further details about the parametrically driven pendulum can be found in

[43, 44, 45].

Let us first consider the case where the curvature ω0 vanishes. We hope here to gain

insight into the structure of super Bloch oscillations, that is oscillatory transport over

many periods at finite detuning and linear transport on Wannier-Stark resonance. As can

be seen in figure 4.4, the stroboscopic dynamics are quite simple and should be understood

in analogy to the arguments of the previous section. At small nonzero detuning, the

quasimomentum shifts each cycle and there will be an oscillatory spatial profile as the

phase between drive and Bloch oscillation evolves according to (4.8). Topologically,

these stroboscopic trajectories all wrap around the Brillouin zone once, with the winding

direction dictated by the sign of the detuning (in regard to the previous paragraph, note
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that the Poincaré orbits can wind in different directions while the true continuous time

trajectories wind in a single direction for purely rotating solutions). These are both

incontractible loops on an infinite cylinder and topologically distinct from each other. In

order to go from one configuration to the other as the detuning is swept, there must be

some “topological” transition on resonance where these Poincaré trajectories unwrap from

the cylinder, corresponding to the fact that the quasimomentum exactly maps back to

itself after a Bloch period in this situation. Here we get exactly the linear transport profile

predicted by (4.8). Importantly, this means we have fixed points (specifically lines of fixed

points for all x) appearing at two points in the Brillouin zone k = ±0.5, or alternatively

for two drive phases ϕ = π/2, 3π/2. In these two cases of near resonant and resonant

driving, one can interpret the presence of the near resonant modulation as providing

the tunneling/dispersion to the stroboscopic dynamics, and the detuning as generating

a stroboscopic force. For instance, we can start with the baseline case of a static Bloch

Hamiltonian with no drive where the Poincaré map is trivial, and associate that with

the trivial continuous time evolution of fixed particles on a lattice. Then the addition

of a resonant drive in the former system leads to delocalized stroboscopic dynamics in

analogy with the effect of introducing a hopping term to these fixed particles. Similarly,

introducing the detuning to this driven system localizes the Poincaré dynamics to a super

Bloch localization length just as adding in the force localizes the static tunneling particles

to a Wannier-Stark length.

Now we turn on the curvature ω0. A special position now emerges where the fixed

point is preserved, namely where the drive frequency is on resonance with the local force.

What we see from the panel (b) of figure 4.4 is that the fixed points at opposite sides of

the Brillouin zone have differing stabilities, namely one is a center with trajectories

orbiting around it and the other is a saddle point with both a stable and unstable

axis. This induces a separatrix-like feature to the Poincaré section. Far away from the
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local Wannier-Stark resonance we get curves similar to those for a finite detuning and

homogeneous force with trajectories that wind around the Brillouin zone in one direction

or the other. However, now we need to interpolate the conditions by simply moving along

position space, and the presence of fixed points enable this topological transition along

the Brillouin cylinder. In particular in the separatrix region, one finds new orbits which

are contractible on the surface of the phase-space cylinder, distinct from anything in the

case of a homogeneous force.

How do these Poincaré sections enable us to understand the experimentally observed

dynamics? For the ϕ = π/2 drive with stable wave-packet transport, we model that as an

ensemble of initial conditions beginning near the stable fixed point. Indeed the stability

of the fixed point enables the wavepacket to remain compact in real space, and the flow of

trajectories around the fixed point explains the observed steady spatial transport. Here

the BEC is largely in a region of Poincaré orbits which are contractible on the phase space

cylinder. On the contrary, the ϕ = 3π/2 data is an ensemble starting out near the saddle

point. This saddle point is surrounded by orbits of all 3 topological classes identified,

and the diverging axis clearly leads to the rapid spatial expansion. Furthermore, the

tendency for the wavefunction to bunch up near the edges is a result of the trajectories of

the winding orbits to be confined to sufficiently far distances/detunings from the special

resonance point. This is all summarized in panel (c) of figure 4.4.

Let me conclude this chapter with a brief outlook for future avenues along this exper-

imental concept line. One possibility is adding in additional modulations (for instance

a different frequency amplitude of force modulation) to make the semiclassical dynamics

more chaotic. I believe it would be interesting to study how the structures observed here

are modified for quasiperiodic versus commensurate driving. The effects of modulated

interparticle interactions on SBOs leading to dynamical stability has been previous ex-

plore theoretically [46], and our Feshbach resonances could allow for study of this; some
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work has been done on photon-assisted tunneling in amplitude-modulated tilted lattices

with significant interactions [47]. Finally, there is always the goal of engineering a non-

zero Berry curvature using Floquet engineering to realize effects of anomalous velocity,

making the semiclassical dynamics more rich.
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Chapter 5

Investigation of the Many-Body

Quantum Kicked Rotor

Up to this point, we have limited ourselves to sinusoidal drive waveforms and single-

particle dynamics. Another class of periodic driving involves kicked systems where the

drive waveform is a regular train of sharply peaked pulses. Here we will discuss per-

haps the most famous example, the delta kicked rotor, which exhibits a rich range of

physical phenomena both classically and in the quantum world. Our experimental focus

is on systems of many rotors coupled by interparticle interactions which probes at the

understanding of thermalization and localization in many-body condensed physics.

The arXiv preprint version of this work is displayed in Appendix F [3].

5.1 Diffusive Chaos in the Classical Kicked Rotor

First I will review here the basic physics of the classical problem. Boris Chirikov

introduced the so-called standard or Chirikov map around 1970 [48, 49], and a very nice

overview of the kicked rotor is given in [50]. The physical model one can consider is a
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pendulum with gravity sharply turned on at periodic intervals T . A classical pendulum

Hamiltonian can be written as

Hpend =
L2

2I
+mgR cos(θ). (5.1)

Here we have pendulum radius R, momentum of inertia I = mR2 and angular momentum

L = Iθ̇. Dividing by a factor I and using the relabeling θ̇ → p and θ → x, we find the

rotor Hamiltonian

Hrotor =
p2

2
+ k cosx. (5.2)

Here we defined k = g/R. We now consider δ-function kicks of the potential occurring

at periodic intervals T , so we multiply the potential term by
∑

n δ(t− nT ). Taking time

t to be normalized to this period and multiplying the entire Hamiltonian by T 2, we can

write down the kicked rotor Hamiltonian

HKR =
p2

2
+K cosx

∑

n

δ(t− n). (5.3)

Here we defined K = kT . This is typically taken as the starting point when discussing

kicked rotor dynamics. Given an initial condition x(t = 0) = x0 and p(t = 0) = p0, we

can integrate the dynamics explicitly. Let xn and pn denote the position and momentum

right before the (n+ 1)th kick (so at time t = n from the left). Then we have

pn+1 = pn +K sinxn, xn+1 = xn + pn+1. (5.4)

This is the so-called standard map. One can take the phase space to lie on a torus

(obvious for position since its an angle, but also this means that adding 2π to p leaves
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Figure 5.1: Poincaré sections for the standard map (5.4). At small K, the curves
are simply distorted versions of a free particle and the motion is bounded. As K
increases, a transition to chaos gradually occurs as the KAM tori are destroyed and
the dynamics become ergodic on the torus. The simulations here are over 200 kicks
and taken with 20 initial conditions for x = 0 and p ranging from 0 to 2π.

the map invariant). One can easily simulate the dynamics for varying K which is shown in

figure 5.1. The small K behavior is understood in terms of the KAM theorem. Integrable

Hamiltonians such as that of the free-particle have phase spaces which are densely covered

by n-dimensional invariant tori where n is the number of degree of freedom. For small

nonintegrable perturbations, the KAM theorem predicts that the invariant tori are not

destroyed but rather distorted. Eventually for strong enough perturbations the KAM

theorem breaks down and nonintegrability generically leads to chaotic behavior. It has

been shown that the last KAM tori is destroyed at a critical value of K ≈ 0.971635 . . .
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Figure 5.2: Energy of the classical kicked rotor in the weak and strong kicking regimes.
For small K, the presence of invariant tori means that the motion in the phase space
is bounded with an upper limit on the absolute momentum. As the motion becomes
more and more chaotic, what one observes is a transition to diffusive energy growth
where the momentum is ergodic and can increase along the entire real line.

The main observation relevant to our experiments from the classical kicked rotor is

that the transition to chaos and ergodicity is accompanied by a transition to diffusive

energy growth. This is depicted in figure 5.2. For sufficiently large K > 4, it is expected

that the diffusion constant defined by p2 ∼ Dt is given approximately by D ≈ K2/4.

The details of the transition between the two regimes I leave to the Scholarpedia article

and references there within. The main difference we find in the quantum version of this

problem is that the onset of chaos is associated with a different phenomenon, namely

dynamical localization.

5.2 Localization in the Quantum Kicked Rotor (QKR)

Now we seek to understand the quantum dynamics of the Hamiltonian (5.3). A

number of theorists contributed to our theoretical understanding of the problem includ-
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ing Chirikov, Shepelyansky, Prange, Izrailev, Grempel, Fishman and others; their early

works showed that chaos in the quantum kicked rotor was associated with the phenomena

of dynamical localization, and further that this dynamical localization could be mapped

onto the phenomena of Anderson localization in disordered crystals [51, 52, 53, 54, 55].

This was confirmed experimentally by Raizen in [56] using the atom-optics version of

the QKR, to be shortly discussed. Since then this atom-optics rotor platform has been

studied rather extensively in experiment in the single-particle regime, realizing things

phenomena such as accelerator modes, fractional quantum resonances, and higher di-

mensional localization with quasiperiodic drives [57, 58, 59, 60, 61, 62, 63, 64, 65, 66].

First we will cover the mapping of the atom-optics to the delta QKR to establish

experimental relevance with our experiment. We consider noninteracting atoms sub-

jected to T -periodic square pulses of an optical lattice with duration τ . We write the

Hamiltonian as

H =
p2

2m
+
V0

2
cos(2kLx)

∑

n

fτ (t− nT ). (5.5)

Here fτ (t) denotes a function which is 1 on the interval t = 0 to t = τ and 0 everywhere

else; one can also model more realistic pulse shapes, for instance the Gaussian assumed

in [56]. One critical difference between the classical and quantum case is that we have an

intrinsic scale set by Planck’s constant, so rather than just a single variable parameter K

characterizing the kick strength, we should also have an effective Planck’s constant k̄. To

reach the desired form, we multiply (5.5) by 4k2
LT

2/m and make the following mapping

for the canonical coordinates

φ = 2kLx, ρ = −ik̄∂φ. (5.6)
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Figure 5.3: Localization of the QKR. In both classically chaotic and integrable regimes,
the quantum rotor saturates to a finite value at long times.

with the following parameters

k̄ =
4~k2

LT

m
= 8ωRT, K =

2k2
LTV0τ

m
=
k̄

~
V0τ

2
. (5.7)

In addition we let τ → 0 while keeping V0τ finite to map the square pulses to δ-functions.

Normalizing time t again to the period T we finally find

H =
ρ2

2
+K cosφ

∑

n

δ(t− n). (5.8)

One can check that the canonical commutation relation is

[φ, ρ] = ik̄. (5.9)

Indeed this Hamiltonian (5.8) is the same form as the classical delta-kicked rotor (5.3) and

so the mapping of our experiment to theoretical model is made explicit. The dynamically

localized quantum evolution under this Hamiltonian is shown in Fig.5.3, and contrasted
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to the diffusion in the classical kicked rotor case.

One should note the reduction of 3 experimentally relevant parameters V0, τ, T to

2 in the theoretical model k̄, K. This reduction is made under the condition that V0τ

is finite while τ vanishes, as we see that only the product V0τ emerges in the expres-

sion for K (5.7). In practice, 7Li’s light mass actually makes the condition of small τ

challenging. Physically employing the δ-function approximation is assuming we are in

the Raman-Nath diffraction regime where kinetic energy is ignorable over the duration

of the pulse, which is approximately expressed by the condition 2
√
V0ERτ/~ � 1 [67].

For the experiments presented later with τ = 0.3 µs and V0 = 64ER, this parameter is

approximately 0.76 (there is an ambiguity of a factor 2π in defining the condition [68],

which would reduce the parameter to 0.12). Either way, this suggests that the system is

in between the Raman-Nath and Bragg diffraction regimes, and thus finite-pulse-width

effects require careful investigation. One can probe the effects of pulse length duration

via simulations, as shown in Figure 5.4. We find that generically the effect of larger τ is

to localize the distribution at a lower energy, though the magnitude of this effect appears

to depend on K.

One way to think about this effect is that if the kinetic energy plays an important

role over the course of the kick, the non-zero momentum states will traverse a significant

fraction (if not more than 1) of a lattice site during the pulse. In the classical picture, the

particle then feels an averaged, weaker “kick”. A rough estimate aside from the Raman-

Nath condition is that given by considering the motion of the lowest non-zero momentum

state 2mvR, with vR = ~kL/m the recoil velocity. For reference, vR ≈ 53.6nm/µs, so that

a particle moving at 2vR moves 6% of a lattice spacing in 300 ns. For the experiments

discussed here, we typically use an effective τ =300 ns, which is roughly composed of 200

ns rise and falls of the beam intensity with a 100 ns hold at the peak. While 6% may not

seem so significant, we should be aware that higher momentum modes may be excited
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Figure 5.4: Simulations of energy versus number of kicks n for varying effective pulse
widths τ at a fixed stochasticity parameter K. In general, the effect of long pulse
durations is to reduce the localization energy, though.

in the localized state and will potentially experience a more strong averaging of the

potential. The finite pulse duration can be thought of as leading to an effective kicking

strength which decays with increasing momentum, causing even the classical phase space

to localize above a certain momentum [69]. This is an important consideration in probing

quantum dynamical localization which occurs in the classically chaotic regime. For our

parameters, the estimate given in [69] for the momentum boundary between classically

chaotic and integrable regions due to pulse width is roughly ±33.2kL, which is much

larger than any excitation we observe in our localization experiments (in some other

cases considering resonances to be discussed this may play a role). Thus we do not

expect that the finite pulse duration qualitatively affects the quantum nature of the

dynamical localization physics we study.

Just like the classical problem, we can formulate the stroboscopic solution as a map.
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We need the following two propagators to construct the 1-cycle evolution operator

Ukick = exp

(
−iK cosφ

k̄

)
(5.10)

Ufree = exp

(
−i k̄q

2

2

)
. (5.11)

Here q is the momentum quantum wave number (I avoid using k since we already have

K and k̄). The 1-cycle evolution operator is simply U = UfreeUkick. Given an initial

wavefunction ψ, one can simply apply (5.10) and (5.11) repeatedly to find the energy

after N kicks. A common way to do this is to Fourier transform the wavefunctions

between momentum and position space between applications of the two propagators.

For a true rotor which has a compact angular variable, one has a quantized angular

momentum variable. For the atom-optics/kicked particle case where position is on the

entire real line, one can establish equivalence by noting the Bloch’s theorem ensures that

only momentum states separated by a reciprocal lattice vector are coupled, and thus

quasimomentum is convserved. Thus one can simply solve the quantized rotor problem

for varying quasimomentum independently, which can be more numerically efficient, and

then average over an appropriate quasimomentum sampling. To model finite square pulse

dynamics, one can instead compute the band energies Enq by diagonalizing the following

Hamiltonian whose matrix elements are given in momentum space by

Hj,j′(q) =
k̄2

2
(q + j)2δj,j′ +

KT

2τ
δj,j±1. (5.12)

Here q denotes a quasimomentum in the first Brillouin zone and j is an integer. Once
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Figure 5.5: Noninteracting kicked rotor experiments demonstrating dynamical local-
ization dynamics with a saturation in the measured energy. Here, the absolute value
of the momentum was used as a proxy for the energy as it was less noisy. The mo-
mentum space localization length increases with increasing kicking strength, which is
related to the dependence of the classical diffusion coefficient on K.

the band energies are computed, the relevant propagators to switch between are

Upulse(q) = exp

(
−iEnq

k̄

τ

T

)
(5.13)

Ufree(q) = exp

(
−i k̄(q + j)2

2

T − τ
T

)
. (5.14)

Alternatively, one can employ split-step propagation techniques discussed in section A.1

to model more accurate pulse shapes.

Finally before moving onto the main topic of this section which is many-body effects,

it is important to inspect that our noninteracting experiment reproduces the same lo-

calization effects. The experimental procedure up to preparation of a non-interacting

BEC follows exactly as outlined before in section 3.2. However, now rather than ramp

up the lattice depth adiabatically, the traps are snapped off and the optical lattice is
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Figure 5.6: Modeling of kicked rotor energy measurement via a TOF. Different as-
sumptions about the appropriate time in conversion from position to momentum can
affect the perceived trends. Assumptions of discrete momentum occupations (box
method) can be useful but are also prone to error.

repeatedly, periodically pulsed on for brief periods of time τ . The atoms are allowed to

evolve completely freely in between kicks. Finally, to measure the absorbed energy we

use a time-of-flight (TOF) to convert momentum to position spread and compute the

variance. The results are shown in Fig. 5.5, with a clear dynamical localization plateau

emerging for varying kick strengths.

An important aspect in analyzing this data is that the duration of the kicking is

around 600µs, which is not small compared to our typical TOF times of 2-3ms. Thus

the position space motion during the experiment will not necessarily be negligible and

will tend to have a systematic effect of causing the energy to be overestimated as a

result of broader initial spatial distributions. One approach is to try to measure the

distribution at multiple TOF times and fit to a standard
√
σ2
x + σ2

pt
2 curve to try to

account for the changing σx, but we did not find great success with this method which

still ignores the tendencies for certain correlations to establish. An alternative method

is to alter the time used to calculate the position to momentum conversion by including

55



Investigation of the Many-Body Quantum Kicked Rotor Chapter 5

part of the kicking duration. For a given set of kicking parameters, we modeled this with

noninteracting split-step simulations (see section A.1) including the TOF expansion in

order to determine the most appropriate position to momentum conversion factor. An

example is shown in Fig. 5.6, but in general we do not find that any single scheme is

appropriate in all situations. The best conversion factor for each set of experimental

parameters is instead determined on a case by case basis using these simulations.

5.3 Prethermalization and Delocalization in the In-

teracting Kicked Rotor

The dynamical localization of noninteracting QKRs is well-known to be a realization

of Anderson localization in momentum space [53, 54]. Anderson localization [55] is a

generic wave phenomena where randomness leads to a suppression of transport. In the

simplest form of the problem, one can consider a single-particle hopping on the sites of

a 1D lattice with the chemical potential on each site randomly drawn from the interval

[−W,W ]. W is called the disorder strength, and in 1D systems W 6= 0 leads to energy

eigenstates which are exponentially localized in space (in contrast to typical delocalized

Bloch waves for W = 0). In the Floquet analysis of the kicked rotor problem, the hopping

is facilitated by the kicks between discrete momentum modes, and the phase accumulated

over a period T for the different momentum modes generates a pseudo-random sequence

of numbers playing the role of the disordered on-site energies.

Since around 2006, the phenomenon of many-body localization (MBL) as an avenue

for escaping thermalization and preserving memory of local information has been a hot

topic [70, 71, 72, 73, 74, 75, 76, 77, 78]. The detailed phenomenology underlying the MBL

phase is beyond the scope of this thesis, but at its most simplified level MBL is the per-
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sistence of Anderson localization in the presence of many-particle interactions. Naturally

then one is led to ask whether an analogue of MBL also exists for the dynamical local-

ization problem in the context of the QKR. Indeed recent theoretical work suggests that

there may exist regimes of few-body and many-body QKR Hamiltonians which exhibit

such a many-body dynamically localized (MBDL) states [79, 80, 81, 82, 83]. There is a

reasonably long list of other numerical/theoretical studies suggesting a dynamical delo-

calization effect by interactions [84, 85, 86, 87, 88, 89, 90, 91, 92] . Many are mean-field

treatments based on the Gross-Pitaevskii equation, which in 1D and taken with periodic

boundary conditions on a single lattice site seem to unambiguously lead to a subdiffusive

(sublinear) energy delocalization at long times. The applicability of such results to real

experiments is questionable though, due to possible scattering and dynamical instabilities

leading to large condensate depletion fractions.

In this section, I will present the first experimental probe of the effects of interactions

on dynamical localization in the QKR model. The experimental sequence largely follows

what has been previously discussed. The key difference however is that these experiment

are performed in the vicinity of Li’s magnetic Feshbach resonance as opposed to near

the zero scattering length crossing. While the BEC is held in the optical dipole trap, we

slowly ramp the field over tens of ms to vary the scattering length of the condensate. Once

the ramp is completed, the optical dipole trap is then turned off and the lattice beams

begin to repeatedly pulse. Two potential mechanisms as a consequence of interactions

can be immediately identified. The first is a simple mean-field shift which locally winds

the phase of the condensate based on the real-space density; we estimate that this effect

is not dominant as the time-scale is expected to be around a ms while we are able to

observe interaction based effects in around 100 µs. Ultimately we believe the primary

interaction based mechanism present in the data is elastic collisions between the discretely

occupied momentum modes [93, 94, 95, 96, 97]. This is because such a process depends
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additionally on the relative velocity between condensates and thus happens much faster

than the mean-field dynamics. The expectation is that such scattering processes take

atoms out of the condensate wavefunction and into unoccupied momentum modes in

an energy-conserving halo. These modes are outside of the mean-field description and

present a challenge for accurate modeling of a dynamical many-body bosonic system in

3 spatial dimensions.

The main result of this work is presented in Fig. 5.7A. While a noninteracting sample

exhibits dynamical localization, saturating around a finite energy for over 800 kicks, inter-

acting samples clearly demonstrate the destruction of the dynamically localized plateau

with increasing scattering length. At the intermediate interaction strength (a = 240a0),

we observe an initial saturation to the same energy as non-interacting samples, suggest-

ing the existence of a reasonably long-lived prethermal state. Prethermalization behavior

is typically associated with a separation of time-scales [98], that is a rapid initial relax-

ation to the prethermal quasi-equilibrium, followed by a “long” persistence at this state

before eventual thermalization. Here we indeed resolve such behavior, with an initial

classical diffusion breaking to a prethermal dynamically localized state in a few kicks,

which is then sustained till about 300 kicks before heating ensues. In contrast, the 760a0

trace exceeds this localized energy after around 100 kicks; whether a quasiequilibrium

dynamical state is truly established in this stronger-interacting sample is less clear. The

shaded region indicates a localization energy Eloc (and subsequently a momentum space

localization length kloc by assuming an exponentially localized distribution ∼ e−k/kloc)

characterizing the dynamical plateau, which we estimate by averaging over the nonin-

teracting data points for n ≥ 100. We can then use this estimate to characterize other

features of behavior in the system. We note that the energy measurements presented here

are quite challenging to extract, and thus we used an adaptive ROI generation procedure

to reduce noise on the results, which is described in full detail in the methods section
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Figure 5.7: Observing the interaction-induced emergence of quantum chaos.
(A) Energy versus kick number for varying a. Blue horizontal shaded region indicates
the measured single-rotor localization energy of Eloc = 2.5(4)ER. Here V0 = 64ER,
T = 1.2µs and τ = 300 ns (K ≈ 2.3 and k̄ ≈ 1.5). The inset contrasts interac-
tion-induced delocalization and anomalous diffusion with classical diffusion caused by
a sequence of random offsets from the average kick spacing T drawn uniformly from
the interval [−T/4, T/4]. The solid curve is noninteracting quantum theory and the
dotted line is a diffusion curve 4Dn/k̄2 with D ≈ 0.19 extracted from the classical
standard map [49]. The red dot-dashed line is a subdiffusive

√
n law serving as a

guide to the eye. (B) Momentum-space IPR with transverse dimensions integrated
out. The shaded regions are predictions for two exponentially localized distributions
with 1/e localization length kloc =

√
Eloc ≈ 1.6(1)kL. (C-E) Normalized smoothed

momentum space densities at various n. (F-H) The same densities on a logarithmic
scale. The orange dotted and purple dashed lines are exponentially localized curves
exp(−k/kloc) with amplitudes normalized to match the peak of the measured distri-
butions at the given n. (I) Deviation from exponential localization over time based
on integrated ratio between measured and exponential distributions with error bars
computed from uncertainty in kloc.
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of [3].

Fig. 5.7B shows one other aspect of the same evolution, plotting the momentum

space inverse participation ratio (IPR) versus kick number. The IPR characterizes the

“number” of states over which the system is distributed, thereby also probing how colli-

sional momentum redistribution washes out the originally discrete momentum modes, a

process less easily inferred from energy measurements. For a wavefunction ψ(x) of a 1-

dimensional continuous variable x, the IPR in the x-space is given by
∫
D |ψ(x)|4dx, where

D indicates the relevant domain on which x is defined. While the 240a0 data exhibit a

clear steady-state behavior for 100 kicks, the 760a0 IPR decreases monotonically for al-

most the entire experiment. The shaded regions provide comparisons to two potential

exponentially localized distributions. The blue shaded region is obtained by numerically

computing the IPR for the momentum space distribution exp(−|k|/kloc)
∑

j exp(−(k − 2kLj)
2/w2),

which models a Gaussian comb with an exponential envelope. This is a reasonable ex-

pectation for a finite-size, localized noninteracting condensate occupying only discrete

momentum modes. The width parameter w is measured from fitting the n = 0 nonin-

teracting condensate and takes into account the momentum-space resolution of the TOF

given the finite condensate spatial extent. The width of the region is based on Monte

Carlo simulation of uncertainty in kloc, where the resulting distribution is fit to a Gaussian

to extract the mean and standard deviation. The green shaded region is calculated analyt-

ically for a pure exponential distribution of infinite extent and is given by 1/4kloc. Taking

into account the finite width of the imaging region changes the distribution normalization

and leads to the following correction factor (1−exp(−2k0/kloc)/(1−exp(−k0/kloc))
2; here

k0 ≈ 9.85kL is the half-width of our images which yields a negligible correction factor

of ≈ 1.006. The width of the region is computed through linearized error propagation.

Since these shaded regions bound the IPR delocalization, it is not obvious that there is

an accompanying loss of exponential localization directly from this metric, which will be
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discussed later.

As already mentioned, the three-dimensional nature of scattering in our system means

that momentum-space IPR should really be defined in all 3 dimensions for the experi-

ment. However, since the imaging system naturally integrates out one dimension in our

measurement of the atomic density, computing such a metric would require reconstruc-

tion of the full atomic density through appropriate symmetry assumptions (assuming

cylindrical symmetry one can use the inverse Abel transform). Instead since we are

largely interested in some effective axial dynamics along the kicking direction, we sim-

ply integrate out the remaining transverse dimension in the image, before normalizing,

squaring and then integrating to compute what we call the projected IPR. Additionally,

I found that to compute this particular metric it was necessary to smooth the data so

that background fluctuations would not dominate at the lower values of the metric. I

found this was also the case when the IPR was calculated in two dimensions. The metric

would tend to converge to a solution as the smoothing parameter was increased. This

smoothing is really only helpful for this metric and not the energy, since typical smooth-

ing protocols tend to be moment-conserving. Aside from the smoothing, we found the the

IPR tends to be a much more consistent metric than the energy, and much less sensitive

to things like ROI choice. Overall the IPR shows similar trends to the energy, namely a

much clearer finite duration plateau for the 240a0 data than the 760a0 trace. However,

both still significantly depart from the noninteracting values at long times in agreement

with an interaction-induced delocalization.

A second key result of these measurements is that the observed delocalizing dynam-

ics clearly exhibit anomalous diffusion: it appears that even interacting quantum kicked

rotors absorb energy much more slowly than classical rotors. The inset of Fig. 5.7A

compares the nature of the observed interaction-induced subdiffusive delocalization with

linear energy growth in the classically chaotic model. We experimentally simulate clas-
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sical dynamics by adding stochastic fluctuations to the kicking period T , making use of

the known sensitivity of dynamical localization to timing noise [99]. More generally, it

is known that dynamical localization can be sensitive to a variety of forms of decoher-

ence [100, 101, 102]. In general, this noise causes a subdiffusive heating which approaches

classical linear diffusion as the strength of the fluctuations increases. The triangles in

the inset show our kicked BEC with the interval between kicks randomized. The dark

blue line is a noninteracting simulation, and the light blue dotted line is a diffusion curve

from fitting the corresponding classical kicked rotor map. In contrast, the slope of energy

increase for the two interacting samples at long times is clearly much smaller. In partic-

ular, the red dashed line is a
√
n law serving as a guide to the eye. From fitting the data,

we typically measure diffusive exponents in the range [0.4, 0.6]. For reference, 1D Gross-

Pitaevskii simulations on a ring [89] predict α ∈ [0.5, 0.8], though a direct quantitative

comparison to theory is challenging due to the high depletion of the condensate and the

three-dimensional nature of the experiment. Theoretical studies of the effect of local non-

linearity on real-space Anderson localization instead suggest α ∈ [0.3, 0.4] [103, 104], but

the long-range nature of contact interactions in momentum space similarly complicates

comparison.

For further insight into the dynamics of kicked interacting quantum systems we ex-

amine the evolution of the momentum distribution, shown in Figs. 5.7C-E. We observe

a clear distinction between the noninteracting samples, which settle at a sharply-peaked

dynamically-localized momentum distribution, and the interacting samples, which grad-

ually smear out in momentum space due to scattering. Plotting these same densities

on a logarithmic scale in Fig. 5.7F-H illuminates the destruction of dynamical Anderson

localization by assessing the departure from exponentially-localized Floquet states. The

smeared-out lower-energy modes actually appear to maintain the expected localization

length, and thus do not trivially indicate a departure from exponential localization. This
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observation is also reflected in the fact that two predictions based on exponentially lo-

calized distributions bound the measured IPR in Fig. 5.7B. Instead, the departure from

exponential localization manifests in the emergence of increased relative population in

the tails of the distribution. It is interesting to note that recent theory suggests that

even MBDL phases are expected to exhibit universal power-law decaying tails [105]. In

Fig. 5.7I we quantitatively characterize the overall deviation from exponential localiza-

tion, revealing a break time near 200 kicks for both interaction strengths. These findings

provide a second experimental signature of the destruction of the dynamically local-

ized state by interactions, now both at the level of macroscopic observables and squared

wavefunctions.

The plotted localization metric in Fig. 5.7I is
∫ k0
−k0 max[r(k) − 1, 0]dk/2k0. Here,

r(k) = |ψ(k)|2/ exp(−k/kloc) is the ratio of the measured axial density denoted |ψ(k)|2

and an exponential localization envelope. Here the maximum of |ψ(k)|2 is set to unity.

Taking the maximum of r(k)−1 and 0 ensures that the result is only sensitive to regions

of the distribution which decay more slowly than exponentially. That is, it interprets 0

as “at least exponentially” localized with respect to a given localization length, and thus

characterizes departures from a given dynamically localized state in the traditional sense

of exponentially localized wavefunctions. We note however that the system remaining

exponentially localized but with a larger localization length would result in a non-zero

value for this metric, which motivates the direct inspection of the distributions in Figs.

5.7F-H. The reported values and errorbars are extracted by propagating a Gaussian

uncertainty in the measured kloc through a Monte-Carlo simulation. We find that the

resulting distributions interpolate between sharply peaked at 0 with a rapid fall-off when

well-localized, to positively skewed with non-zero peak in the delocalized regime. We

empirically find that a log-normal distribution fits the Monte Carlo result well, and we

use this fit to extract the data reported in Fig. 5.7I. In particular, the markers indicate

63



Investigation of the Many-Body Quantum Kicked Rotor Chapter 5

0 0.5 1 1.5 2
Deviation

0

0.5

1

1.5

P
ro

ba
bi

lit
y 

D
en

si
ty

A

0 0.5 1 1.5
Deviation

0

1

2

3

4

5

P
ro

ba
bi

lit
y 

D
en

si
ty 760a0

0

10

20

30

40

P
ro

ba
bi

lit
y 

D
en

si
ty

B
0a0

42
292
834

n

0

0.2

0.4

0.6

0.8

1

D
ev

ia
tio

n 
(M

od
e)

C
0a

0

240a
0

760a
0

100 101 102 103

 n + 1

0

0.2

0.4

0.6

0.8

1

D
ev

ia
tio

n 
(M

ed
ia

n)

Figure 5.8: Characterizing Monte Carlo distributions for deviation from ex-
ponential localization. (A) Distribution for the 760a0 data in Fig. 2 at n = 500.
Orange line indicates the fit to a log-normal distribution. Vertical dashed line indi-
cates the mean, and the vertical dotted lines surrounding it indicate the interquartile
range reported as the errorbars. (B) Evolution of the distribution over time for non-
interacting and interacting samples. Note the difference in y-scale. The n = 42 trace
in the lower panel is cut-off vertically for visual clarity on the larger n distributions.
(C) Alternative characterizations of the exponential localization deviation in terms of
the mode and median of the simulated distributions (indicated by the markers, the
errorbars are left as the interquartile range), as opposed to the mean shown in the
main text Fig. 2I.

the mean of the distribution and the errorbars represent the interquartile range containing

the central 50% of the distribution.

Because these distributions are significantly not normal, it is important to check the

distributions explicitly. In Fig. 5.8, we show further details on the Monte Carlo simu-

lated distributions. The distributions are generated by computing the defined deviation

parameter for 104 values of kloc drawn from a Gaussian centered at 1.58kL and with

standard deviation 0.12kL. An example distribution for a sample which has delocalized

is shown in Fig. 5.8A, clearly showing the skewed probability densities we obtain from

this procedure. The solid orange line indicates the log-normal distribution fit we use

to extract parameters such as the mean and interquartile range of the distribution. We
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note that the use of a log-normal distribution here is only motivated empirically as a

systematic method to determine such quantities.

In Fig. 5.8B, we contrast how these simulated distributions evolve in time for localized

noninteracting samples and delocalizing interacting ones. In the noninteracting case,

the distributions are extremely sharply peaked at 0 and are relatively unchanging in-

time, agreeing with the expectation of dynamical localization. In the latter however, the

distribution is only peaked at 0 for short times indicative of the finite duration prethermal

plateau we report, and gradually shifts away to non-zero values as the sample heats up.

Importantly, at the later times the 760a0 distribution has essentially vanishing probability

density at 0 deviation, allowing us to confidently claim observation of departure from

exponential localization. In Fig. 5.8C, we confirm that the reported behavior of deviation

over time in Fig. 5.7I would not qualitatively change if we instead used the median or

mode of the distribution instead of the mean.

To supplement the dynamical delocalization signals shown in Fig. 2 and demonstrate

that this is not a particularly fine-tuned phenomena in the kicking parameter space, in

Fig. 5.9 we show the same metrics for a larger kicking period T = 2.2 µs. The overall

picture is unchanged, as the interacting samples show starkly different behavior from the

noninteracting traces, departing from the localized value of each metric after a variable

break time. Here the energy delocalization is obscured slightly as the different interaction

strengths seem to initially localize to different energies. We attribute this partly to

Thomas-Fermi expansion which reduces both the effective lattice depth experienced by

the condensate and the initial kinetic energy of the sample, though we do not entirely

rule out the possibility of different early-time prethermal behavior across interaction

strengths. The correlation between localization length and quasimomentum spread is

observed in noninteracting numerics. The different-colored shaded regions indicate our

best estimates for the different localization energies at the 3 interaction strengths by
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Figure 5.9: Interaction-induced delocalization for a different set of kicking
parameters. The kick parameters are V0 = 70ER, T = 2.2 µs and τ = 300 ns
(K ≈ 4.6 and k̄ ≈ 2.8). The (A) energy, (B) 1D momentum-space IPR and (C)
deviation from exponential localization over time for varying scattering lengths. In
A, the shaded regions indicate the extracted initial localization lengths for the three
interaction strengths which we use for computing C.
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computing the mean energy (and standard deviation) over windows of n where the data

are minimally changing. These values are used to compute the exponential localization

deviation in Fig. 5.9C. We do note a small trend visible at the end of the noninteracting

traces; numerics suggest that this is consistent with variations in the localization length

that occur over time for certain kicking parameters.

5.4 Time Reversal with Quantum Resonances

Outside of dynamical localization, the second characteristic feature of the QKR model

is the presence of quantum resonances. Ignoring quasimomentum, such resonances hap-

pen whenever the quantized momentum states wind a rational phase relation with respect

to each other between kicks, which simply corresponds to when k̄ = 2πq where q is ra-

tional. This behavior can be interpreted as an atomic Talbot effect, which in its original

conception corresponds to the phenomena where a plane wave of light diffracted off a

periodic grating ultimately re-images itself a distance away called the Talbot length.

For the kicked rotor we can define a Talbot time which corresponds to when each inte-

ger momentum state winds an integer multiple of 2π phase between kicks (so that the

free evolution becomes the identity), which by inspection corresponds to the condition

q = 2 or alternatively in atomic units gives a Talbot time TT = h/4ER; for 7Li we have

TT ≈ 9.95µs. This is the fundamental quantum resonance and has been extensively ex-

plored [57, 66, 106, 107, 108, 109, 110, 111, 112, 113, 114], both from the fundamental

and applied perspective.

Here in particular I will focus on extensions of previous work investigating the use

of the fundamental quantum resonance for time-reversal [109, 110, 107]. The essential

idea is because the free evolution drops out of the map, if one is able to flip the sign of

the kicking then that becomes equivalent to time-reversal. This can be done either by
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spatially shifting the kicking lattice by half a period, or alternatively utilizing the fact

that the wavefunction will undergo a spatial π-phase shift after a half-Talbot period.

While such a protocol works exactly for a perfect 0 quasimomentum initial plane wave,

in reality finite quasimomentum spread will decay the return fidelity. This then realizes

the famous Loschmidt echo

F =
∣∣∣〈ψ|U †2U1 |ψ〉

∣∣∣
2

, (5.15)

where U1 and U2 are time-evolution operators differing by some perturbation. This no-

tion of Loschmidt echo time-reversal was originally conceptualized in trying to understand

how time-reversible classical microscopic mechanics could lead to a time-irreversible sta-

tistical mechanics [115]. Of the many deep theoretical concepts that emerges from such

a question, one is the notion of exponential sensitivity to initial conditions for chaotic

systems which is manifest in this Loschmidt protocol. That is, while in principle the

deterministic nature of mechanical laws should enable perfect time-reversal, in practice

some error (whether from not perfect isolation of an experiment or numerical error in

a computation) will always prevent such reversibility for a chaotic (many-body) system.

This is more complicated in quantum mechanics due to linearity and unitarity of time-

evolution, but nevertheless F serves as a key metric for understanding the emergence of

irreversibility under Hamiltonian evolution.

In Fig. 5.10, we probe the effects of contact interactions on this QKR Loschmidt

protocol. Due to technical limitations on our ability to ramp currents (magnetic fields)

to manipulate the Feshbach resonance, we do not switch the sign of the scattering length

a. Instead here we opt for the interpretation that the interactions are an additional

perturbation along with the kinetic energy distinguishing U1 and U2. This leads to a

non-monotonic behavior in F . For smaller a, we perhaps surprisingly find that F actu-
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Figure 5.10: Effect of interactions on reversibility in Loschmidt echo exper-
iments. (A) Measured Loschmidt echo fidelity F for a range of scattering lengths
a = [0, 1500] a0 for N = 6 (blue circles) and N = 10 (purple triangles), where N
indicates the total number of kicks; a first set of N/2 kicks propagates the system
forward in time and a second time-reversal set of N/2 kicks propagates it backwards.
(B) Measured fidelity F at three different interaction strengths as a function of total
number of kicks N in a Loschmidt echo experiment. (C-E) Averaged absorption im-
ages of a BEC after the first n kicks of an N = 10 Loschmidt echo protocol, for three
different a.
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ally increases, which we attribute to Thomas-Fermi expansion and thus a corresponding

reduction of the kinetic energy. We suspect that kinetic energy serves as the primary

perturbation from exact reversal in this regime, and that the interaction effects are sim-

ply encoded in a changing initial state. While this is a more trivial interaction-induced

effect, eventually for large enough a we see that F begins to decrease. We interpret

this as a crossover between kinetic energy and interactions being the dominant deviation

from perfect time-reversal, and thus this latter regime we take as an actual many-body

effect on QKR Loschmidt echo. In Fig. 5.10B, we show how the fidelity decays with in-

creasing number of kicks N in the Loschmidt protocol, and indeed find that at the larger

interaction strengths the fidelity appears to decay faster (though eventually saturating at

some non-zero value). Here the fidelities are extracted by performing a double Gaussian

fit around the central mode, with a narrower Gaussian counting atom remaining in the

zero-momentum condensate and a broader one counting a scatttered fraction. In Fig.

5.10 we plot the population in the narrower Gaussian, though this will systematically

tend to reduce the fideliy; further details on such systematics are discussed in the supple-

mentary of [3]. Extracting an accurate measure of the many-body Lyapunov exponent

is an interesting direction for future work.

Closely related to the concept of Loschmidt echo is the out-of-time-ordered correlator

(OTOC). The OTOC is instead defined by

F ′ = 〈ψ| Ŵ †
t V̂
†ŴtV̂ |ψ〉 . (5.16)

Here I’ll take V̂ and Ŵ to be local unitary operators (though one can consider Her-

mitian and/or global operators as well), and Ŵt = Û †t Ŵ Û . Essentially, this defines an

experiment where we act upon the initial state with V̂ , then propagate forward in time

to act with Ŵ , then propagate back in time to act with V̂ †, then propagate forward in
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time to act with Ŵ † and finally propagate back and measure the overlap with the initial

state. For V̂ and Ŵ being local operations, these operators should commute for no time-

propagation and the initial fidelity should be unity. However, if there are interactions

between the local degrees of freedom, then the local operator will spread outward from

its initial starting point over the system, which is a process formally described by the

Heisenberg representation V̂ (t) = Û †V̂ Û . As both V̂ and Ŵ spread, eventually they

may overlap and fail to commute, causing F to decay from 1. This tells us deeply about

the rate at which information propagates through a many-body quantum system, as well

as how local quantum information (which famously cannot be destroyed) is eventually

“lost” in the sense of being inaccessible due to scrambling across the large number of

degrees of freedom in a many-body system. OTOCs are an extremely rich subject which

I am not an expert in, but a good starting reference for the discussion here is [116]. I’ll

note here that OTOCs in the context of QKR have been theoretically studied in look-

ing at out-of-time momentum correlations for the purpose of understanding Lyapunov

exponents [117]; this is another potential interesting area of future exploration, though

here I’ll just outline some preliminary calculations framed more toward experimentally

studying operator propagation in the single-particle spreading.

In the QKR framework, I will take the local degrees of freedom as the discrete mo-

mentum modes excited by the kicking. One possibility for local operations on these

momentum modes is simply applying a phase. That is here I will consider the operations

V̂ = e−iϕ1|0〉〈0| (5.17)

Ŵ = e−iϕ2|k0〉〈k0|. (5.18)

Here ϕ1 and ϕ2 are the phases we will apply to the 0 and k0 momentum modes re-

spectively. Once again we need to work on resonance in order to perform time-reversal
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Figure 5.11: Numerically simulated OTOC scheme (both panels are the same here).
The markers are the simulated points, and the lines are from Eq. (5.19). The legend
labels k0, and baseline is a run where no pulses are applied, confirming that the result
is trivially unity for the perfect scenario of an initial 0 momentum plane wave under
reversal kicking protocol. Plotted here is actually F ′2.

operations. It turns out if we consider a perfect plane-wave initial state |ψ〉 = |0〉, we

can straightforwardly derive a result for F ′ after n-kicks given by

F ′n = 1 + 4
(
e−iϕ1 − 1

)
sin2

(ϕ2

2

)
J 2
k0

(nK/k̄)
[
1− J 2

k0
(nK/k̄)

]
. (5.19)

Here Jk0 is a Bessel function of order k0. I derive this in detail Appendix C. There

are a few checks to make sure this form makes sense. First is there is a leading term

1 which we expect the formula to reduce to if we make the problem trivial in anyway.

One trivial case is to not kick K = 0; since I consider k0 6= 1 then Jk0(0) = 0 and so

we get F ′n = 1. Similarly, if I either make ϕ1 (ϕ2) equal to 0, then V̂ (Ŵ ) becomes an

identity operator which always commutes, and then we see that F ′n = 1. On the other

hand, we expect the biggest signal if we apply the maximum phase of π, and indeed
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we see that the amplitude of the Bessel function oscillation will be largest for such a

π-phase shift. Because we are looking at how operators that are separated by k0 sites, it

makes sense that the oscillations are governed by Bessel functions of order k0, and these

Bessel functions are to the second and fourth power corresponding to interference across

multiple legs of the forward and backward time propagation. To these last couple point,

I do believe it is a bit of a result of the fact that we start with the initial |0〉 state, and

if instead an arbitrary superposition is considered then I believe different order Bessel

functions should emerge.

I benchmark this analytical formula with numerical calculation in Fig. 5.11. The

results match essentially perfectly (error on the order 10−16), which is expected since

Eq. (5.19) is an exact result. Ultimately the goal is to realize a similar measurement in

experiment. Here, utilizing techniques of momentum space lattices [118] will likely be

critical for implementing these local momentum site operations. In Fig. 5.12, I show the

effects of momentum spread on the described OTOC protocol. The first major point is

that the fidelity decays rapidly even in the case that either V̂ or Ŵ because then the

system is undergoing an imperfect Loschmidt echo due to the kinetic energy. To correct

the remaining results for this effect, we normalize the actual OTOC fideltiy curves to

the baseline Loschmidt curve as done in a recent experiment [119]. Indeed this restore

the early time dynamics to be quite similar to the prediction of the simple theory. We

do see however that the speed of information propagation in the system does seem to

slow down (at least initially), as indicated by the fact that the numerics lag behind the

analytic prediction in terms of their initial departure from unity. However, eventually this

normalization procedure appears to totally breakdown and the remaining points seem to

go all over the place, even surpassing the maximum physical fidelity value of 1.

The indication of Fig. 5.12 is promising if one can achieve a sufficiently cold sample.

However while in Fig. 5.12 the OTOC fidelity F ′ itself was averaged, in our experiment
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Figure 5.12: Numerically simulated OTOC scheme averaged over a Gaussian ensemble
of quasimomentum. The numerical data (markers) in the top plot is directly measured,
and in the bottom plot is normalized to the baseline run. The solid lines are still from
Eq. (5.19). Plotted here is actually F ′2.
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Figure 5.13: Numerically simulated OTOC scheme averaged over a Gaussian ensemble
of quasimomentum. The numerical data (markers) in the top plot is directly measured,
and in the bottom plot is normalized to the baseline run. The solid lines are still from
Eq. (5.19).

one really only has access to a density which gives information about F ′2. To model this,

we should instead perform a quasimomentum average over F 2. This is done in Fig. 5.13.

We indeed find that such an averaging procedure produces a result which follows the

analytic form much less, but nevertheless indicates that it takes time for the operator

information to spread through the system as evidenced by the different initial departure

times from unity for the varying k0. Ultimately this shows that it should be possible to

measure some notion of operator spreading in the QKR time reversal experiments.

These calculations serve as just the very simple entrance into the realm of OTOCs

for this experiment. An ultimate goal of course would be to investigate scrambling at

the many-body level which is not shown here at all, but as a first step experimentally

reproducing the above numerical calculations would be great progress. Ultimately, one

may also want to study this sort of physics experimentally away from the regime of
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quantum resonance, for instance trying to obtain a new probe of an MBDL state. It’s

not so clear whether such a thing might be achievable in these kicked cold atom set-ups

where the reversal procedure already fails. In the next section, I will discuss mappings of

QKR to spin chains which may offer alternative insights into exploring these possibilities.

5.5 Many-body Dynamical Localization (MBDL) in

Kicked XXZ Chains

To conclude this chapter, I will briefly conclude with some theoretical/numerical

investigations of 1D kicked spin chains. Given the novelty of potentially realizing an

MBDL state which stabilizes interacting driven matter without any disorder, it makes

sense to explore different potential models for realizing such physics, especially models

which may make connections with systems away from the traditional QKR experiments

of quantum gases in pulsed optical lattices. It was theoretically noted previously that the

single and few-particle QKR dynamics had a connection to an XXZ spin chain kicked by

a quadratic magnetic field [120, 121]. As a brief review, the XXZ spin chain is defined

by

HXXZ = J
∑

j

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjS

z
j+1

)
(5.20)

= J
∑

j

(
1

2

[
S+
j S
−
j+1 + h.c.

]
+ ∆SzjS

z
j+1

)
. (5.21)

This a generalized version of the traditional Heisenberg model
∑

j Sj · Sj+1, where an

anisotropy parameter ∆ control the relative coupling between the z-direction with respect

to the other two. The XX interaction represents a spin-flip process between nearest-

neighbor spins. Here I’ll consider the spin-1/2 case with Sx,y,z = σx,y,z/2 where σ indicates
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the Pauli-matrices. In the limit ∆ = 0, it is known that a Jordan-Wigner transformation

converts this into a noninteracting fermion problem [122]. Roughly, spin-ups correspond

to the presence of a fermion and the raising and lowering operators become annihilation

and creation operators (though in detail one has to consider non-local string operators

which counts the number of spin-flips to the left of the current site). In the single spin-

flip/particle case, it is then clear that the XX interactions play a similar role to the lattice

kicking in the single-particle QKR; the former hops spin-flips between spatial sites, and

the latter hops the particle from momentum site to momentum site.

To bring in the equivalent of kinetic energy, we add in a quadratic magnetic field. In

particular, we will consider the following Floquet map

UkickedXXZ = e−ik̄Hquad/4e−iKHXXZ/4k̄ (5.22)

Hquad =

(L−1)/2∑

j=(1−L)/2

(j + β)2σzj (5.23)

HXXZ =

(L−1)/2∑

j=(1−L)/2

(σxj σ
x
j+1 + σyjσ

y
j+1 + ∆σzjσ

z
j+1). (5.24)

Here L is the length of the chain, β plays the role of quasimomenta (which also helps

eliminate a reflection symmetry about the chain center), and k̄ and K are used as model

coefficients for comparison with QKR. The evolution conserves the total magnetization

M = 〈∑j σ
z
j 〉, and thus sectors with different M evolve independently from each other.

To study this model, we rely on exact diagonalization methods on modest system sizes

up to L = 14. These proceed straightforwardly by explicitly constructing the relevant

Hamiltonians, computing their matrix exponential, multiplying to get the Floquet oper-

ator and then using Matlab’s diagonalization package. Time-dynamics can be computed

by repeated iteration of the Floquet operator. Throughout we consider open boundary

conditions. We take L to be even or odd depending on the circumstance.
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Figure 5.14: Kicked-rotor dynamics and many-body dynamical localization
in kicked spin chains. (A-B) Calculated single-spin-flip evolution for static and
kicked spin-1/2 XXX chains of length L = 13 for K = 2.4, k̄ = 1.5 and β = 0.
(C) Spin chain quantum resonance spectroscopy (solid) demonstrating equivalence
to QKR (dashed) in the single spin-flip sector with K = 3k̄, L = 51 and averaging
over a Gaussian ensemble of β. Energy is after 10 kicks. Zoomed-in panel compares
experimental measurements on the atomic quantum kicked rotor to predictions of spin
chain numerics. Dashed vertical lines indicate q = 1/3, 3/8, 2/5, and 1/2. (D-E) The
same as A-B but with 2 spin flips. (F) Time average of the staggered magnetization
〈∑j(−1)jσzj 〉/L versus kick number, starting from an initial Néel state with k̄ = 1,
L = 12, β = 0.1 and varying K. (G) Staggered magnetization in the infinite-time
limit versus K, for the same parameters as panel F. (H) Gap-ratio statistic of the
M = 0 sector at k̄ = 1 for varying L averaged over 100 values of β. Dashed lines
indicate predictions of the Poisson (〈r〉 ≈ 0.386) and circular-orthogonal ensemble
(〈r〉 ≈ 0.527) [123].
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In Fig. 5.14, we examine the kicked XXX chain where ∆ = 1. Working first in the

single spin-flip sector M = 1−L/2, we see in Figs. 5.14A-C the phenomena of dynamical

localization and quantum resonance clearly, and in fact the correspondence is exact up to

boundary effects [120]. In the inset, we take an experimental point of view and compare

the numerically computed spin-chain fractional resonances with our experimental data,

where we see good agreement. In Figs. 5.14D-E, we similarly show the evolution of 2

spin-flips (M = 2− L/2) which also demonstrates a localization behavior in contrast to

the case without kicking.

Moving into the many-body regime, we consider the M = 0 sector where there

are L/2 spin flips (L even), corresponding to the same number of interacting Jordan-

Wigner fermions. A standard protocol that has emerged in the experimental study

of MBL is to prepare an initial Néel state (or charge density wave in the language

of particles) where each site has an alternating spin direction |ψ〉 = |↑↓↑↓ . . .〉. In a

thermal, delocalized phase, one expects the anti-ferromagnetic ordering/pattern to be

destroyed during evolution; if it persists, then one takes this as a signature of some

type of many-body non-ergodicity. The anti-ferromagnetic order parameter is AF =

〈∑j(−1)jσzj 〉/L, which is 1 for the Néel state and is expected to decay to 0 in a ther-

malized state. We plot the evolution of the time average of this observable out to

n = 105 in Fig. 5.14G, where for sufficiently small K the order persists at a substan-

tial nonzero value. The time average of an observable O is straightforwardly defined as

〈O〉n =
(∑n

i=1 〈ψ|U †ikickedXXZOU
i
kickedXXZ |ψ〉

)
/n. The long-time limit can be computed

from the diagonal ensemble as limn→∞〈O〉n =
∑

α |cα|
2 〈ψα|O |ψα〉. Here cα = 〈ψα| |ψ〉

are the coefficient of the initial state |ψ〉 in the basis of the many-body Floquet states

|ψα〉 obtained from diagonalization of the Floquet map UkickedXXZ [124]. We confirmed

that for this set of parameters, the long-time limit agreed with the time-averaged value

at around n = 104.
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A traditional and more theoretical probe of an MBL state is the use of the gap-

ratio statistic 〈r〉 [73, 123]. This is defined as rα = min (δα, δα+1) /max (δα, δα+1), where

δα = εα+1− εα is the quasi-energy gap and εα are the quasi-energies. It is important that

the εα are ordered in the interval [−π, π] prior to extracting the gaps and gap-ratios. To

compute 〈r〉 in Fig. 5.14G, we average rα over the M = 0 sector as well as for 100 values

of β drawn from a normal distribution of standard deviation 0.1. We see that it undergoes

a transition from an integrable Poissonian value at small interactions K to the thermal

prediction of Gaussian/circular orthogonal ensembles. Indeed we see that as the system

size is scaled up, the transition between these two plateaus gets sharper but remains at

a finite value. A detailed finite-size scaling analysis remains to be performed to extract

the critical properties of this transition, but this is an great indication that an MBDL

state should exist in this model of XXZ spin chains kicked by a quadratic magnetic field.

Other possibilities for future work include simulating more specific models which may be

realized in a number of other quantum simulator platforms [125, 126, 127].
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Appendix A

Numerical TDSE Simulation with

Time-Splitting Spectral Methods

In this appendix, I will discuss a common technique for simulating the time evolution

of the Schrodinger (and Gross-Pitaevskii) equation. The method is called time-splitting,

pseudospectral (TSSP) method and is useful for its ease of implementation. This tech-

nique was useful for many of the numerical simulations shown throughout this thesis (and

many others not shown), and at the end of this appendix I will show some calculations

for the planned interferometry experiments. I wrote a separate guide which outlines the

technique along with code which can be found in my Citadel folder under the path theo-

rynumerics/integrators/TDSEtutorial.mlx. A detailed review of GPE solving techniques

is given in [128]. One can also look at the following publications from the numerical

integration packages WavePacket and GPELab for additional discussions [129, 130].
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A.1 Time-Splitting Spectral Integration

Our goal is to calculate ψ(x, t) obeying either time-dependent Schrodinger or Gross-

Pitaevskii equations given in (2.11) and (2.9). For any numerical solution, we need to

discretize both space and time. We assume we are given an initial condition ψ(x, t0), and

then our times are just defined as tn = t0 + ns for integer n and small time step s; we

will discuss what constitutes small later. We similarly define a spatial mesh of width L

and spacing h such that the positions are located at xj = x0 + jh with xN − x0 = L for

some integer N . In this chapter I will stick to 1 spatial dimension. For multiple spatial

dimensions one should of course define higher dimensional meshes, but no different in

form than what we have already defined for x. The complexity of generalizing a specific

integration routine to higher dimensions often depends on the specific algorithm, but for

TSSP it is trivial. For TSSP, we will also employ periodic boundary conditions

ψ(x0) = ψ(xL). (A.1)

This means that we have N points in our spatial mesh. Our initial condition defines

ψ0
j = ψ(xj, t0). (A.2)

Throughout the subscript denotes the spatial coordinate and the superscript the time

coordinate. The problem of numerically integrating differential equations comes down

to figuring out how to treat derivatives. For the time-derivative, we know the general

solution for a time-dependent Hamiltonian is given by

ψ(t) = T exp

(
− i
~

∫ t

t0

H(t′)dt′
)
ψ(t0). (A.3)
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Here T denotes time-ordering. For a time-independent problem, the integral is trivial.

However, the challenge is typically computing a matrix exponential for H which will

involve non-commuting position and momentum operators. This necessarily forces us to

approximate and consider breaking up the evolution into a bunch of small time-steps.

In the case of time-dependent Hamiltonian, we have to break up the time-integration

anyway. Thus instead of (A.3), our problem in time-discretized form becomes

ψn+1 = exp

(
− i
~

∫ t0+s

t0

H(t′)dt′
)
ψn (A.4)

Here since s is small, we can use standard approximations for the numerical integration

and the problem becomes more or less about repeated matrix multiplication. To proceed,

it becomes useful to decide how we will handle the spatial derivatives in H. The two

simplest methods are finite-difference and Fourier transform. Before proceeding to TSSP

which uses the latter, I think it is instructive to discuss the former. Finite difference

roughly just means using the discrete approximation to the derivative

∂ψ

∂x

∣∣∣∣
x=xj

→ ψj+1 − ψj
h

(A.5)

For the second derivative, we have

∂2ψ

∂x2

∣∣∣∣
x=xj

→ ψj+1 − 2ψj + ψj−1

h2
. (A.6)
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The Hamiltonian in the position basis can be expressed explicitly as a tridiagonal matrix

with

HFD(t) =




~2
mh2

+ Vj−1(t) − ~2
2mh2

0 . . .

− ~2
2mh2

~2
mh2

+ Vj(t) − ~2
2mh2

. . .

0 − ~2
2mh2

~2
mh2

+ Vj+1(t)
. . .

...
. . . . . . . . .




(A.7)

This is an N − 1×N − 1 matrix (based on how I defined the grid, one should let j run

from 1 to N − 1) and supports solutions with Dirichlet boundary conditions; for periodic

boundary conditions, one has an N ×N matrix by adding a row/column for either j = 0

or j = N and adding a factor −~2/2mh2 on the top right and bottom left corner entries.

For really large matrices, it can still be challenging to matrix exponentiate (A.7) despite

its tridiagonal nature. The simplest approximation for (A.4) expanding the exponential

to first order and using a midpoint approximation on the integral is then

ψn+1 =

(
1− i

~
H
n+1/2
FD s

)
ψn. (A.8)

Recall Hn
FD is a 2D matrix and ψn is a 1D vector. This is the so-called Forward Euler

method (alternatively one might see the term forward-time centered-difference or FTCS),

but it should basically never be used since it is well-known to be unconditionally unstable,

something that can easily be shown using Von Neumann stability analysis [131]. An

alternative is to instead evolve the equation backward

(
1 +

i

~
H
n+1/2
FD s

)
ψn+1 = ψn. (A.9)
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This is stable but obviously not unitary (doesn’t preserve normalization). What one

resorts to then to resolve this is combining the two methods in the midpoint Crank-

Nicolson which is given by

(
1 +

i

~
H
n+1/2
FD

s

2

)
ψn+1 =

(
1− i

~
H
n+1/2
FD

s

2

)
ψn. (A.10)

With the use of the finite-difference representation for the Hamiltonian, this is called

Crank-Nicolson Finite Difference method (CNFD). This is a semi-implicit, semi-explicit

method. Namely at one step we explicitly evolve forward in time by matrix multiplication

(forward-Euler), and in the second step we have to implicitly solve a matrix equation

(backward-Euler). Explicit methods are nice because they tend to be easier to implement

in practice and the steps are less computationally complex, however they typically require

smaller time-steps for stability. Implicit methods are typically harder to implement and

solve at each step since you need to solve a system of equations, but they have the

benefit of allowing for longer time steps. For the backwards Euler step, I typically use

Matlab’s simple backslash command for solving linear systems. The generalization of

CNFD to GPE is not trivial (specifically the CN discretization is complicated by the

nonlinearity) and as far as I know inferior to TSSP (discussed below) in most relevant

cases to us. Before that, a final important note about integration schemes using the

finite-difference method is the Courant-Friedrichs-Lewy (CFL) condition. Its related to

causality and basically limits the propagation of numerical information on the mesh to

some characteristic ”speed” in the wave equation. My understanding is that normally

one does this for hyperbolic PDE’s of which the Schrodinger equation is not, but one can

nevertheless derive a similar condition for stable propagation [132]

h2

s
≥ 2~
m
. (A.11)
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Now we move onto spectral split-step methods (TSSP) which utilize two main ideas.

The first is solving a derivative equation by spectral/Fourier transform. Under Fourier

transform, a derivative becomes multiplication of an imaginary quantity. So the kinetic

energy term of the Hamiltonian maps as

− ~2

2m

∂2ψ

∂x2
→ ~2k2

2m
ψ̃. (A.12)

Here ψ̃ denotes the Fourier transform of the position space wavefunction ψ. Hopefully

this is a familiar result from introductory quantum mechanics. On its own, this isn’t

immediately helpful because this just shifts the problem to the potential energy terms.

The second part of TSSP is then time-splitting, where we split the evolution of the

Hamiltonian into different steps for the kinetic and potential energy. This is based on

the Baker-Campbell-Haussdorf (BCH) formula

eXeY = eZ , Z = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] + . . . (A.13)

For our problem, X is the kinetic energy term (multiplied by the time step) and Y is

the potential energy term (integrated over the time step). It is clear that all the higher

order commutator terms are of size O(s2). Thus for small enough time-step s, we have

the first-order Lie splitting

exp

(
− i
~

∫ t0+s

t0

H(t′)dt′
)
≈ exp

(
− i
~
p2

2m
s

)
exp

(
− i
~

∫ t0+s

t0

V (x, t′)dt′
)
. (A.14)

In between applications of these operators, we can take Fourier transforms to move

between position and momentum space so that the operators are diagonal. The problem

can be solved completely explicitly. The first order algorithm is given in space-time
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discretized form by

φj = exp

(
− i
~
V
n+1/2
j s

)
ψnj (A.15)

ψ̃n+1
l = exp

(
−i~k

2
l

2m
s

)
φ̃l. (A.16)

Here φ is just an intermediate vector in the time-splitting and tilde’s denote discrete

Fourier transform. As a clarification, TSSP really refers to discrete sine transforms

rather than complex exponentials so I’m abusing terminology a bit, but for relevant

cases I would almost always recommend using exponentials over sines unless there are

physical reasons to impose hard-wall boundary conditions. After (A.16), an inverse

Fourier transform is of course needed to start the next step. One can implement these

Fourier transforms trivially with any standard FFT package (using FFT assumes periodic

boundary condition). We also require defining a momentum grid k as well. For a review

of discrete Fourier transforms see [133]. The N -point meshes for periodic boundary

conditions and a spatial grid spacing h is given by

xj = x0 + jh, xN − x0 = L (A.17)

kl = −π
h

+
2π

N
l, kN − k0 =

2π

h
. (A.18)

Here I assume N is even, and specifically FFT tends to perform fastest for N = 2M with

integer M . j and l are both integers, which can be taken to run from 0 to N − 1 or 1 to

N (because of periodic boundary conditions); this means one should avoid duplicating

x0(k0) and xN(kN) in the meshes. The latter choice fits well with MATLAB indexing. x0

is a free choice (this is fine by Fourier transform shift theorem), but typically one takes

the momentum mesh to be symmetric about 0. Finally, one last thing to keep in mind

is that when one takes a Fourier transform, the ordering of the resulting vector will be
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from N/2 to N − 1 and then 0 to N/2− 1. The easiest thing to do is to apply the fftshift

function to the k vector.

The algorithm in (A.15) and (A.16) is the lowest-order splitting which is only first-

order in time. Typically for GPE equation, it is better to use the second-order Strang

splitting, which only requires one extra diagonal matrix multiplication (or vector element-

wise multiplication). The algorithm splits the position evolution further into two steps

surrounding the momentum evolution. I will write it here explicitly for GPE equation

with interaction coefficient g:

φj = exp

[
− i
~

(
V
n+1/4
j + g

∣∣ψnj
∣∣2
) s

2

]
ψnj (A.19)

ξ̃l = exp

(
−i~k

2
l

2m
s

)
φ̃l (A.20)

ψn+1
j = exp

[
− i
~

(
V
n+3/4
j + g|ξj|2

) s
2

]
ξj. (A.21)

This Strang splitting method is unconditionally stable, spectral order in space and 2nd

order in time. It preserves normalization by construction and many other important

properties except for energy at the discretized level [128]. For TDSE, just set g = 0.

In higher dimensions, the generalization is trivial and just requires changing the state

vectors to higher dimensional arrays; the steps are still just element-wise multiplication

and fast Fourier transforms. In higher dimensions, memory costs become problematic

but this is a generic issue for any algorithm.

A.2 Floquet-Bloch Atom Interferometry

A major upcoming experiment these techniques have allowed us to begin under-

standing quantitatively is continuously-trapped atom interferometry with Floquet-Bloch

88



Numerical TDSE Simulation with Time-Splitting Spectral Methods Chapter A

bands. For an example of the potential that trapping in lattices provides for enhanc-

ing interferometer sensitivity, see [134]. The idea for Floquet-Bloch interferometry is

similar to previous work with Bloch oscillations coupling the lowest two sub-bands of

a bichromatic superlattice [135]; a theoretical discussion of the concept can be found

in [136]. The scheme falls under the category of Landau-Zener-Stuckelberg(-Majorana)

(LZS) interferometry, and the general theoretical overview can be found in [137, 138].

The idea is to take a two level system and perform a parameter sweep such that the levels

repeatedly cross, leading to repeated Landau-Zener tunneling events which produce an

interferometric signal in the level populations. The prototypical example is a two-level

atom in an AC field with the detuning sinusoidally modulated.

In the context of optical lattices, periodicity of the band structure in quasimomentum

allows Bloch oscillations to accomplish LZS interferometry; in practice though, a force

that couples the lowest band gap will couple every other gap as well, and so generically

the problem needs to be modified to see Stuckelberg interferometry. In the case of [135],

appropriately adjusting the superlattice can produce two well-isolated bands. For our

experiment, we can in principle use the Floquet band gap engineering discussed in section

3.2 to engineer a similar situation where there are only two relevant bands.

The first step to such a Floquet-Bloch interferometer was already demonstrated in

section 3.2, namely coherent, controllable beam-splitting of an atomic wavepacket into

two spatially-separated bands. Choosing a modulation index which splits the wavepacket

fairly evenly and then continuing the experiment for a second half Bloch period would ulti-

mately allow for demonstration of interference using Floquet-Bloch-Zener beam-splitting.

By varying a parameter in the region between the two resonantly coupled quasimomen-

tum, one should be able to observe a fringe in the relative population between the two

bands after the recombination event. From a modeling perspective, the cleanest way

to do this would be to turn off the force when the atoms reach the Brillouin zone edge
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Figure A.1: Simulated Floquet-Bloch-Zener-Stuckelberg interference measurement.
The three left panels show evolution of the squared wavefunction for three different
values of the amplitude of a force pulse

for a variable hold time thold, at which the phase would just wind with respect to thold

at a frequency given by the static lattice band gap. Unfortunately because our experi-

ments force is generated by a harmonic potential and the wavepackets must be spatially

separated, this is challenging to do nicely.

An alternative is to apply a small change in the applied force, an experiment which

would begin to more closely mimic one of the ultimate goals of such an interferometer

as a force sensor. By varying the amplitude of the pulse, one can in principle precisely

compute the expected phase winding by integrating the difference in band energies over

the quasimomentum traversed over the course of the pulse. The concept is demonstrated

in figure A.1, where a Floquet-Bloch interferometer with a spatially homogeneous force

and applied force pulse is simulated. On the left, we can qualitatively observe a strong

change in the output band populations by varying the amplitude of the force pulse and

imaging in position space. The fringe is shown on the right, with a near-unity contrast for

a fairly realistic initial cloud spread. In this case the solid red line is a simple sinusoidal
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fit, though one could in principle attempt to track both the change in phase due to

the pulse as well as potential accumulation of Stuckelberg phases at the Landau-Zener

transition points. This could be important for real applications of the interferometer,

but not so much in a proof-of-concept experiment demonstrating phase coherence of the

beam-splitting operations.

Ultimately a critical challenge for the current experimental setup is that the force is

not spatially uniform. Within the concept of a scheme as illustrated in figure A.1, this will

rapidly degrade the contrast as one tries to attain larger sensitivity by increasing enclosed

space-time area as the different band populations will not reach the recombination point

at the same instant. Within the context of a proof-of-concept, it is likely ideal to simply

seek large lattice depths where the band motion is minimal and then band-map to read

out. Real application likely require either upgrading the magnetic forcing architecture

to apply homogeneous forces (anti-Helmholtz pairs), switching to a uniform field and

utilize accelerating lattice techniques, or finding interferometer loops which eliminate the

differential shifts of the two bands. One such loop can be accomplished by coupling to

the second excited band as shown in [18]; the atoms transfer to an equal and opposite

force on the opposing side of the harmonic trap, and if the drive sequence is engineered

so that both arms make this transfer then there will be multiple wavepackets reaching

the recombination point at exactly the same time.
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Appendix B

Fringe Removal for Absorption

Images

In this appendix, I discuss techniques for reducing fringes in our cold atom absorption

images. This had been previously implemented with a slightly different algorithm, but

we recently found this method to be unreliable and incredibly slow for larger data sets

with hundreds of images (taking around 10 minutes to process). The “new” algorithm is

now able to achieve similar or better fringe removal while taking only around a second

of processing time for comparably sized image libraries. Actually when I implemented

my own version of the “old” algorithm, the time taken was not substantially different,

and so it is possible that there is just extreme inefficiency in the image processing code

of the old database. Either way, I believe the new algorithm produces marginally better

results and so it is the current state-of-the-art on the 7Li experiment.

Good references on the technique are given in [139, 140, 141]. I will mainly follow

[140]. A Matlab live script demonstrating this technique can be found in my folder in

the Citadel under fringe.removal (avoid running it because it requires being on the same

path as the data).
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B.1 Absorption Imaging

First, let us briefly review absorption imaging. To image an atom cloud, we subject it

to a resonant laser pulse which eventually hits the camera sensor. The atoms effectively

leave a shadow on the image seen on the camera. We call this the picture with atoms

(PWA). If one had a perfectly homogeneous beam intensity, then it would be fairly easy

to extract a value proportional to the atomic density from this single PWA. Namely,

denoting the intensity of the PWA as IPWA(x, y), we have from Beer’s Law

IPWA(x, y) ∼ e−OD(x,y). (B.1)

Here OD denotes the optical density, which is the atomic column density multiplied

by a constant scattering cross section. In reality, the beam suffers from significant im-

perfections and aberrations on its path to the camera, which makes it quite hard to

systematically and reliably extract the atomic density. In (B.1), this means there is

some arbitrary prefactor with unknown (x, y) dependence which makes inverting for nc

essentially impossible.

To solve this, we employ absorption imaging where a second image is taken shortly

after the atoms are no longer present in the beam path; this is called the picture without

atoms (PWOA). The intensity of the PWOA measured on the camera should only differ

by the Beer’s law absorption factor in (B.1) so that if we divide the two we find

IPWA(x, y)

IPWOA(x, y)
= e−OD(x,y). (B.2)

The idea of absorption imaging is then that two successive images with and without

the atoms allows us to cleanly eliminate any noise in the imaging beam to measure the

atomic density.
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The last problem we account for is the possibility of the camera measuring light even

when the laser is off due to dark currents. So after the PWOA, we take a final image

called the dark image where not even the imaging beam is on. Since these dark currents

supposedly equally effect the PWA and PWOA, we extract the OD experimentally as

OD(x, y) = − ln

[
IPWA(x, y)− Idark(x, y)

IPWOA(x, y)− Idark(x, y)

]
= − ln

[
A(x, y)

R(x, y)

]
. (B.3)

From here on out, I will just refer to the dark-subtracted PWA A and PWOA R. This

is the basis of absorption imaging and how we extract all our data about the atomic

cloud. Note this method should precisely eliminate all the inherent imperfections in the

imaging laser. What it fails to account for though is slight deviations in the imaging

beam from PWA to PWOA, for instance due to say mechanical drift slightly altering

the beam path. This should be clear from the assumptions in writing down (B.2) being

that the images only differed by the absorption factor. Ultimately, it is these fringes that

arise from shot-to-shot instability in the imaging beam that we will try to eliminate with

post-image processing techniques.

B.2 Ideal Reference Fringe Removal Algorithm

The idea for fringe removal is that given a set of many PWOAs (say taken over the

course of a long data set), we can construct for each PWA an ideal reference PWOA

that minimizes the presence of fringes in the final OD by taking linear superpositions

of the images in our original set. Let’s first briefly go over the intuition. We might

imagine that the imaging beam on any given shot is an average intensity profile with just

a few main modes of variation causing fringes (which we further suppose can only vary

linearly from shot-to-shot in the sense that the fringe amplitude can change but cannot
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for instance translate). These variations can be present in both the PWAs and PWOAs.

By compiling a large library of PWOAs, we can potentially capture all the major modes

for beam intensity variation; we call these basis images. If our set of basis images span

some linear vector space containing all the major possible fringes, we should ideally be

able to subtract them away (this is just the essence of linear algebra). Our goal is then to

just determine an algorithm for identifying the best linear combination of basis images

to match each PWA.

The one major question is what if the fringes aren’t linearly related to some small

basis set? Then indeed the exactness of the argument presented above breaks down, and

we really need an arbitrarily large set of PWOA basis images to get rid of an arbitrary

variety of different fringes. This is always the case to some degree, but for the most part

we can still capture a lot of the dominant fringes in our reasonably sized bases and clean

up the images quite nicely in spite of this.

Let us now explore the algorithm which is just a simple least-squares regression. From

taking data, we have a collection of reference PWOA images. Rather than having each

reference be a 2D matrix over position x and y, we suppose that we have flattened each

into a 1D vector with pixels indexed by say i; we stack up these reference images into

a 2D matrix Ri,j which denotes the ith pixel in the jth reference PWOA. The ordering

of the pixels just need to be consistent for different reference images; the ordering of the

images is totally arbitrary. Our goal is to construct for each PWA vector A an idealized

reference image/vector R′ which takes the form

R′i =
∑

j

Ri,jcj. (B.4)

To determine the value of the cj, we use a fairly standard condition that the idealized

reference R′ should minimize the least-squares difference with the desired PWA A. There
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is a huge problem with the condition on its own, namely that our signal which is the

presence of atoms produces a large discrepancy which we do not want to minimize. This

forces us to minimize the quantity

f =
∑

i

mi(Ai −R′i)2, (B.5)

where mi denotes a mask which is 0 in regions where we know atoms are and 1 everywhere

else. Ultimately, we can only account for low-frequency fringes which are well-correlated

over large spatial distances (at least order of cloud size if not longer). To do this for each

reference image weight cj, we have the condition

∂f

∂cj
= 2

∑

i

mi

(
Ai −

∑

k

Ri,kcj

)
Ri,j = 0. (B.6)

Defining Bj,k =
∑

imiRi,jRi,k, we see that we have to solve the linear equation

∑

k

Bj,kck =
∑

i

miRi,jAi. (B.7)

Everything in this equation is known exactly other than ck, so one can solve by computing

the singular value decomposition (SVD) of B which allows one to construct the Moore-

Penrose pseudoinverse. There are a number of pre-packaged ways to do this in Matlab.

It’s also fine to use Matlab’s lsqminnorm which sometimes performs faster. Moreover,

by stacking the PWAs A together into a matrix just as we did for the references R, the

entire computation can be done at once without looping. Once the cj are found, the R′

are trivially constructed and (B.3) can be re-used replacing R→ R′.

An example of the fringe removal is shown in figure B.1. The top row displays raw

images which feature strong fringe as can be seen in the wavy features prominent in the

background. The middle row contains the fringe-removed images using the technique
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Figure B.1: Example of fringe removal on BEC absorption images. Top row are raw
images computed from (B.3). Middle row contains fringe removed images obtained
from the ideal reference light method that results from solving (B.7). The improve-
ment in the image quality is blatantly evident. The third row is obtained from the
former fringe removal algorithm implemented in the lab which attempts to subtract
away the fringes from each PWA-PWOA pair.

discussed in this section. In this case, the data set was 44 images large (44 each of

PWA, PWOA and dark) and the computation on my laptop took less than a quarter

second. The improvement in the image noise is substantial and qualitatively apparent.

The background optical density is clearly a lot more smooth and the atomic density

is completely preserved. This becomes extremely important for experiments where the

atoms become highly spread out and the ratio between peak density of the clouds and

the amplitude of background fluctuations is not � 1.

In the last row I show similarly fringe removed images using the formerly employed

technique on the 7Li experiment. It also involves trying to achieve an ideal reference

image, but instead of constructing the ideal reference image from an in principle arbitrary

superposition of the reference set (for instance the PWOA initially associated with that

PWA can have 0 weight in the constructed reference), it tries to explicitly identify the

fringes in the PWOA reference set and then appropriately subtract away the fringes

from each PWA-PWOA pair. Overall, I would argue that the essence of the techniques
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is largely the same. B is still a fundamental object in the latter calculation. If you

subtract away the mean PWOA image from B, what you obtain is the covariance matrix

of the masked reference set. The statement is then that the fringe basis vectors are

exactly the singular vectors of the covariance matrix. Because both methods amount to

this, they should take close to the same computational time. The only major difference

in the methods is what to do with the SVD, which in the latter method involves some

subtle arguments about the origin of the fringes to appropriately perform the subtraction.

Ultimately I find that to make the latter algorithm inferior given what I believe to be

rather comparable performance. Some more detail about the calculation can be found in

the live script.

I want to quickly comment on principal component analysis (PCA). This is discussed

in [141] as well as used in the old algorithm. PCA is an example of a low-rank approx-

imation which is used to describe variation in data while reducing the dimension of the

data linearly. The reason to use such a method goes back to the intuition discussed at

the start of the section. If one suspects that most of the fringes can indeed be accounted

for by just a few primary basis fringes, then we do not need to store a massive library of

fringe vectors. When we compute the SVD, we can just keep the first “few” basis vectors

which correspond to the largest singular values. Where to take this cut-off is a bit of an

art rather than a science as far as I can tell. The rank reduction of PCA may be useful

if it is ever decided that the best scenario is to keep a massive library of thousands of

reference images. Within my limited tests in the scope of this fringe removal application,

I did not observe any qualitative improvements by performing PCA or not.

One last interesting technique was implemented in [142]. The idea is that a primary

nonlinear effect one might be worried about is translation of fringes by a pixel or two in

any direction. Given that area scales as the square of the linear dimension length, it could

require a lot of time to acquire enough images to account for all these small variations.
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Figure B.2: Comparison of fringe removal for the normal and extended reference sets.
Overall the improvement appears minor, but the extended set appears better when
there are clearly fringes visible in the normal set. The third row shows the difference
in optical density and makes this a bit more clear (OD scale is ±0.1).

The idea is then to simulate these shifts by actually shifting the reference images by pixels

one way or another to get a much larger, extended reference set. The same calculations

can then be done with this extended set and the hope is to see a significant improvement.

Implementation for our data is shown in figure B.2. Qualitatively, it is clear that

when the unextended reference set does a good job, the extended basis is almost iden-

tical. However it does seem that in the cases where fringes are still largely visible in

the unextended basis, the extended basis does a good job further smoothing them over.

While the improvement is minor and likely not critical for many applications in the group,

it could be largely beneficial exactly in the cases where fringe removal itself is pivotal.

Finally in figure B.3, a further comparison of the fringe removal methods is shown dis-

playing the variation in OD of the background pixels. Indeed this plot confirms that the

extended basis provides a slight improvement as compared to the plain fringe removal

techniques with an unextended basis.

99



Fringe Removal for Absorption Images Chapter B

Figure B.3: Histograms of OD in the background region of absorption images for
different fringe removal procedures. The raw clearly has the widest spread and thus
the largest noise. Both the fringe subtraction and ideal reference construction method
perform comparably. The extended basis indeed further reduces the noise.
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Appendix C

Derivation of Ideal QKR OTOC

Here we want to calculate the kicked rotor OTOC exactly at quantum resonance 〈Ŵ †
t V̂
†ŴtV̂ 〉

with

V̂ = e−iφ1|0〉〈0| = 1 +
(
e−iφ1 − 1

)
|0〉 〈0| (C.1)

Ŵ = e−iφ2|k0〉〈k0| (C.2)

Ûn = e−inK cos x̂/k̄ (C.3)

Ŵt = Ûn†Ŵ Ûn. (C.4)

We’ll consider the initial state |ψ0〉 = |0〉. I’ll be using the Jacobi-Anger expansion

eiA cos x̂ |j〉 =
∑

m

imJm (A) eimx̂ |j〉 =
∑

m

imJm(A) |j +m〉 . (C.5)

Before beginning the calculation we should set some expectations. This OTOC tries to

measure how two well-separated local unitaries, V̂ at site 0 and Ŵ at site k0, overlap

and commute as a result of time-evolution under kicked rotor evolution at resonance

(k̄ = 4π) over n-kicks, Ûn. 1 will mean the operators remain completely commuting and
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0 will mean the operators are non-commuting. Our answer should then reduce to 1 when

n = 0. Further, if either φ1 or φ2 is 0, then either V̂ or Ŵ is simply the identity and

the OTOC must reduce to 1 at all times. Because these unitaries have a well-defined

distance of k0 and because the coupling of sites at a fixed distance is governed by a Bessel

function of order the distance as given by the above expansion, we expect the evolution

to be dominated by terms of Jk0(nK/k̄). Naively we can expect these processes to enter

at even orders depending on how many times in the 4 legs of propagation the operator

traveled and understanding that pairs of legs need to ”interfere” to produce an output

(for instance how Ŵt causes V̂ and V̂ † to not cancel).

Now we start the calculation. The application of the first V̂ operator V̂ on the initial

state is trivial since it ends up just contributing a global phase, i.e. V̂ |0〉 ∼ |0〉 which I
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will add back in at the end. Then we have

ŴtV̂ |0〉 = einK cos x̂/k̄e−iφ2|k0〉〈k0|
∑

m

imJm(−nK/k̄) |m〉 (C.6)

= einK cos x̂/k̄

[∑

m

imJm(−nK/k̄) |m〉+ ik0
(
e−iφ2 − 1

)
Jk0(−nK/k̄) |k0〉

]
(C.7)

=
∑

r,m

im+rJm(−nK/k̄)Jr(nK/k̄) |m+ r〉 (C.8)

+ ik0
(
e−iφ2 − 1

)
Jk0(−nK/k̄)

∑

r

irJr(nK/k̄) |k0 + r〉

=
∑

l

il

(∑

m

Jm(−nK/k̄)Jl−m(nK/k̄)

)
|l〉 (C.9)

+ ik0
(
e−iφ2 − 1

)
Jk0(−nK/k̄)

∑

r

irJr(nK/k̄) |k0 + r〉

=
∑

l

ilJl(0) |l〉+ ik0
(
e−iφ2 − 1

)
Jk0(−nK/k̄)

∑

r

irJr(nK/k̄) |k0 + r〉 (C.10)

=
∑

l

ilδl,0 |l〉+ ik0
(
e−iφ2 − 1

)
Jk0(−nK/k̄)

∑

r

irJr(nK/k̄) |k0 + r〉 (C.11)

= |0〉+ ik0
(
e−iφ2 − 1

)
Jk0(−nK/k̄)

∑

r

irJr(nK/k̄) |k0 + r〉 (C.12)

= |0〉+
(
e−iφ2 − 1

)
Jk0(−nK/k̄)

∑

r

irJr−k0(nK/k̄) |r〉 . (C.13)

Clearly, this makes sense; if we set φ2 = 0, the second term vanishes and we have perfectly

echoed the state. Now applying V̂ †

V̂ †ŴtV̂ |0〉 =
[
eiφ1 +

(
eiφ1 − 1

) (
e−iφ2 − 1

)
J2
k0

(nK/k̄)
]
|0〉

+
(
e−iφ2 − 1

)
Jk0(−nK/k̄)

∑

r

irJr−k0(nK/k̄) |r〉 . (C.14)
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I’ll slowly calculate Ŵt one step at a time. First applying a forward time evolution

ÛnV̂ †ŴtV̂ |0〉 =
[
eiφ1 +

(
eiφ1 − 1

) (
e−iφ2 − 1

)
J2
k0

(nK/k̄)
]∑

m

imJm(−nK/k̄) |m〉+

(
e−iφ2 − 1

)
Jk0(−nK/k̄)

∑

r,m

ir+mJr−k0(nK/k̄)Jm(−nK/k̄) |r +m〉 . (C.15)

Using the same trick to go from (8) to (12) we have

Ûn†V̂ †ŴtV̂ |0〉 =
[
eiφ1 +

(
eiφ1 − 1

) (
e−iφ2 − 1

)
J2
k0

(nK/k̄)
]∑

m

imJm(−nK/k̄) |m〉

+
(
e−iφ2 − 1

)
Jk0(−nK/k̄)ik0 |k0〉 . (C.16)

Next we have

Ŵ †Ûn†V̂ †ŴtV̂ |0〉 =
[
eiφ1 +

(
eiφ1 − 1

) (
e−iφ2 − 1

)
J2
k0

(nK/k̄)
]∑

m

imJm(−nK/k̄) |m〉+ ik0C |k0〉

(C.17)

C =
[(

1− eiφ1
) (

1− eiφ2
)

+ 2
(
eiφ1 − 1

)
(1− cosφ2) J2

k0
(nK/k̄)

]
Jk0(−nK/k̄). (C.18)

Finally applying the last Ûn†,

Ŵ †
t V̂
†ŴtV̂ |0〉 =

[
eiφ1 +

(
eiφ1 − 1

) (
e−iφ2 − 1

)
J2
k0

(nK/k̄)
]
|0〉+ C

∑

m

ik0+mJm(nK/k̄) |k0 +m〉 .

(C.19)

Finally, we can arrive at the OTOC result by looking for the |0〉 amplitude (I will multiply
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by e−iφ1 to recover the phase from the initial V̂ action):

〈Ŵ †
t V̂
†ŴtV̂ 〉 = 〈0| Ŵ †

t V̂
†ŴtV̂ |0〉 (C.20)

= 1 +
(
1− e−iφ1

) (
e−iφ2 − 1

)
J2
k0

(nK/k̄) + e−iφ1CJ−k0(nK/k̄). (C.21)

Once again, we can see that the baseline case with no butterfly operator φ2 = 0 yields

just the first term and thus perfect time-reversal regardless of the choice in φ1; the same

happens if instead φ1 = 0 as well. If we plug in C we get

〈Ŵ †
t V̂
†ŴtV̂ 〉 = 1+2

(
1− e−iφ1

)
(cosφ2 − 1) J2

k0
(nK/k̄)+2

(
1− e−iφ1

)
(1− cosφ2) J4

k0
(nK/k̄).

(C.22)

Finally using the trig identity 2 sin2 x = 1− cos(2x), we have

〈Ŵ †
t V̂
†ŴtV̂ 〉 = 1 + 4

(
e−iφ1 − 1

)
sin2

(
φ2

2

)
J2
k0

(nK/k̄)
[
1− J2

k0
(nK/k̄)

]
. (C.23)
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Probining non-exponential decay in

Floquet-Bloch bands (preprint)

This appendix contains the arXiv version of the non-exponential decay work discussed

in Chapter 3.
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Probing non-exponential decay in Floquet-Bloch bands
Alec Cao, Cora J. Fujiwara, Roshan Sajjad, Ethan Q. Simmons, Eva Lindroth, and David Weld∗

Abstract: Exponential decay laws describe sys-
tems ranging from unstable nuclei to fluorescent
molecules, in which the probability of jumping to
a lower-energy state in any given time interval is
static and history-independent. These decays, in-
volving only a metastable state and fluctuations of
the quantum vacuum, are the most fundamental
nonequilibrium process, and provide a microscopic
model for the origins of irreversibility. Despite the
fact that the apparently universal exponential decay
law has been precisely tested in a variety of physi-
cal systems [1], it is a surprising truth that quantum
mechanics requires that spontaneous decay pro-
cesses have non-exponential time dependence at
both very short and very long times [2, 3]. Cold-
atom experiments both classic [4] and recent [5]
have proven to be powerful probes of fundamen-
tal decay processes; in this paper, we propose the
use of Bose condensates in Floquet-Bloch bands
as a probe of long-time non-exponential decay in
single isolated emitters. We identify a range of
parameters that should enable observation of long-
time deviations, and experimentally demonstrate a
key element of the scheme: tunable decay between
quasienergy bands in a driven optical lattice.

Keywords: ultracold atoms, nonequilibrium dy-
namics, spontaneous decay, non-Markovian dy-
namics.

1 Introduction

Given the ubiquity of exponential decay, it is sur-
prising that quantum mechanics requires that de-
cay processes to a continuum with a ground state
exhibit non-exponential long-time dynamics [2, 3,
6–9]. Classic experiments on the subject include
negative results from studies of 56Mn nuclear de-
cay tests [1] and an indirect observation claimed in
investigations of 8Be scattering phase shifts [10].
More recently, a variety of physical systems rang-
ing from integrated photonics [11] to Feshbach
molecules [12] have emerged as platforms for the
exploration of non-exponential decay. Extensive

∗ Corresponding author: David Weld, Alec Cao, Cora
J. Fujiwara, Roshan Sajjad, Ethan Q. Simmons: Physics
Department, University of California, Santa Barbara, CA
USA. Eva Lindroth: Department of Physics, Stockholm Uni-
versity, AlbaNova University Center, Stockholm, Sweden.

Figure 1: A) Schematic of a potential in which
non-exponential decay is expected. τ is the decay
time of the exponential part of the tunneling pro-
cess, and τE = ~/E0 is the timescale associated
with the energy of the decay product. B) Schematic
of proposed optical lattice experiment probing non-
exponential decay. E1 andE2 are different possible
characterizations of the decay product energy.

theoretical work has been directed toward non-
exponential decay of autoionizing resonances in
atomic systems [13–15] and laser-induced ioniza-
tion effects [16,17], though this remains at the fron-
tier of experimental feasibility.

Negative ions are often considered in this con-
text, in part due to their simple structure: there
is usually only one bound state and a few res-
onances which simplify the the study of laser-
induced negative ion photodetachment [16]. An-
other reason [3, 15] is the possibility of finding
broad resonances decaying with a very small en-
ergy release which, as discussed below, should re-
sult in a deviation at an earlier time when more is
left of the parent. On the experimental side how-
ever, negative ions also pose certain difficulties, es-
pecially due to the low target densities available. To
our knowledge, no experiments on non-exponential
decay in negative ions have been reported.

In a very different physical context, cold atoms
in optical lattices can also serve as a probe of decay
dynamics [18], as shown for example in two semi-
nal experiments. The quantum Zeno effect was first
detected using cold sodium atoms in an accelerated
optical lattice [4]; more recently, non-Markovian
long-time dynamics were observed in an optically
dense ensemble of lattice-trapped atoms driven by
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an applied microwave field [5, 19]. These results
demonstrate the promise of degenerate gases in op-
tical lattices for observing long time modifications
to memoryless exponential decay in an ensemble of
single emitters.

Here we propose the use of ultracold non-
interacting 7Li Bloch oscillating in a tilted mod-
ulated optical lattice to directly observe long-time
non-exponential interband decay. A schematic of
the proposed setup and its relationship to an ideal-
ized decay process is presented in Figure 1. While
the proposed experiments can in principle be per-
formed in unmodulated lattices (in close analogy
to Ref. [4] and to pioneering experiments in opti-
cal lattice Stückelberg interferometry [20]), we will
show that signatures of non-exponential long-time
evolution can be greatly enhanced using recently
developed tools of Floquet engineering for modifi-
cation and mapping of band structure [21, 22].

The proposed platform for the exploration of
non-exponential decay has several unique advan-
tages. Most important is the extreme tunability
afforded by the use of flexible Floquet engineer-
ing techniques. Another key advantage, arising
from the choice of atomic species, is the pres-
ence of broadly Feshbach-tunable interactions in
7Li. In this work we emphasize the ability to ac-
cess the single-emitter regime by tuning the scat-
tering length to zero. However, the ability to work
at arbitrary scattering length may also enable fu-
ture systematic study of the effects of interactions
on spontaneous decay.

In Section 2 of this manuscript, we review a
heuristic explanation for non-exponential decay
based on a simple analysis of the survival proba-
bility and the Breit-Wigner energy distribution. We
present numerical calculations of the emergence of
non-exponential behavior as a result of imposing a
lowest energy bound, revealing decay rate and de-
cay energy as key parameters for experimental ob-
servation. In Section 3, we discuss the details and
feasibility of the proposed experiment. In particu-
lar we experimentally demonstrate the use of Flo-
quet engineering to engineer the band gap and tune
the decay rate, a key step on the path to realization
of long-time non-exponential decay of an isolated
emitter. Section 4 offers conclusions and outlook.

Figure 2: Emergence of non-exponential decay
due to truncation of the energy distribution. The
survival probability is plotted versus time for vari-
ous values of E0, as indicated in the legend. The
ground state energy is set to 0. ~ is set to 1
with time measured in lifetimes τ and energy in
linewidths Γ. The inset highlights the largest devi-
ations in the first lifetime.

2 Origins of non-exponential decay

We begin by recalling a heuristic argument for
non-exponential decay which makes no reference
to the particular form of the unstable state or de-
cay mechanism [8]. Given some initial state |ψ0〉
with Hamiltonian H , the survival or undecayed
amplitude A(t) can be calculated as the overlap
of the initial state with the time evolved state
exp(−iHt/~) |ψ0〉. For a continuous spectrum, the
time evolved state can be expanded over the com-
plete set of energy eigenstates |φE〉 as

e−iHt/~ |ψ0〉 =

∫
dE |φE〉 〈φE |ψ0〉 e−iEt/~. (1)

Taking the overlap of Eq. 1 with |ψ0〉 and rec-
ognizing the initial density of states as ρ(E) =
| 〈φE |ψ0〉 |2, the survival amplitude is the Fourier
transform

A(t) =

∫ ∞

−∞
dEρ(E)e−iEt/~. (2)

The survival probability is A2. A simple as-
sumed form for the energy distribution ρ(E) is a
Lorentzian or Breit-Wigner distribution:

ρ(E) =
Γ

2π

1

(E − E0)2 + (Γ
2 )2

, (3)

2
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whereE0 is the mode and Γ is the linewidth. Insert-
ing Eq. 3 into Eq. 2 and squaring yields the familiar
result of exponentially decaying survival probabil-
ity with decay rate 1/τ = Γ/~.

Non-exponential decay at long times arises from
including in this simple argument the fact that real
systems necessarily have a lowest energy state, re-
quiring either a truncation of ρ(E) or a bounding
of the integral in Eq. 2 from below. This alters the
form of the survival probability from a pure ex-
ponential, giving rise to corrections at long time
scales. Fig. 2 shows the non-exponential popula-
tion dynamics which result from imposing such a
lower energy bound. The absolute square of A(t)
is plotted for varying values of the decay product
energy E0, demonstrating a clear change from al-
most purely exponential behavior whenE0 is many
linewidths away from the ground state to large os-
cillations and strongly non-exponential dynamics
for small values of E0. Here the ground state en-
ergy is set to 0. This slower than exponential de-
cay at very long times is well understood theoreti-
cally [8,23], but poses a major challenge for exper-
imental observation due to the small scale of the
deviations (note the logarithmic y axis of Fig. 2)
and the many half-lives elapsed before their onset.
However, the inset of Fig. 2 reveals that signifi-
cant non-exponential behavior arises even within
the first lifetime when the truncation occurs within
a few linewidths of the distribution peak. The scale
of these deviations is on the order of 10%, which
should be readily accessible to detection.

It is instructive to compare these results to the
prediction of Ref. [3] that the timescale τL for long
time deviations is approximately given by

τL ' 3τ log (E0τ/~) = 3τ log (E0/Γ) , (4)

where E0 is the energy released in the decay. In-
tuitively, this indicates that τL/τ (or E0/Γ) can-
not be much larger than unity in order for there
to be a significant remaining population to exhibit
non-exponential behavior. In Fig. 3, we map out
the numerical integration of Eq. 2 for the range
of E0/Γ = 0.2 − 10. We also plot the results of
Eq. 4. While the prediction is qualitatively correct,
for E0/Γ ≈ 2 − 3 it somewhat overestimates the
onset time; there is clear non-Markovian behavior
even within the first time constant. Note the log-
arithmic scale of the color bar. Overall, though,
Fig. 3 confirms the intuitive result of Eq. 4 that
minimizing the decay product energy with respect

Figure 3: Non-exponential population dynamics
as a function of time and the ratio E0/Γ. Note that
the survival probability color map is normalized to
an exponential law in time, with black indicating
an order of magnitude population excess with re-
spect to the exponential decay prediction. Dotted
green line is the prediction for the onset of non-
exponential decay as given by Eq. 4.

to the decay rate yields the largest signal for non-
exponential behavior.

In passing, we note that short-time deviations
from exponential decay arise from a related but dis-
tinct mechanism: the finite expectation value of en-
ergy leading to a survival probability with initially
vanishing time derivative [24]. This phenomenon
underlies the quantum Zeno effect, which was also
first realized experimentally with cold atoms [25].

3 Probing non-exponential decay
in modulated optical lattices

The experimental probe of non-exponential decay
we propose here is based on Bloch oscillations
of an ultracold atom ensemble through partially
avoided band crossings in modulated optical lat-
tices. Our experimental platform consists of a Bose
condensate of 105 7Li atoms in a far-red-detuned
(λ = 1064 nm) optical lattice. Interatomic inter-
actions can be eliminated entirely using the shal-
low zero-crossing below 7Li’s broad magnetic Fes-
hbach resonance [26]; this crucially allows us to
probe the fundamental question of non-exponential
decay of a single emitter. The lattice induces an
energy band structure, shown in Figure 4, which
can be probed with Bloch oscillations induced by

3
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an applied tilt of the harmonic magnetic confine-
ment. In fact the high tunneling rate of 7Li en-
ables spatial resolving of different band popula-
tions in situ without the use of band maps or time-
of-flight imaging [22]. Time-periodic modulation
of the lattice depth enables the creation of hy-
bridized Floquet-Bloch bands [21] with a drive-
dependent band structure; as argued below this is
a key capability for realistic observation of non-
exponential decay.

We begin by considering the use of Bloch os-
cillations in an undriven lattice as a probe of de-
cay dynamics. In such an experiment, the atoms
are adiabatically loaded into the ground band of the
lattice, then undergo Bloch oscillations due to the
applied force from the inhomogeneous magnetic
potential. Ignoring the field curvature, the main
correction to the single-band approximation for the
Wannier-Stark problem comes from tunneling be-
tween adjacent bands. As the atoms traverse the
edge of the Brillouin zone, they have a chance to
“decay” by tunneling across the first band gap once
per Bloch cycle. The feasibility of observing long-
time deviations from exponential decay in such an
experiment can be quantitatively estimated using a
Landau-Zener model of interband tunneling [27].
Semiclassically, the probability of tunneling across
the nth band gap ∆n in a single Bloch cycle is

Pn = exp

[
−π

2

2

∆2
n

hfB
∂
∂q |En − En−1|

]
, (5)

where fB is the Bloch frequency and En is the dis-
persion of the nth band in the free particle limit, in-
dexed with n = 0 as the ground band. The deriva-
tive with respect to the undimensionalized quasi-
momentum (q = k/kL and kL = 2π/λ) is evalu-
ated at the point of avoided crossing. By modeling
the decay as a discrete process happening once per
Bloch cycle and then taking a continuum limit, the
effective tunneling rate across the nth band gap is
approximated as

1

τ
≈ fB log

(
1

1− Pn

)
. (6)

In a shallow lattice, tunneling between all excited
bands is large and we can treat them as a contin-
uum, so we need only focus on tunneling across
the first band gap. In calculating the probabil-
ity P1 to tunnel out of the ground band, we have
∂
∂q |E1 − E0| = 4 ER evaluated at the Brillouin
zone edge q = 1, where the recoil energy is ER =

Figure 4: Band structure of a 3.5 ER deep un-
driven optical lattice. Solid lines are the lowest
three energy bands. Dashed line overlays the lattice
potential in position space (top axis). Dotted black
line depicts the drive hybridization scheme used in
Figure 5, ignoring coupling to higher bands.

~2k2
L/2m with m = 7 amu. Eqs. 5 and 6 re-

veal two important parameters for optimizing the
decay rate of static Bloch oscillations: the band
gap ∆1 and the Bloch frequency fB . These cannot
be tuned arbitrarily, though the band gap is min-
imized for low lattice depths and the Bloch fre-
quency is maximized for large magnetic field gra-
dients. Our experiment can reliably achieve Bloch
frequencies fB ≈ 100 Hz and minimum usable lat-
tice depths of around 1ER, yielding ∆1 ' 0.5 ER.
Inserting these values into Eqs. 5 and 6 reveals that
the resulting tunneling probability will be minimal:
P1 ∼ 10−5, leading to a decay time τ ∼ 103 s.
Clearly more tunability is needed to reach a regime
where the predicted long-time deviations from ex-
ponential decay can be observed. One route could
be to use the much stronger gradients attainable in
accelerating lattices, but this intrinsically limits the
attainable measurement time as the atoms leave the
region of interest. A more flexible possibility is the
use of Floquet engineering to tune the bandgap.

Thus motivated, we consider the addition of
time-periodic lattice depth modulation to the ex-
perimental protocol outlined above. Resonant
coupling of two static bands by such a modula-
tion generically creates a hybrid quasienergy band
structure featuring at least one new gap, of a size

4

110



Probining non-exponential decay in Floquet-Bloch bands (preprint) Chapter D

NON-EXPONENTIAL DECAY IN FLOQUET-BLOCH BANDS

Figure 5: Experimental demonstration of Floquet-tunable decay. A) Images of a sample of cold lithium
atoms after a single Landau-Zener tunneling event during a Bloch oscillation in a quasienergy band. The
"undecayed" upper cloud are those that remain in the ground band of the corresponding undriven system.
The lattice depth is 3.5 ER, the modulation frequency is 55 kHz, and the Bloch frequency is 27.8 Hz.
B) Calculated quasienergy band structure around the avoided crossing for different modulation depths
(indicated in legend). Note the drive-tunable gap. C) Undriven ground band fraction as a function of
drive strength. Solid theory line is calculated from Eq. 5.

5
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determined by drive strength rather than lattice
depth [21]. Fig. 5B shows calculated quasienergy
band structure near such a gap, for several differ-
ent values of the drive strength. Tunneling across
this tunable gap during a Bloch oscillation in a
modulated lattice can realize a much more control-
lable decay process, in which the decay time can
be tuned independently of lattice depth and poten-
tial tilt.

To demonstrate this central element of the pro-
posed realization of non-exponential decay, we
have experimentally measured tunable Landau-
Zener decay in a Floquet-engineered quasienergy
band structure. Fig. 5 presents an experimental
measurement of the Landau-Zener decay probabil-
ity of Eq. 5 across a Floquet-tunable band gap as
a function of drive strength, for the case of reso-
nant driving between the lowest two energy bands.
Images of the two spatially resolved band popu-
lations after half a Bloch period in the amplitude
modulated lattice are shown in panel 5A, and the
calculated band crossing in the quasienergy picture
is shown in panel 5B. The spatial separation be-
tween “decayed” and “undecayed” populations is
a consequence of position-space Bloch oscillations
in the two different band dispersions [22]. Plotting
the fraction of undecayed atoms that remain in the
ground band, we measure a tunable decay in qual-
itative agreement with the Landau-Zener tunneling
theory of Eq. 5, as shown in panel 5B. Deviations
of the data from theory may be the result of uncer-
tainty in the lattice depth or inhomogeneity of the
force. Note that in this case, it is actually the atoms
that fail to undergo the tunneling event which cor-
respond to the decayed population. To obtain a
decay rate then, we must actually subtract Eq. 5
from 1. In any case, these results demonstrate the
capacity to use lattice modulation to tune the tun-
neling probability over a wide range, including an
enhancement of roughly four orders of magnitude
over the tunneling probability in a static band for
equivalent conditions. Crucially, this allows Γ to
approach our achievable Bloch frequencies of up to
100 Hz, allowing for reasonable experimental run
times and detectable non-exponential dynamics.

4 Conclusion

We have proposed a measurement of non-
exponential decay of individual emitters which is
based on interband tunneling of cold atoms dur-

ing a Bloch oscillation in a Floquet-engineered
quasienergy band. A simple theoretical treatment
of expected dynamics indicates that deviations
from exponential decay should be measurable. Pre-
liminary experimental tests of the proposed tunable
decay mechanism demonstrate widely tunable de-
cay rates and the feasibility of the underlying con-
cept. These results lay the groundwork for real-
izing a new experimental probe of universal non-
Markovian evolution, and open up new possibilities
for exerting quantum control over an irreducible el-
ement of non-equilibrium quantum dynamics.
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Appendix E

Transport controlled by Poincare

orbit topology in a driven

inhomogeneous lattice gas (preprint)

This appendix contains the arXiv version of the Poincaré transport work discussed in

Chapter 4.
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Transport controlled by Poincaré orbit topology in a driven inhomogeneous lattice gas

Alec Cao, Roshan Sajjad, Ethan Q. Simmons, Cora J. Fujiwara, Toshihiko Shimasaki, and David M. Weld
Department of Physics, University of California, Santa Barbara, California 93106, USA

In periodic quantum systems which are both homogeneously tilted and driven, the interplay be-
tween drive and Bloch oscillations controls transport dynamics. Using a quantum gas in a modulated
optical lattice, we show experimentally that inhomogeneity of the applied force leads to a rich new
variety of dynamical behaviors controlled by the drive phase, from self-parametrically-modulated
Bloch epicycles to adaptive driving of transport against a force gradient to modulation-enhanced
monopole modes. Matching experimental observations to fit-parameter-free numerical predictions
of time-dependent band theory, we show that these phenomena can be quantitatively understood as
manifestations of an underlying inhomogeneity-induced phase space structure, in which topological
classification of stroboscopic Poincaré orbits controls the transport dynamics.

Spatially periodic quantum systems exhibit an oscilla-
tory response to static forces [1, 2]. Any applied modula-
tion can interact with Bloch oscillations, resulting in phe-
nomena ranging from super-Bloch dynamics [3] to high-
harmonic generation [4]. In this work, we experimen-
tally explore the consequences of breaking the position-
independent character of Bloch oscillations with an in-
homogeneous field, which qualitatively transforms the
phase space structure of the system and generates an ar-
ray of new transport phenomena. The recently-observed
position-space character of Bloch oscillations [5] plays a
key role, admixing an intrinsic self-parametric modula-
tion to all Bloch oscillators.

The experiments we describe use a quantum gas in
an optical lattice. Cold-atom experiments have long
provided a flexible platform for exploring Bloch oscil-
lations and related fundamental features of transport
in crystals [3, 5–10]. Modulated effective electric fields
have been used to investigate Wannier-Stark ladder res-
onances [11], modulation-assisted tunneling [12, 13], co-
herent spatial mode manipulation [14], and super Bloch
oscillations [3], complementing related theoretical stud-
ies [15–20], and parametric lattice modulation has been
applied to the study of quantum ratchet behavior [21] and
large Floquet-Bloch oscillations in hybridized bands [22].

An overview of the experimental context of driven-
lattice transport appears in Fig. 1: modulating the lattice
depth near the Bloch frequency gives rise to an asym-
metric parametrically-varying “convective” group veloc-
ity and net transport during a Bloch cycle. The experi-
ments begin with an optically-trapped Bose-Einstein con-
densate (BEC) of 105 7Li atoms adiabatically loaded into
a 1D optical lattice with lattice spacing d = 532 nm, laser
wave vector kL = π/d, and recoil energy ER = ~2k2L/2m,
with m the mass of 7Li. Interatomic interactions are set
to zero by Feshbach tuning. The condensate starts in
the crossed optical dipole trap at a position away from
the center of a harmonic potential created by external
electromagnets, so that when the dipole trap beams are
abruptly turned off the atoms feel an inhomogeneous
force and begin Bloch oscillating. All comparisons with
theory are based on a Gaussian ensemble of spatial width

FIG. 1. Transport in a modulated lattice. (a) Comparison
between convective (solid) and static (dashed) group velocity
for a Bloch-oscillating ensemble with resonantly-modulated
tunneling. Shaded area indicates net spatial motion over a
cycle. Insets show exaggerated real-space potential, with tun-
neling indicated by the length and direction of the arrow. (b)
Corresponding convective (solid) and static (dashed) energy
bands. (c) Ordered sequence of absorption images demon-
strating transport against an applied force by a chirped adap-
tive drive (details in text). (d) Theoretically predicted density
evolution under the same conditions as (c).

σx = 50d and momentum width σk = .1kL; this non-
Heisenberg-limited σk is associated with the BEC expe-
riencing inhomogeneous axial forces and consequent mo-
mentum broadening during the adiabatic lattice load. At
t0 = 9.3 ms the BEC reaches the edge of the Brillouin
zone and we begin sinusoidal modulation of the lattice
beam intensity. Following the removal of the optical
dipole trap, the system is described by the Hamiltonian

H =
p2

2m
+
V (t)

2
cos(2kLx) +

1

2
mω2x2 − Fx. (1)

The magnetic trap frequency is ω = 2π× 15.5 Hz, with
initial local force F = h/TBd and Bloch period TB =
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FIG. 2. Directed Floquet-Bloch transport in an inhomoge-
neous force field. (a) Measured (points) and numerically pre-
dicted (line) mean atomic position as a function of time for a
drive phase ϕ = π/2. The applied force points towards larger
positive displacements. (b) Similar measurements (points)
and numerical theory (lines) for an initial drive phase ϕ = π.
A time-invariant drive frequency yields epicyclic motion due
to force inhomogeneity (squares). An adaptive drive using
a frequency chirp suppresses this behavior and extends the
range of transport (triangles, and images in Fig. 1c).

16.75 ms. The time-varying lattice depth V (t) is

V (t) =

{
V0 [1 + α sin(ϕ)] , −t0 < t < 0

V0 [1 + α sin(ωDt+ ϕ)] , t ≥ 0.
(2)

For all runs, the drive frequency is ωD = 2π× 53.56 Hz;
in the case of chirped driving, this is the frequency at
t = 0. The modulation depth is held at α = 0.24 with
average lattice depth V0 = 4.3ER. Due to the drive
and the force inhomogeneity, the angular Bloch frequency
ωB = 2π/TB , drive period TD = 2π/ωD, and tunneling J
are all potentially time-varying quantities. The critical
parameter we manipulate to drive different dynamical
behaviors is the initial drive phase ϕ.

Fig. 2 shows data taken for drive phases experimen-
tally found to be optimal for long-range pumping of the
BEC both with and against the applied force. The re-
sults demonstrate pumping of the BEC over 200 lattice
sites in just 5 Bloch cycles; the large increase in mag-
nitude of transport rate as compared to Ref. [3] can be
attributed mainly to the low mass of 7Li. We observe
optimal pumping along the direction of applied force at
ϕ = π/2; as discussed below, this disagrees starkly with
a theoretical description based on a homogeneous effec-
tive electric field, which predicts optimal transport along
the direction of force for ϕ = 0 and optimal transport
against the force for ϕ = π.

The observed dynamics are highly asymmetric in drive
phase. Modulating at ϕ = 3π/2, exactly out of phase

with the experimentally observed optimal condition for
force-aligned pumping, does not produce directed trans-
port. In experiments with a modulation phase of ϕ =
π, the cycle-averaged velocity actually changes sign, as
shown in Fig. 2b. This phenomenon is similar to su-
per Bloch oscillations, though here the evolving rela-
tive phase between drive and Bloch oscillation does not
result from a static detuning, but instead from a self-
parametric modulation due to the spatial variation in
Bloch frequency. Put differently, the force inhomogene-
ity eliminates the possibility of a global Wannier-Stark
resonance, giving rise to slow oscillatory transport as a
natural dynamical mode.

An adaptive driving protocol can recover directed
monotonic pumping against an applied force even with-
out a true Wannier-Stark resonance. Figs. 2b and 1c
show experimental measurements of transport produced
by an adaptive drive which includes a chirped drive fre-
quency. Intuitively, the chirp can be understood as stro-
boscopically maintaining the local Wannier-Stark reso-
nance condition for a set of unevenly spaced ladders,
or alternatively as optimizing the cycle-averaged spatial
transport sketched in Fig. 1a by accounting for the av-
erage change in ωB per cycle. These data were taken
with a chirp rate of 115 Hz/s, causing an increase of ωD

by 2π×2.15 Hz each drive cycle. While here a linear
chirp is shown to be effective for a linearly-varying force,
the results suggest that higher-order, non-monotonic and
piece-wise adaptive driving protocols could serve as flexi-
ble tools for engineering transport in arbitrary force land-
scapes.

Next we discuss a simple analytic model of directed
transport for a homogeneous force; this provides a useful
framework for highlighting and understanding the qual-
itatively new phenomena introduced by force inhomo-
geneity. We consider a tight-binding model in the single-
band approximation. For a sufficiently low-frequency
drive we can define a time-dependent ground band dis-
persion E(k, t) = −2J [V (t)] cos(kd), with tunneling J a
function of the time-dependent lattice depth V , and k the
quasimomentum. In the semiclassical picture, the BEC
moves at the group velocity

vg(t) =
2J [V (t)]d

~
sin [k(t)d] , (3)

where k(t) denotes the time-dependent quasimomentum.
For weak modulation, J varies to first order in time as
J [V (t)] ≈ J(V0) [1− α0 sin(ωDt+ ϕ)], with scaled mod-
ulation index α0 = α|J ′(V0)|V0/J(V0); the prime indi-
cates partial differentiation with respect to lattice depth,
and for our experimental parameters α0 ≈ 1.15α as com-
puted using Mathieu parameter relations for the band
edges [23]. Under this approximation, the cycle-averaged
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FIG. 3. Effect of the inhomogeneity-induced phase space structure on transport. (a) Stroboscopic Poincaré map for a homoge-
neous force at 6 Hz detuning between drive and Bloch oscillation, showing super-Bloch-like oscillations wrapping the Brillouin
zone. For panels (a) and (b) an 11×11 grid of initial conditions spanning 400 lattice sites and the whole Brillouin zone was
numerically evolved and plotted stroboscopically out to 200TD (longer than our longest experiment times). Colorbar indicates
drive phase ϕ, or, equivalently, initial quasimomentum. Inset shows the stroboscopic Poincaré map on identical axes out to
6TD for zero detuning, for a single initial position over the whole quasimomentum range; trajectories unwrap yielding linear
vertical transport and two invariant quasimomenta. (b) Stroboscopic Poincaré map at the same detuning, for an inhomogeneous
force matching our experimental conditions. Note the emergence of nontrivial fixpoints and topologically distinct classes of
orbits. (c) Short-time portrait of the evolution of an ensemble for ϕ = π/2 (blue time) and 3π/2 (red time), yielding stable
transport and rapid spreading respectively as a result of the different fixpoint characteristics. The plotted sample is a 21×21
grid spanning 1-σ in both position and momentum. The time colorbars match the definition of t in in Eq. 1 after adding .25
(blue) and .75 TD (red).

spatial transport is

∆x ≈ −2α0J(V0)d

~

∫ TD

0

sin(ωDt+ ϕ) sin

(∫ t

0

ωB(t′)dt′
)
dt.

(4)

For a homogeneous force, ωB(t) is a constant, and thus
the quasimomentum evolves as k(t) = (ωBt+π)/d. The π
offset is introduced to match our experimental protocol.
For resonant driving ωD = ωB , the average velocity is

vg =
α0v0

2
cos(ϕ). (5)

On average the atoms travel at half the characteristic
velocity v0 = 2J(V0)d/~ scaled by the modulation index
α0 and the alignment between drive and Bloch cycles
cos(ϕ). It is clear that ϕ = 0 and ϕ = π yield maximum
pumping down and up the potential respectively.

For small detuning between drive and Bloch frequen-
cies, this homogeneous model predicts transport over
many periods resulting from the effective evolution of ϕ.
It is useful to compare and contrast these parametrically-
driven dynamics to super Bloch oscillations [3]: both can
be schematically understood as resulting from modula-
tion of the Wannier-Stark length l = 2J/F , either by
modulation of the numerator (this work) or the denom-
inator (Ref. [3]). In the language of nonlinear dynam-
ics, the distinction is between forced and parametrically-
excited oscillators, and our experiment is a quantum
mechanical analogue of a parametrically-excited pendu-
lum [24–26], with angle mapped to quasimomentum and

angular momentum to position, in the regime of purely
rotating solutions.

While the intuitive mechanism for Floquet-pumped
transport in an inhomogeneous force field can still be con-
ceptually understood with this homogeneous framework,
our measurements deviate qualitatively from these pre-
dictions as ωB acquires parametric time dependence from
the time-varying position. The observed optimal phase
for force-directed pumping (Fig. 2a) is in clear disagree-
ment with the constant-force prediction of ϕ = 0; in fact,
Eq. 5 predicts a mean velocity of zero for ϕ = π/2. The
effect of force inhomogeneity is even more pronounced
when attempting Floquet pumping against the poten-
tial gradient: as shown in Fig. 2b, we observe a rapid
change of the transport direction and no symmetry be-
tween opposite-phase drives. These qualitative discrep-
ancies are due mainly to the failure of the constant Bloch
frequency approximation.

The breakdown of the theory based on a constant
effective electric field motivates the search for a more
complete theoretical description of driven Bloch dynam-
ics in inhomogeneous fields. As a key result of this
work, we show that the qualitatively different dynam-
ics observed arise from a rich underlying inhomogeneity-
induced phase space structure which exhibits a topolog-
ical transition in the character of stroboscopic Poincaré
orbits. To see this, we use a Floquet map formalism,
analyzing the phase-space trajectories stroboscopically
with respect to the drive. Fig. 3a shows the calculated
Poincaré map for a spatially uniform force and nonzero
drive detuning. Super-Bloch-like oscillatory behavior is
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FIG. 4. Phase-dependent spatial dynamics as a probe of the stroboscopic Poincaré map. (a) and (c): Time-sequence of
absorption images of an atomic ensemble subjected to drive phases of ϕ = 3π/2 (a) and ϕ = π/2 (c). These two phases are
predicted to give rise to topologically distinct Poincaré orbits with qualitatively different transport dynamics, as shown in Fig. 3c.
(b) and (d): Numerical simulations of the 1D density evolution under the same conditions as (a) and (c). The simulated density is
averaged over independent, Gaussian-weighted 1D trials at varying lattice depths corresponding to transverse variation of beam
intensity. (e) The second moment of the density distribution is plotted versus time for initial drive phases ϕ = 3π/2 (circles)
and π/2 (squares). Solid lines show simulated second moment evolution, accurately capturing the asymmetric enhancement
and suppression of curvature-induced monopole modes.

evident: the detuning generates a uniform quasimomen-
tum shift for every point in phase space, and mediates
the evolving phase in the sinusoidal arguments of Eq. 4,
leading to an oscillatory profile of position versus quasi-
momentum. The sign of the quasimomentum shift is de-
termined by whether the drive is red or blue-detuned,
and the constant nature of the detuning ensures that the
Floquet trajectories all wrap the phase space cylinder.
On resonance, a transition occurs where all trajectories
unwrap as the quasimomentum shift vanishes, and each
point undergoes a vertical shift in the position direction
determined by Eq. 5; this is accompanied by the emer-
gence of two fixed lines in the map for quasimomenta
corresponding to initial drive phases of π/2 and 3π/2.
The inset of Fig. 3a shows the map for a resonant drive
with starting points at only one initial position, revealing
the invariant quasimomenta.

In the presence of force inhomogeneity, the fixed
lines mentioned above become fixpoints where the drive
meets the (position-dependent) Wannier-Stark resonance
condition, yielding a strikingly different stroboscopic
Poincaré map, as shown in Fig. 3b. The fixpoints
near k = −0.5 and 0.5kL are center-like and saddle-
like respectively. Here super-Bloch-like transport breaks
down and the system admits a new class of motion not
present in Fig. 3a, namely regular cyclic orbits about the
k = −0.5kL fixed point. In the stroboscopic map, these
orbits have a distinct topology as closed loops which do
not wrap the Brillouin zone cylinder; this emerges due
to the possibility of the now implicitly time-dependent

detuning changing its cycle averaged sign, something not
possible in the homogeneous force case. A topologically
distinct class of super-Bloch-like trajectories wrapping
the Brillouin zone are observed at positions sufficiently
far away from the resonance point.

The Floquet map serves as a powerful intuitive tool
for understanding and predicting the results of inhomo-
geneity in the effective electric field. As shown in 3c,
the experimental ϕ = π/2 condition is represented by
an ensemble which starts near the stable fixpoint, and
the observed DC transport represents a partial cycle of
the circulatory behavior in which the position spread of
the ensemble is not significantly changed, approximating
the motion of a rigid body. A drive phase of ϕ = 3π/2,
in contrast, corresponds to an ensemble starting near the
saddle-like fixpoint. In this case the Floquet map dynam-
ics predict rapid divergence along the unstable axis of the
fixpoint, with the ensemble stretching in phase space and
splitting up among orbits confined at the positional ex-
tremes. This corresponds to a maximal violation of rigid-
body-like dynamics, exhibiting oscillations and growth in
higher moments of the spatial distribution.

Our experimental observations confirm these predic-
tions of the stroboscopic Poincaré map. Fig. 4a and
4c compare experimental image sequences of BEC evo-
lution for drive phases of ϕ = 3π/2 and ϕ = π/2 re-
spectively. In the ϕ = 3π/2 data, an initially local-
ized distribution is observed to rapidly spread, eventu-
ally delocalizing over 600 lattice sites in a highly non-
normal distribution. Here, the drive acts to amplify the
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curvature-induced breathing mode, eventually splitting
the cloud largely into two regions of higher density near
the edge of the distribution. Note that these dynamics
correspond in detail to the predicted ϕ = 3π/2 evolution
illustrated in Fig 3c. In contrast, the data for a drive
phase ϕ = π/2, shifted by exactly π, reveals surprisingly
stable wavepacket transport given the presence of both
significant force inhomogeneity and a strong drive. In
this case, the drive serves the dual role of preserving the
wavefunction spatial mode and inducing transport. Both
cases exhibit good agreement with numerical simulations
of squared-wavefunction evolution shown in Fig. 4b and
4d. The match to theory is quantitative as well as qual-
itative: Fig. 4e compares the evolution of the second
moment of the position distribution to numerical theory
for both drive phases. For ϕ = 3π/2, the second moment
oscillates and grows rapidly before saturating at nearly
4 times the initial value. This is in stark contrast to
the ϕ = π/2 case, in which the data display little to no
variation of the second moment over the entire interval.

In conclusion, we have shown that the combination of
an inhomogeneous force with periodic modulation drives
rich new dynamical behaviors beyond those of a pure
Bloch or super-Bloch oscillator. Good agreement with
numerical calculations supports our interpretation of the
inhomogeneity-induced dynamics as arising from a fun-
damental change in the phase space structure of the
Hamiltonian giving rise to distinct topological classes of
Poincaré orbits. These results point the way to a general
protocol for controlling transport and density evolution
with lattice amplitude modulation even in uncontrolled
force environments. Potential future applications of these
techniques include the generation of spatially squeezed
states, new models for solid-state high-harmonic genera-
tion, and control elements for continuously-trapped atom
interferometry. Since force metrology is an important use
of atomic Bloch oscillations, these results have direct rel-
evance for applications in which the force environment
is both uncontrolled and inhomogeneous. Inclusion of
static or modulated interatomic interactions is an ex-
citing possible direction for future work [27, 28], as is
the effect of quasiperiodic or multiple-frequency driving.
Such a platform would be well-suited for exploring the
correspondence between the breakdown of classical orbit
regularity and non-ergodic many-body dynamics.
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Appendix F

Prethermal Dynamical Localization

and the Emergence of Chaos in a

Kicked Interacting Quantum Gas

(preprint)

This appendix contains the arXiv version of the interacting quantum kicked rotor work

discussed in Chapter 5.
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While ergodicity is a fundamental postulate of statistical mechanics and implies that driven inter-
acting systems inevitably heat, ergodic dynamics can be disrupted by quantum interference. Despite
a quarter-century of experimental studies, the effect of many-body interactions on the resulting dy-
namically localized state has remained unexplored. We report the experimental realization of a
tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed
optical lattice. We observe a prethermal localized plateau, which survives for hundreds of kicks,
followed by interaction-induced anomalous diffusion. Echo-type time reversal experiments establish
the role of interactions in destroying reversibility, and a mapping to kicked spin models illustrates
connections to many-body dynamical localization in spin chains. These results demonstrate a dy-
namical transition to many-body quantum chaos, and illuminate and delimit possibilities for globally
protecting quantum information in interacting driven quantum systems.

Ergodicity breaking in quantum matter and relaxation
dynamics of thermalizing phases are two aspects of a
central question of non-equilibrium many-body physics:
how and when do isolated quantum systems thermal-
ize? A growing body of theoretical and experimental
work suggests that the Anderson insulator can be sta-
ble against interactions, implying the existence of a non-
ergodic many-body localized (MBL) phase [1, 2]. While
disorder-induced MBL is often invoked as a mechanism
for avoiding heating in driven systems [3], recent theoret-
ical evidence has raised the exciting possibility of many-
body dynamically localized (MBDL) phases which are
sustained by the external drive itself in the absence of
disorder [4–6]. Such phases offer a general dynamical pro-
tocol for stabilizing quantum information, complement-
ing approaches based on drive-induced control of special
quantum scar states [7]. Beyond total ergodicity break-
ing, observations of long-lived prethermal states [8–10]
and anomalous diffusion [11, 12] across a variety of plat-
forms pose both fundamental theoretical questions and
practical alternatives for dynamical engineering of many-
body systems. Both prethermalization and anomalous
diffusion are features of the poorly-understood interface
between chaotic and localized regimes [13], and a gen-
eral predictive framework for such phenomena remains
an open challenge.

The paradigmatic atom-optics quantum kicked rotor
(QKR) [16] is a natural starting point for experimentally
probing both quantum chaotic and non-ergodic many-
body Floquet phases. While strong, repeated kicking
drives a classical rotor into chaotic diffusion, the cor-
responding quantum rotor stops absorbing energy after
a finite time, signaling the onset of dynamical localiza-
tion. Despite the complete absence of disorder, this phe-
nomenon can be understood as a manifestation of An-
derson localization in momentum space [17, 18]. The
interplay between interactions and dynamical localiza-
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Fig. 1. Experimentally realizing an interacting quan-
tum kicked rotor. (A) Schematic of BEC in single pulsed
optical lattice. (B) Experimental sequence. After setting the
scattering length the trap is removed and kicking is applied
with period T , pulse width τ , and amplitude V0 for n cycles.
The atoms are imaged after a time-of-flight expansion [14].
(C-D) Measured axial momentum distribution versus kick
number n for noninteracting (C) and interacting (D) samples,
revealing collisional momentum redistribution.

tion has been explored theoretically, but never experi-
mentally. While numerical treatments suggest a break-
down of dynamical localization into anomalous diffu-
sion [19–21], the mean-field approximation on which they
are based may be strongly violated by collisional re-
distribution and quantum depletion [22]. Certain non-
perturbative 1D models display ergodicity-breaking and
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Fig. 2. Observing the interaction-induced emergence of quantum chaos. (A) Energy versus kick number for varying
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T = 1.2µs and τ = 300 ns (K ≈ 2.3 and k̄ ≈ 1.5). The inset contrasts interaction-induced delocalization and anomalous
diffusion with classical diffusion caused by a sequence of random offsets from the average kick spacing T drawn uniformly from
the interval [−T/4, T/4]. The solid curve is noninteracting quantum theory and the dotted line is a diffusion curve 4Dn/k̄2 with
D ≈ 0.19 extracted from the classical standard map [15]. The red dot-dashed line is a subdiffusive

√
n law serving as a guide

to the eye. (B) Momentum-space IPR with transverse dimensions integrated out. The shaded regions are predictions for two
exponentially localized distributions with 1/e localization length kloc =

√
Eloc ≈ 1.6(1)kL [14]. (C-E) Normalized smoothed

momentum space densities at various n. (F-H) The same densities on a logarithmic scale. The orange dotted and purple
dashed lines are exponentially localized curves exp(−k/kloc) with amplitudes normalized to match the peak of the measured
distributions at the given n. (I) Deviation from exponential localization over time based on integrated ratio between measured
and exponential distributions with errorbars computed from uncertainty in kloc [14].

an MBDL phase [4, 5]. The exciting possibilities on both
fronts motivate detailed experimental investigation.

Here we report the first experimental study of dy-
namical localization in the presence of tunable interac-
tions. Measuring results of QKR sequences up to one
thousand kicks, we observe a prethermal dynamically-
localized regime, followed by interaction-induced anoma-
lous diffusion in momentum space after a variable break
time. The role of interactions in destroying reversibility
is established using a Loschmidt echo protocol [23, 24].
Numerical and experimental exploration of a quantitative
mapping between the QKR problem and kicked Heisen-
berg spin chains illuminates connections to many-body
dynamical localization in a broad array of experimental
contexts.

These experiments investigate a 7Li Bose-Einstein con-
densate (BEC) kicked n times at period T by a far-
detuned optical lattice of spacing d = 532 nm and depth
V0 for duration τ (see Fig. 1). We report momentum
and energy in units of kL = π/d and ER = ~2k2

L/2m

with m the mass of 7Li. The single-particle QKR is de-

fined by the 1-cycle Floquet map U = e−ik̄k
2/2e−iK cos z/k̄

describing a sharp cosine potential impulse followed by
free evolution. Here k and z are momentum and position,
K = k̄V0τ/2~ is the stochasticity parameter character-
izing kicking strength and k̄ = 8ERT/~ is an effective
Planck’s constant determined by the kick period. Ab-
sorption imaging after free expansion is used to measure
the momentum distribution; see the supplementary text
for a discussion of systematic effects in this procedure.
Interatomic interactions are varied by tuning the s-wave
scattering length a (reported in units of the Bohr radius
a0) using a magnetic Feshbach resonance. While the kick-
ing primarily couples discrete momentum states along a
single dimension, the atoms are entirely unconfined be-
tween kicks; scattering between momentum modes thus
couples the system to a bath of transverse free-particle
states.

The main result of this work is presented in Fig. 2A.
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While a noninteracting sample exhibits localization, sat-
urating to a finite energy for over 800 kicks, interact-
ing samples clearly demonstrate the destruction of the
dynamically localized plateau with increasing scatter-
ing length. At intermediate interaction strength (a =
240a0), we observe saturation to the same energy as non-
interacting samples for approximately 300 kicks, suggest-
ing the existence of a reasonably long-lived prethermal
state. In contrast, the 760a0 trace exceeds this localized
energy after around 100 kicks; whether a quasiequilib-
rium dynamical state is truly established in this stronger-
interacting sample is less clear. Fig. 2B shows another
aspect of the same evolution, plotting the momentum
space inverse participation ratio (IPR) versus kick num-
ber. The IPR characterizes the number of states over
which the system is distributed, thereby also probing how
collisional momentum redistribution washes out the orig-
inally discrete momentum modes, a process less easily in-
ferred from energy measurements. While the 240a0 data
exhibit a clear steady-state behavior for 100 kicks, the
760a0 IPR decreases monotonically for almost the entire
experiment.

A second key result of these measurements is that the
observed delocalizing dynamics clearly exhibit anoma-
lous diffusion: it appears that even interacting quantum
kicked rotors absorb energy much more slowly than clas-
sical rotors. The inset of Fig. 2A compares the nature of
the observed interaction-induced subdiffusive delocaliza-
tion with linear energy growth in the classically chaotic
model. We experimentally simulate classical dynamics
by adding stochastic fluctuations to the kicking period
T , making use of the known sensitivity of dynamical lo-
calization to timing noise [25]. These experimental data
agree both with single-particle quantum numerics and
with the linear energy growth predicted by the classical
standard map [15], and stand in clear contrast to the
measured interaction-induced anomalous diffusion away
from the dynamically localized state. The dot-dashed red
line indicates a

√
n energy growth, and fitting the late-

time data to nα yields anomalous diffusion exponents α
in the range [0.4, 0.6]. For reference, 1D Gross-Pitaevskii
simulations on a ring [21] predict α ∈ [0.5, 0.8], though
a direct quantitative comparison to theory is challeng-
ing due to the high depletion of the condensate and the
three-dimensional nature of the experiment. Theoretical
studies of the effect of local nonlinearity on real-space An-
derson localization instead suggest α ∈ [0.3, 0.4] [26, 27],
but the long-range nature of contact interactions in mo-
mentum space similarly complicates comparison. This
clear observation of anomalous diffusion in the interact-
ing quantum kicked rotor raises a variety of fascinating
questions for future exploration. What are the corre-
lations or other mechanisms which generate anomalous
diffusion dynamics? What if any theoretical framework
is appropriate for quantitatively predicting wavefunction
evolution in this regime? What are the universality prop-
erties of the subdiffusive exponent?

For further insight into the dynamics of kicked interact-

0 1 2 3 4 
 n

8

4

0

-4

-8

M
om

en
tu

m
 (k
L)

E 1080a0

N
orm

alized D
ensity (arb.)

8

4

0

-4

-8M
om

en
tu

m
 (k
L)

D 670a0

8

4

0

-4

-8

M
om

en
tu

m
 (k
L)

C 240a0

0 500 1000
 a ( a0)

0.2

0.3

0.4

0.5

0.6

 F

A
N=6 N=10

6 8 10 12 14
 N

0.2

0.3

0.4

0.5

0.6

 F

B 670a0 1080a0 1360a0

Fig. 3. Effect of interactions on reversibility in
Loschmidt echo experiments. (A) Measured Loschmidt
echo fidelity F for a range of scattering lengths a = [0, 1500] a0
for N = 6 (blue circles) and N = 10 (purple triangles), where
N indicates the total number of kicks; a first set of N/2 kicks
propagates the system forward in time and a second time-
reversal set of N/2 kicks propagates it backwards. (B) Mea-
sured fidelity F at three different interaction strengths as a
function of total number of kicks N in a Loschmidt echo ex-
periment. (C-E) Averaged absorption images of a BEC after
the first n kicks of an N = 10 Loschmidt echo protocol, for
three different a.

ing quantum systems we examine the evolution of the mo-
mentum distribution, shown in Figs. 2C-E. We observe
a clear distinction between the noninteracting samples,
which settle at a sharply-peaked dynamically-localized
momentum distribution, and the interacting samples,
which gradually smear out in momentum space due to
scattering. Plotting these same densities on a logarithmic
scale in Fig. 2F-H illuminates the destruction of dynami-
cal Anderson localization by assessing the departure from
exponentially-localized Floquet states. The smeared-out
lower-energy modes actually appear to maintain the ex-
pected localization length, and thus do not trivially indi-
cate a departure from exponential localization. This ob-
servation is also reflected in the fact that two predictions
based on exponentially localized distributions bound the
measured IPR in Fig. 2B. Instead, the departure from
exponential localization manifests in the emergence of
increased relative population in the tails of the distribu-
tion. It is interesting to note that recent theory suggests
that even MBDL phases are expected to exhibit univer-
sal power-law decaying tails [29]. In Fig. 2I we quantita-
tively characterize the overall deviation from exponential
localization [14], revealing a break time near 200 kicks
for both interaction strengths. These findings provide a
second experimental signature of the destruction of the
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K. (G) Staggered magnetization in the infinite-time limit versus K, for the same parameters as panel F. (H) Gap-ratio statistic
of the M = 0 sector at k̄ = 1 for varying L averaged over 100 values of β. Dashed lines indicate predictions of the Poisson
(〈r〉 ≈ 0.386) and circular-orthogonal ensemble (〈r〉 ≈ 0.527) [28].

dynamically localized state by interactions, now both at
the level of macroscopic observables and squared wave-
functions.

The onset of energy delocalization due to interactions
suggests a transition to a regime of many-body quan-
tum chaos. Time-reversal dynamics lie at the founda-
tion of our understanding of both classical and quan-
tum chaos [30, 31]. In Fig. 3 we probe the nature of
chaotic dynamics in kicked many-body systems by mea-
suring the effect of interactions on a Loschmidt echo time-
reversal protocol. The echo is realized using quantum
resonances [32] which occur for k̄ = 2πq with q ratio-
nal; in particular for q = 2 (T ≈ 9.95 µs), the free
evolution in U largely vanishes and effective time rever-
sal can be achieved by setting q to 1 for a single kick
halfway through the sequence [14, 23, 24]. This proce-
dure would create exact time reversal for a single zero-
quasimomentum state in the absence of interactions. Due
to finite quasimomentum spread and non-reversed inter-
actions, the reversal is imperfect, yielding a Loschmidt

fidelity F =
∣∣∣〈ψ|U†2U1 |ψ〉

∣∣∣
2

where U1 and U2 are time-

evolution operators differing by some perturbation. Per-
haps surprisingly, F initially increases as the scattering
length a is turned up from zero. In this regime U1 and
U2 are primarily distinguished by the failure to reverse
kinetic energy, and thus the increase can be explained by
Thomas-Fermi reduction of the initial state momentum
spread. Eventually, for large enough a, the interaction
becomes the primary perturbation and F begins to de-
crease with a, marking the transition to predominantly
interaction-induced irreversibility. The decay of fidelity
with total number of kicks in a Loschmidt echo exper-
iment is shown in Fig. 3B. The use of Loschmidt echo
techniques as a probe of many-body quantum chaos not
only helps illuminate the origins of the delocalizing dy-
namics we observe, it also opens up the intriguing future
possibility of extending these protocols to measure out-
of-time-order correlators and probe scrambling in many-
body quantum chaotic systems.

The interplay between many-body dynamical localiza-
tion and many-body quantum chaos is a topic of broad
current interest, relevant in contexts well beyond the ex-
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perimental model of the quantum kicked rotor which we
explore here. To highlight this breadth, we describe and
quantitatively explore a mapping from the QKR to a
kicked Heisenberg spin chain, which can be used as a
basis for generalization and further exploration. Specif-
ically, we investigate the Floquet map UkickedXXZ =
e−ik̄Hquad/4e−iKHXXZ/4k̄, with Hquad =

∑
j(j + β)2σzj

a quadratic field and HXXZ =
∑
j(σ

x
j σ

x
j+1 + σyj σ

y
j+1 +

∆σzjσ
z
j+1) an XXZ Hamiltonian with σx,y,z the Pauli ma-

trices and ∆ the anisotropy parameter. β here serves
an analogue to quasimomentum in the QKR model, and
time-evolution conserves the total magnetization M =
〈∑j σ

z
j 〉. This model is known to correspond to the QKR

in single and few-body regimes [33, 34]; for a single parti-
cle or spin flip the correspondence is essentially exact up
to finite size effects. Dynamical localization and quan-
tum resonance in the spin model are demonstrated in
Fig. 4A-C. In the zoom-in of 4C, we verify the QKR
correspondence experimentally by comparing the kicked
XXX (∆ = 1) numerics to our experimental observation
of fractional q quantum resonances in the QKR, and find
excellent agreement. Because the Heisenberg chain in
a random magnetic field is a prototype model for tradi-
tional MBL, UkickedXXZ is well suited to address the ques-
tion of whether the emergent Floquet pseudo-randomness
in a disorder-free kicked system is sufficient to reproduce
MBL phenomenology. To numerically probe many-body
dynamical localization in the kicked spin model we study
the evolution of an initial Néel state ordering |↑↓↑↓ . . .〉
in the M = 0 sector with multiple spin-flips, and observe
long-lived persistence of ordering for sufficiently small K
(Fig. 4F). A transition from MBDL to ergodicity at larger
interaction strengths is indicated both by the Néel state
persistence (Fig. 4F-G) and by the Floquet level-spacing
gap ratio parameter 〈r〉 [14, 28] (Fig. 4H). These numeri-
cal results signal a true many-body dynamically localized
state in a kicked XXZ chain. This indicates a promising
path towards experimentally exploring the interplay be-
tween quantum chaos and many-body dynamical local-
ization in a variety of quantum simulator platforms [35–
37] and highlighting connections between paradigmatic
kicked spin models and the quantum kicked rotor.

In conclusion, we have experimentally realized an en-
semble of interacting quantum kicked rotors. Follow-
ing the evolution of interacting samples over hundreds
of kicks, we observe an initial prethermal state, followed
by an interaction-induced breakdown of dynamical local-

ization via anomalous diffusion which signals the emer-
gence of many-body quantum chaos. Characterization of
the departure from the dynamically localized state indi-
cates subdiffusive energy growth with an exponent near
0.5, and reveals momentum space distributions which
are not exponentially localized. Measuring Loschmidt
echo time-reversal dynamics with a quantum resonance,
we have quantitatively probed the role of interaction-
induced irreversibility in the emergence of many-body
quantum chaos. Finally, we have experimentally veri-
fied a mapping between the quantum kicked rotor and
kicked spin chains in the single-particle limit, and pre-
sented numerical evidence for a many-body dynamically
localized phase in the latter. Together these results il-
luminate the emergence of interaction-driven quantum
chaos in a paradigmatic localized system and pave the
way for the exploration and application of many-body
dynamical localization and disorder-free dynamic stabi-
lization in a broad range of physical contexts.
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P. Kurpiers, A. Potočnik, A. Mezzacapo, U. Las Heras,
L. Lamata, E. Solano, S. Filipp, and A. Wallraff, Phys.
Rev. X 5, 021027 (2015).

[38] J. Toh, et al, manuscript in preparation. (2021).
[39] S. E. Pollack, D. Dries, M. Junker, Y. P. Chen, T. A. Cor-

covilos, and R. G. Hulet, Phys. Rev. Lett. 102, 090402
(2009).

[40] P. Deuar and P. D. Drummond, Phys. Rev. Lett. 98,
120402 (2007).

[41] A. Tenart, C. Carcy, H. Cayla, T. Bourdel, M. Mancini,
and D. Clément, Phys. Rev. Res. 2, 013017 (2020).

[42] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854
(2008).

[43] B. Gadway, D. Pertot, R. Reimann, M. G. Cohen, and
D. Schneble, Opt. Express 17, 19173 (2009).

[44] Y. B. Ovchinnikov, J. H. Müller, M. R. Doery, E. J. D.
Vredenbregt, K. Helmerson, S. L. Rolston, and W. D.
Phillips, Phys. Rev. Lett. 83, 284 (1999).

[45] B. Klappauf, W. Oskay, D. Steck, and M. Raizen, Phys-
ica D 131, 78 (1999), classical Chaos and its Quantum
Manifestations.

[46] S. Fishman, I. Guarneri, and L. Rebuzzini, J. Stat. Phys.
110, 911 (2003).

[47] I. Dana and D. L. Dorofeev, Phys. Rev. E 73, 026206
(2006).

[48] L. M. Sieberer, T. Olsacher, A. Elben, M. Heyl, P. Hauke,
F. Haake, and P. Zoller, npj Quantum Inf. 5, 1 (2019).

[49] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027
(2014).

126



7

Supplementary Materials

CONTENTS

1. Materials and Methods 7
1.1. Experimental platform and sequence 7
1.2. Delocalization data analysis 8
1.3. Loschmidt experimental sequence and data analysis 9
1.4. Noninteracting QKR numerics 10
1.5. Kicked XXZ model numerics 10

2. Supplementary Text 11
2.1. Additional Delocalization Data 11
2.2. Monte Carlo distributions for exponential localization deviation 12
2.3. Systematics: Finite pulse width 12
2.4. Systematics: Position space dynamics and TOF conversion 13
2.5. Systematics: Beam-induced transverse dynamics 15
2.6. Systematics: Effects of scattering on measured Loschmidt fidelity 15
2.7. Interpretation of the kicking in the spin chain mapping 16
2.8. MBDL for anisotropic kicked XXZ chains 17

1. MATERIALS AND METHODS

1.1. Experimental platform and sequence

The experiments begin with a Bose-Einstein condensate (BEC) of around 105 7Li atoms in a far-detuned optical
dipole trap with trapping frequencies ωx,z/2π ≈ 40 Hz and ωy/2π ≈ 56 Hz, where z is the axis of the optical lattice, y
is the direction of gravity, and x is the remaining orthogonal axis. The condensate is produced by optical evaporation
at an s-wave scattering length of a = 240a0, set by an applied magnetic field in the vicinity of the broad Feshbach
resonance at 737 Gauss [39]. Immediately after evaporation, the fields are ramped to their desired value over 60-90 ms
and maintained for the remainder of the experiment. The dipole trap is then extinguished and the BEC repeatedly
subjected to a pulsed 1D optical lattice with lattice constant d = 532 nm, laser wave vector kL = π/d, and recoil
energy ER = ~2k2

L/2m with m the mass of 7Li. The full dynamics are then well described by the second-quantized
Hamiltonian

H =

∫
d3r Ψ̂†(r, t)H(r, t)Ψ̂(r, t) +

g

2

∫
d3r Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t) (S1)

H(r, t) =
p2

2m
+
V0

2
cos(2kLz)I(x, y)

∑

n

fτ (t− nT ). (S2)

The key kick parameters are the lattice depth V0, effective pulse width τ , and kick period T . V0 is calibrated
through a standard Kapitza-Dirac diffraction technique. fτ (t) denotes a unit amplitude pulse function beginning
at t = 0 of width τ . The experimental pulse is approximated by a piecewise function with a linear rise and fall of
200 ns duration before and after a plateau of variable hold time. For the experimental data in the main text with
τ = 300 ns between the half-maximum points, this hold duration is 100 ns. The scattering length a determines the
two-body coupling coefficient g = 4π~2a/m. Here I(x, y) denotes the transverse intensity profile of the lattice beams

normalized to unity maximum; this is approximately Gaussian I(x, y) ≈ e−2(x2+y2)/σ2

with a measured 1/e2 beam
radius of σ ≈ 65 µm. The total duration of kicking is at most 1 ms for our longest experiments, significantly shorter
than the 4 ms it takes the BEC to fall under the influence of gravity through the lattice beam waist.

To measure the momentum distribution, we perform absorption imaging of the atoms after free expansion. The
time-of-flight (TOF) duration is 3.5 ms for the delocalization data and 2 ms for the Loschmidt data. Due to the low
mass of 7Li and the breadth of the Feshbach resonance, coil inductance prevents sweeping the magnetic fields to the
noninteracting regime for this expansion period. This means additional scattering occurs during expansion, which
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may lead to systematic errors in the measured quantities (see section 2.6 of this document). For the energy, we are
able to account for this scattering in our analysis due to the energy-conserving nature of the collisions. For metrics
such as the IPR, this systematic is challenging to avoid. However by tracking the evolution of these observables as a
function of kick number at a fixed TOF duration, we can largely attribute the qualitative observed dynamics to the
evolution under the Hamiltonian (S1) as opposed to the expansion. At large n, the majority of scattering happens
during the kicking duration so expansion effects become negligible.

1.2. Delocalization data analysis

This section discusses the analysis behind Fig. 2. Because the momentum distributions of the interacting samples
change significantly over the course of the delocalization experiments, the quantities shown in Fig. 2 are computed
directly from raw or averaged images as opposed to fitting procedures. However, this can make measurable quantities
such as energy sensitive to noise, especially near the edge of the camera sensor due to the quadratic weighting. To
maximize the signal-to-noise ratio in our measurement, we analyze raw images using an adaptive region-of-interest
(ROI). First, a single base ROI capturing all detectable atoms at all times is created for each interaction strength.
The integrated density in this ROI is used to post-select images with total atom numbers falling within a ±10%
window of the mean, in order to reduce variations in the interaction energy, which depends directly on atom density.
For these data we take 10 images at each kick number, of which typically 4-7 are discarded by this post-selection
procedure. The ROI boundaries at each kick number are then determined by the points at which the cumulative
summed distributions of the averaged image outward from a center point reach a threshold value. The thresholds are
set empirically and the boundaries obtained by the following procedure. First we compute the transverse bound by
integrating out the entire axial direction to get the overall transverse distribution, find the point it crosses an 85%
threshold and then expand the resulting boundary by a factor of 1.5 (1.2 in the supplementary delocalization data of
section 2.1) to ensure all atoms are captured. We then compute an axial boundary going point by point along the
transverse direction; at each transverse point we integrate over 10 neighboring transverse pixel rows to get a “local”
axial distribution, find the point it crosses a 99.8% threshold and expand by a factor 1.15. Finally we smooth each
ROI boundary and take a moving average across different kick numbers (4 on each side). Crucially, we have confirmed
that the qualitative observation of delocalization is not significantly altered from the simple case where we use just the
initial single base ROI across all shots. However, the details of the trends should be more accurately captured by the
adaptive procedure because the signal-to-noise ratio over the ROI is optimized at each kick number. All measurable
quantities are then calculated from the imaged densities within this region.

Since we do not observe any substantial atom loss during the kicking duration, we treat the imaged atomic densities
as normalized distributions. For Figs. 2A-B, we compute the measured quantities from individual experimental runs
and then average the results, with the reported error bar as the standard error of the mean. For Fig. 2I, we instead
compute the averaged distributions first before computing the deviation from exponential localization; the errorbars
are computed from a Monte-Carlo simulation of the uncertainty in kloc discussed later in this section. A smoothing
filter is applied to the displayed densities in Figs. 2C-H for visual clarity, but not in the subsequent calculation of the
localization deviation in Fig. 2I.

To measure the energy, we compute the post-expansion spatial variance of the distribution in both the kicking z
and transverse x directions of the image. Assuming cylindrical symmetry, the kinetic energy is then calculated as
m
(
〈z2〉+ 2〈x2〉

)
/2t2TOF with tTOF ≈ 3.5 ms (see section 2.4 for a discussion of possible corrections to the conversion

of position to energy). For an accurate measurement of the interacting samples, inclusion of the transverse energy
is necessary to account for energy-conserving scattering processes that occur both during the kicking and TOF. In
addition, the inhomogeneous intensity profile of the beam I(x, y) leads to a transverse energy oscillation in all samples
including the noninteracting ones (see section 2.5). Since we are not interested in this effect, we remove it to leading
order by subtracting off the noninteracting transverse energy from each trace, so that the noninteracting energy is
purely the kinetic energy along the kicking direction. To compute the error bars on the interacting data, we add
the error of the total interacting energy and noninteracting transverse energy in quadrature. The single-particle
localization energy Eloc is estimated by averaging the noninteracting trace for n ≥ 100, and the reported uncertainty
is based on the standard deviation of those points. We note that this uncertainty is not only due to experimental
imperfections, but also due to natural dynamical fluctuations, as evidenced by the results of noninteracting simulations
like those shown in Fig. S3.

We compute an effective 1D momentum-space IPR by first integrating out the transverse dimension and then
summing the squares of the subsequent normalized axial density. We confirmed that this qualitatively matches
the result of directly integrating the squared 2D distribution while largely eliminating the beam-induced transverse
oscillation. Specifically for computing this metric, we apply a smoothing filter to the normalized densities consistently
across all 3 interaction strengths. This suppresses high-frequency background noise which sets a lower bound on
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the measurable IPR due to the squaring procedure. The measured values are compared to two predictions based on
an exponentially localized distribution. The blue shaded region is obtained by numerically computing the IPR for
the momentum space distribution exp(−|k|/kloc)

∑
j exp

(
−(k − 2kLj)

2/w2
)
, which models a Gaussian comb with an

exponential envelope. This is a reasonable expectation for a finite-size, localized noninteracting condensate occupying
only discrete momentum modes. The width parameter w is measured from fitting the n = 0 noninteracting condensate
and takes into account the momentum-space resolution of the TOF given the finite condensate spatial extent. The
width of the region is based on Monte Carlo simulation of uncertainty in kloc, where the resulting distribution is fit to
a Gaussian to extract the mean and standard deviation. The green shaded region is calculated analytically for a pure
exponential distribution of infinite extent and is given by 1/4kloc. Taking into account the finite width of the imaging
region changes the distribution normalization and leads to the following correction factor (1 − exp(−2k0/kloc)/(1 −
exp(−k0/kloc))2; here k0 ≈ 9.85kL is the half-width of our images which yields a negligible correction factor of ≈ 1.006.
The width of the region is computed through linearized error propagation.

In Fig. 2I, the plotted localization metric is
∫ k0
−k0 max[r(k)− 1, 0]dk/2k0. Here, r(k) = |ψ(k)|2/ exp(−k/kloc) is the

ratio of the measured axial density denoted |ψ(k)|2 and an exponential localization envelope. Here the maximum of

|ψ(k)|2 is set to unity. Taking the maximum of r(k)−1 and 0 ensures that the result is only sensitive to regions of the
distribution which decay more slowly than exponentially. That is, it interprets 0 as “at least exponentially” localized
with respect to a given localization length, and thus characterizes departures from a given dynamically localized
state in the traditional sense of exponentially localized wavefunctions. We note however that the system remaining
exponentially localized but with a larger localization length would result in a non-zero value for this metric, which
motivates the direct inspection of the distributions in Figs. 2F-H. The reported values and errorbars are extracted
by propagating a Gaussian uncertainty in the measured kloc through a Monte-Carlo simulation. We find that the
resulting distributions interpolate between sharply peaked at 0 with a rapid fall-off when well-localized, to positively
skewed with non-zero peak in the delocalized regime. We empirically find that a log-normal distribution fits the
Monte Carlo result well, and we use this fit to extract the data reported in Fig. 2I. In particular, the markers indicate
the mean of the distribution and the errorbars represent the interquartile range containing the central 50% of the
distribution. Because of the skewness, we investigate the Monte Carlo simulated distributions in more detail in section
2.2.

1.3. Loschmidt experimental sequence and data analysis

Here we discuss the methods and analysis used to produce Fig. 3. The Loschmidt experiments begin similarly to
the previously described sequence; for an N kick Loschmidt sequence, the BEC is first kicked N/2 times near quantum
resonance at the parameters V0 ≈ 50ER, τ = 300 ns, and T = 9.93 µs. For this data, we adjusted the lattice depth
V0 for different interaction strengths to achieve the same amount of absorbed energy after the first N/2 kicks. This
compensates for a decrease in energy absorption at the same lattice depth for higher interaction strengths, which
we attribute to the increase of the Thomas-Fermi radius of the BEC relative to the lattice beam size. Neglecting
this effect would artificially enhance the fidelity at very large interaction strengths due to a reduction in the effective
stochasticity parameter K. We plot the zero mode fraction after the first N/2 kicks without time-reversal (denoted
F ′ Gauss) in Fig. S6 to benchmark this kicking amplitude normalization procedure.

After the first N/2 kicks, we wait a half period T/2 to shift the wavefunction spatially by half a lattice spacing,
causing the sign of subsequent kicks to be reversed. We then apply another sequence of N/2 kicks using the same
lattice parameters to complete the echo sequence. The time series in Fig. 3C-E show absorption images averaged over
5 shots for each kick number n in a N = 10 experiment. Since we begin with a zero-momentum condensate mode, to
measure the Loschmidt fidelity we simply need to count the fraction of atoms remaining in this mode. While atoms
in other momentum modes coupled by the lattice are easily distinguished, atoms that have undergone scattering
events into a smeared-out background distribution are not always well-separated. Thus, to extract the return fraction
we fit the axial atomic distribution around the zero-momentum mode with a pair of Gaussians of varying width.
The narrower Gaussian accounts for atoms remaining in the zero-momentum condensate after expansion, while the
broader Gaussian measures the atoms that have been collisionally ejected from the condensate [40, 41]. In Fig. 3B, we
show the fraction of atoms remaining in the narrow Gaussian and use this quantity as an estimate of the Loschmidt
fidelity. Scattering during the expansion means that this necessarily underestimates the true fidelity, a possibility
further addressed in section 2.6.
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1.4. Noninteracting QKR numerics

One-dimensional simulations of the noninteracting kicked rotor problem for comparison with experimental data are
executed in two ways. We either perform a split-step Fourier integration of the QKR Hamiltonian (S2) (ignoring the
transverse distribution I(x, y)) to model the finite-width pulse shapes, or iterate the QKR Floquet map described
in the main text. The simulations are typically performed with periodic boundary conditions over a single lattice
site (except when modeling the TOF readout; see section 2.4). We perform a Gaussian sampling of quasimomenta
with standard deviation ∼ 0.1kL, in rough accordance with the measured BEC temperature of around 10-15 nK. For
simulation of the stochastic kicking protocol, we use the same techniques and additionally average over 100 different
realizations of the fluctuations (note this is slightly different than in the experiment where a single kick period disorder
realization is used).

1.5. Kicked XXZ model numerics

To investigate the mapping between spin chains and kicked quantum rotors and the possibility of many-body
dynamical localization in kicked XXZ chains, we perform exact diagonalization of UkickedXXZ on systems of length
up to L = 14. We center the chains about j = 0 (i.e. j ∈ [1 − L,L − 1]/2, integer for L odd and half-integer for L
even) and consider open boundary conditions. Reflection symmetry about the center of the chain can be removed by
inclusion of a non-zero fluctuation in the field-center β.

In Fig. 4F, the time average of an observable O after n cycles is straightforwardly defined as 〈O〉n =(∑n
i=1 〈ψ|U

†i
kickedXXZOU

i
kickedXXZ |ψ〉

)
/n. The long-time limit of this quantity in Fig. 4G is calculated via the

Floquet diagonal ensemble as limn→∞〈O〉n =
∑
α |cα|

2 〈ψα|O |ψα〉. Here cα = 〈ψα|ψ〉 are the coefficient of the ini-
tial state |ψ〉 in the basis of the many-body Floquet states |ψα〉 obtained from diagonalization of the Floquet map
UkickedXXZ [42].

The gap ratio is defined as rα = min (δα, δα+1) /max (δα, δα+1), where δα = εα+1−εα is the gap between consecutive
quasi-energies and εα are the quasi-energies. The εα are ordered in the interval [−π, π] prior to extracting the gaps
and gap-ratios. To compute 〈r〉 in Fig. 4H, we average rα over the M = 0 sector as well as for 100 values of β drawn
from a normal distribution of standard deviation 0.1. The Hilbert-space size of this sector for L = 14 is 3432. We
note that we avoid the exact K = 0 point for gap-ratio calculations.
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Fig. S1. Interaction-induced delocalization for a different set of kicking parameters. The kick parameters are
V0 = 70ER, T = 2.2 µs and τ = 300 ns (K ≈ 4.6 and k̄ ≈ 2.8). The (A) energy, (B) 1D momentum-space IPR and (C)
deviation from exponential localization over time for varying scattering lengths. In A, the shaded regions indicate the extracted
initial localization lengths for the three interaction strengths which we use for computing C.

2.1. Additional Delocalization Data

To supplement the dynamical delocalization signals shown in Fig. 2 and demonstrate that this is not a particularly
fine-tuned phenomena in the kicking parameter space, in Fig. S1 we show the same metrics for a larger kicking period
T = 2.2 µs. The overall picture is unchanged, as the interacting samples show starkly different behavior from the
noninteracting traces, departing from the localized value of each metric after a variable break time. Here the energy
delocalization is obscured slightly as the different interaction strengths seem to initially localize to different energies.
We attribute this partly to Thomas-Fermi expansion which reduces both the effective lattice depth experienced by
the condensate and the initial kinetic energy of the sample, though we do not entirely rule out the possibility of
different early-time prethermal behavior across interaction strengths. The correlation between localization length and
quasimomentum spread is observed in noninteracting numerics. The different-colored shaded regions indicate our best
estimates for the different localization energies at the 3 interaction strengths by computing the mean energy (and
standard deviation) over windows of n where the data are minimally changing. These values are used to compute
the exponential localization deviation in Fig. S1C. We do note a small trend visible at the end of the noninteracting
traces; numerics suggest that this is consistent with variations in the localization length that occur over time for
certain kicking parameters.
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Fig. S2. Characterizing Monte Carlo distributions for deviation from exponential localization. (A) Distribution
for the 760a0 data in Fig. 2 at n = 500. Orange line indicates the fit to a log-normal distribution. Vertical dashed line indicates
the mean, and the vertical dotted lines surrounding it indicate the interquartile range reported as the errorbars. (B) Evolution
of the distribution over time for noninteracting and interacting samples. Note the difference in y-scale. The n = 42 trace in
the lower panel is cut-off vertically for visual clarity on the larger n distributions. (C) Alternative characterizations of the
exponential localization deviation in terms of the mode and median of the simulated distributions (indicated by the markers,
the errorbars are left as the interquartile range), as opposed to the mean shown in the main text Fig. 2I.

2.2. Monte Carlo distributions for exponential localization deviation

In Fig. S2, we show further details on the Monte Carlo simulated distributions for quantitatively characterizing
the deviation from exponential localization in Figs. 2I and S1C (in particular this data corresponds to Fig. 2I). The
distributions are generated by computing the defined deviation parameter for 104 values of kloc drawn from a Gaussian
centered at 1.58kL and with standard deviation 0.12kL. An example distribution for a sample which has delocalized is
shown in Fig. S2A, clearly showing the skewed probability densities we obtain from this procedure. The solid orange
line indicates the log-normal distribution fit we use to extract parameters such as the mean and interquartile range of
the distribution. We note that the use of a log-normal distribution here is only motivated empirically as a systematic
method to determine such quantities.

In Fig. S2B, we contrast how these simulated distributions evolve in time for localized noninteracting samples and
delocalizing interacting ones. In the noninteracting case, the distributions are extremely sharply peaked at 0 and
are relatively unchanging in-time, agreeing with the expectation of dynamical localization. In the latter however, the
distribution is only peaked at 0 for short times indicative of the finite duration prethermal plateau we report, and
gradually shifts away to non-zero values as the sample heats up. Importantly, at the later times the 760a0 distribution
has essentially vanishing probability density at 0 deviation, allowing us to confidently claim observation of departure
from exponential localization. In Fig. S2C, we confirm that the reported behavior of deviation over time in Fig. 2I
would not qualitatively change if we instead used the median or mode of the distribution instead of the mean.

2.3. Systematics: Finite pulse width

The delta-function kicking assumption in the theoretical QKR model is not perfectly realized in experiment owing
to the finite atomic mass of 7Li. The assumption corresponds to the Raman-Nath diffraction regime which is approx-
imately expressed by the condition 2

√
V0ERτ/~ � 1 [43]. For the experiment with τ = 0.3 µs and V0 = 64ER as in

Fig. 2, this parameter is approximately 0.76 (there is an ambiguity of a factor 2π in defining the condition [44], which
would reduce the parameter to 0.12). Either way, this suggests that the system is in between the Raman-Nath and
Bragg diffraction regimes and thus finite-pulse-width effects require careful investigation.

We numerically explore the effects of realistic pulse duration on single-particle QKR localization by comparing
square pulse simulations of varying pulse width τ to the delta-kick Floquet map solution. To make this comparison,
we keep the effective stochasticity parameter K ∼ V0τ characterizing the kicking strength constant as we let τ → 0.
Results for two values of K are shown in Fig. S3. In general, we find that larger pulse duration tends to decrease
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Fig. S3. Effects of finite pulse width on noninteracting QKR localization. (A) Time evolution of energy for K = 2.3.
The τ = 300 ns trace is comparable to the data in the main text. (B) Equivalent simulation for K = 5. The relative difference
in localization energy between the achievable finite pulse durations in our experiment and the delta-kick limit becomes much
more substantial at larger K.

the localization energy, which from a classical perspective corresponds to a particle traversing a significant part of
the cosine potential during the kick and thus feeling a smaller effective impulse. This effect depends on the value of
K which determines the extent to which higher momentum modes are excited in the localized state. The many-body
delocalization data in the main text was taken around K ≈ 2.3. These simulations indicate that for this data there
is a roughly 20% decrease in the measured noninteracting localization energy with respect to the delta-kick limit.

The finite pulse duration can be thought of as leading to an effective kicking strength which decays with increasing
momentum, causing even the classical phase space to localize above a certain momentum [45]. This is an important
consideration in probing the destruction of the quantum dynamical localization which occurs in the classically chaotic
regime. For our parameters, the estimate given in [45] for the momentum boundary between classically chaotic and
integrable regions due to pulse width is roughly ±33.2kL, which is much larger than any excitation we observe in
the data for Fig. 2 and S1. Thus we do not expect that the finite pulse duration qualitatively affects the observed
delocalization dynamics.

We note that the reduction of absorbed energy by finite pulse width does play a practical role in determining
which sets of system/kicking parameters are amenable to observation of interaction-induced delocalization. Because
collisional processes are proportional to real-space density-density overlaps between different momentum modes, for
a poor choice of kicking parameters a strong excitation of higher momentum modes in conjunction with real-space
expansion (discussed in the next section) may rapidly dilute the system, and yield an effectively non-interacting
sample before the interaction-induced delocalization break time.

2.4. Systematics: Position space dynamics and TOF conversion

From a theoretical perspective, the difference between open and periodic boundary conditions in the single-particle
QKR is resolved by Bloch’s theorem [46, 47]. Different quasimomenta evolve independently, manifesting different
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Fig. S4. Effects of position-space dynamics on extracting energy from TOF images. Noninteracting numerical
simulations comparing different methods for measuring energy in TOF and the true energy of the kicked rotor. (A) The
kicking parameters are comparable to the ones used in the main text (T = 1.2µs and τ = 300 ns), but with lattice depth
reduced to V0 = 38ER to compensate for modeling only delta function kicking. We expect that the strong oscillations shown
here are largely washed out in the experimental data by effective averaging over kicking strengths due to transverse extent of
the condensate and fluctuations in the beam intensity from run-to-run. The traces here are sampled every 30 kicks for visual
clarity, and the energy actually fluctuates at a much higher frequency. This simulation reveals that for the main data, the
correct energy is straightforwardly extracted by simply using the TOF time to convert position to momentum. The vertical
line indicates the max kick number reached in the data. (B) A similar simulation but with T = 2.2µs roughly corresponding to
the supplementary delocalization data in Fig. S1 (with adjusted lattice depth V0 = 52ER). To illustrate the potential pitfalls
of the readout method, here we model a TOF duration of only 2 ms, as opposed to the 3.5 ms used in the experiment. In this
case, using only the TOF time in the velocity conversion leads to a false delocalization signal at late times. Instead, we show
than an additional method using the TOF duration plus half the kicking time leads to the most faithful representation of the
QKR energy for the longest time. We chose to use this conversion in the analysis of S1, though our simulations do not indicate
a large difference between these two methods when modeling the full 3.5 ms TOF and restricting only to the max kick number
indicated by the vertical line. Here the sampling is every 15 kicks for visual clarity.

realizations of pseudo-randomness in the Anderson model mapping. The connection between the theoretical QKR
and kicked quantum gas experiments is made by considering ensemble averages over quasimomenta. However, in
practice, experimental readout of the kinetic energy even in the noninteracting case can be further complicated by
spatial motion in a non-compact position variable during the course of the kicking. This effect was largely negligible for
many previous QKR realizations using heavy atomic species and/or short kicking durations, but in these experiments
using light 7Li atoms and large kick numbers, careful consideration of the effect is required for an accurate energy
measurement. Ideally, one would simply extend the TOF duration to suppress such effects, but technical limitations
associated with the imaging procedure mean that this cannot be done indefinitely.

In interpreting the TOF absorption images as momentum space distributions, one must convert pixel position to
velocity by dividing by an appropriate time. Without spatial motion, the correct time is trivially just the TOF
duration. With spatial motion, a strict lower bound on the velocity conversion is set by the combined duration of
the kicking and TOF which is equivalent to the assumption that each momentum mode propagates ballistically for
the entire course of the experiment, ignoring the reshuffling of momentum modes by repeated kicking. To determine
which conversion scheme leads to the most accurate energy measurement, we simulate the delta-function QKR model
with an extended position space variable to model the TOF expansion explicitly. We are then able to compare the
exact energy with various position-to-velocity conversions to determine the best metric.

Simulations for different kicking parameters and TOF durations are shown in Fig. S4A and B, revealing that in
fact the simplest approach of using the TOF to convert position to momentum works well for the parameters of
the experiments reported in the main text. For experiments at other parameter values, however, the appropriate
conversion can change. In Fig. S4A corresponding to the main data, we show that simply using the TOF as a
conversion factor matches the true energy. For the simulations in S4B, however, adding in half of the kicking duration
gives a substantially more accurate approximation of the true energy than the simple TOF conversion, which produces
a false delocalization signal at longer times. We also examine “box”-counting schemes where the image is instead
binned into discrete modes which are multiples of 2kL momentum, though the added complexity of this scheme is not
justified by the results.
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Fig. S5. Transverse dynamics in experimental quantum kicked rotors. Measured transverse kinetic energy versus time
for the main delocalization data in Fig. 2. Each interaction strength undergoes an oscillation due to harmonic motion in the
time-averaged lattice potential. The difference in evolution among different interaction strengths is due to scattering effects.

2.5. Systematics: Beam-induced transverse dynamics

While the main concern of QKR experiments is with momenta along the lattice direction, our experiments are
three-dimensional and degrees of freedom transverse to the lattice beam cannot in general be ignored especially in
the presence of scattering. In Fig. S5, we explicitly show the measured transverse kinetic energy for the main
delocalization data in the text. Here we can see all three interaction strengths undergoing an oscillation in their
transverse energy, which can be interpreted simply as harmonic motion in the time-averaged intensity distribution of
the pulsed Gaussian lattice beam. The clear difference in the evolution between the different interaction strengths
indicates the effects of 3D scattering for a system with uniform I(x, y). As discussed in the Methods section 1.2,
this motivates inclusion of the difference between the noninteracting and interacting transverse energy traces in the
plotted energy of Fig. 2. We have separately confirmed that ignoring the transverse dynamics altogether does not
eliminate the observed delocalization signal.

2.6. Systematics: Effects of scattering on measured Loschmidt fidelity

Readout of the momentum distribution of interacting samples can be complicated by scattering during the TOF,
and this particularly impacts the measurements of metrics such as IPR and return probability F , where the signatures
of scattering events occurring at different stages of the experiment (i.e. during the lattice pulse trains versus during
the time-of-flight) are not easily extracted from the resulting distribution. Here we examine how scattering affects
the reported Loschmidt echo return probability shown in Fig. 3. In Fig. S6 we present a comparison of two different
methods for measuring the fidelity, which we argue should bound the true value and indicate the effect of this
systematic. The Gaussian fitting method was described in the methods section 1.3 and presented in Fig. 3. The raw
counting method computes the fidelity by integrating the raw distribution in a ±kL width around the central mode. If
all the scattering occurs prior to the TOF, then the Gaussian fitting method is the appropriate counting procedure, as
it discards all scattered atoms and only counts the remaining zero-order atoms. If, however, the majority of scattering
occurs during the TOF, then this population should be included in the return probability, and so the raw counting
method would more accurately reflect the true fidelity.

In Fig. S6A, we compare these two methods before (red) and after (blue) the application of the time-reversal kicks,
as a function of scattering length. In both cases we find that the raw counting method measures a higher fidelity than
the Gaussian fitting method due to accounting for the scattered population. As expected, the two converge in the
noninteracting limit where the overall scattered population vanishes, but become different as the scattering length
and consequently the scattered fraction increase (the dependence of scattered fraction on scattering length is plotted
in Fig. S7). This behavior of the Gaussian fitting and raw counting methods is consistent with the limits of validity
expected for each, and supports the claim that the two methods bound the systematic measurement error in counting
the zero-order population that results from scattering during the TOF.

Having established approximate bounds for the true fidelity as a function of scattering length, we further remark
that both methods produce a time-reversed fidelity which exhibits a crossover in behavior as a function of scattering
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Fig. S7. Experimentally measured scattered fraction during Loschmidt experiments. (A) TOF absorption images
of a BEC after an N = 8 Loschmidt protocol at various scattering lengths. (B) Corresponding scattered fraction as computed
using the Gaussian fitting described in the methods section 1.3.

length. The fidelity as a function of a grows with weak interactions, and it becomes constant, or even decreases, as
a function of a with stronger interactions. We note also that imperfect calibration of the effective kicking strength
could give rise to errors in the measured return fidelity. In Fig. S6B, we attempt to account for this effect across the
two methods by considering the difference in fidelity before and after the set of time-reversal kicks. This produces
two curves of similar functional form, further supporting our observation of a crossover into interaction-induced
irreversibility.

2.7. Interpretation of the kicking in the spin chain mapping

For the single-particle QKR, it is standard to consider periodic pulsing of the spatial potential separated by intervals
of free kinetic energy evolution. In the spin-chain mapping, this corresponds to pulsed spin-exchange interactions and
free evolution in a quadratic magnetic field. In the main text, we describe the exact mapping of the QKR parameters K
and k̄ in U to the spin model UkickedXXZ, but instead take the interpretation of an interacting XXZ Hamiltonian with a
pulsed quadratic magnetic field, which we expect will be the most natural implementation in analog quantum platforms
(the inherent Trotterization of a kicking Hamiltonian naturally lends itself to digital quantum simulators [48]). We
remark that such a distinction is only manifest at the level of the micromotion operator [49]. For the stroboscopic
dynamics and Floquet level statistics analyzed in Fig. 4, the problems are identical and simply require a relabeling
of parameters. In particular for the interpretation we take with a pulsed quadratic field, K/k̄ should be reinterpreted
as a spin-spin coupling multiplied by the kicking period, and k̄ as the magnetic field impulse.
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2.8. MBDL for anisotropic kicked XXZ chains

Here we show that the isotropic ∆ = 1 case considered in Fig. 4 is not a fine-tuned point for realizing MBDL in
the kicked XXZ model. In Fig. S8A and B, we show the gap-ratio parameter computed for ∆ = 0.5 and ∆ = 2
respectively. In both cases we observe a transition from MBDL to chaos as the interaction strength K is increased,
which is qualitatively similar to that of the ∆ = 1 case. We find that the region of K for which the MBDL phase
exists shrinks as the value of ∆ is increased. For ∆ = 0 (noninteracting), we find that 〈r〉 agrees with the Poisson
prediction for all values of K shown here.
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[111] T. S. Monteiro, A. Rançon, and J. Ruostekoski, Nonlinear resonances in δ-kicked
bose-einstein condensates, Phys. Rev. Lett. 102 (Jan, 2009) 014102.
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