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Abstract

Driving Fast and Slow: Dynamics of Periodically Modulated Quantum Gases

by

Roshan Sajjad

Driven degenerate quantum gases are flexible platforms that allow for rich investiga-

tions of quantum dynamics. Certain gases, such as Bose-Einstein condensates of 7Li, also

afford the ability to tune interactions and thus study quantum many-body phenomena.

In this thesis, I present three experiments which explore dynamic and thermodynamic

quantum behavior using both periodic driving and interaction control. The experiments

span a range of frequencies from Hz to MHz, and elucidate fundamental phenomena of

localization and energy transfer. I will first describe an experiment which introduces

interactions to the quantum kicked rotor, a prototypical quantum chaotic system, and

observe the role interactions play in localization. I will then show how using the same

system with altered symmetries can create a probe for previously unobserved dynamical

signatures of Anderson localization. Finally, switching to a completely different regime,

I’ll outline how a slowly driven quantum gas can be used to realize a novel quantum

thermodynamic engine.
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Chapter 1

Techniques of Quantum Control

1.1 Foreword

The story I’m about to tell you should invoke the same feeling you got when you were

a child entering your first playground. The structures before you were intimidating, the

possibilities were endless, and you were excited to see and experience it all. This feeling

has held firm throughout my graduate school career, and hopefully I can convey some of

that emotion in this work. Indeed, building and maintaining an atomic physics machine

is very akin to creating a playground, while performing experiments evokes the joy of

using one.

The experiments I’ll be discussing in this thesis involve two topics: localization and

thermodynamics. These topics are fundamental in condensed matter and statistical me-

chanics, and our ultracold atom machines are well-suited to explore outstanding physics

questions pertinent to them. This work will also demonstrate the power cold atom

machines have for investigating problems in wildly different regimes. The first two ex-

periments I discuss will analyze the behavior of atoms driven by MHz-sacle frequencies,

while the last will involve driving atoms at just a few Hz.
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Fig. 1.1: The daily choice given to every experimental graduate student

A brief warning for future students: These machines are beasts that are impossible

to fully tame, and will never be perfect. As an experimentalist, when using them you

should always solve problems faster than they appear. I like to imagine that the ability

to use them for science has a not-so-well defined 2D phase transition, with the two

dimensions being “improving technical components” and “pushing for data” (Fig. 1.1).

The former involves working to increase reliability, performing machine upgrades, and/or

buying new equipment to improve the output of the experimental apparatus. The latter

involves relentlessly taking data, analyzing it, and feeding back to take more data until

hypotheses have been proven or disproven. The balance between the two is essentially a

competition between whether your machine is good enough and whether YOU are good

enough, and is a choice each graduate student faces every single day. It’s always difficult

to determine the right answer, but those who make the correct decision more often than

2
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not will probably find themselves happier with their graduate school experience.

The layout of this thesis is as follows: The first chapter will detail the main techniques

of quantum control relevant to our experimental setup. Chapter 2 will describe the

experimental apparatus and the multi-step procedure required to create our ultracold

atoms. These first two chapters are rather high level, as many of the apparatus details

can found in earlier group theses [1–3]. There is a jump in technical complexity for

the latter 3 chapters of the thesis, which describe experiments that I specifically worked

on. Chapter 3 discusses the interacting quantum kicked rotor experiment, which is a

prerequisite to Chapter 4, detailing the observation of the quantum boomerang effect.

Chapter 5 will end the thesis by describing our novel quantum thermodynamic engine.

But before we get there, let’s start with the basics.

1.2 Lithium

The experiments discussed in this thesis were all performed with 7Li, which will act

as the starting point of our discussion on quantum control. 7Li has many properties that

are advantageous for performing quantum science, including:

• a single valence electron which yields an accessible level structure

• two hyperfine ground states with a convenient microwave transition of 803 MHz.

• a low mass of 7 amu, allowing for fast dynamics and tunneling

• tunable interactions via a broad Feshbach resonance

I’ll explain each of these points in finer detail in this section.

7Li is a bosonic element with 3 protons and 4 neutrons, and has 93% isotopic abun-

dance. It is an alkali metal, meaning it has one valence electron, and this dictates much

3
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of its quantum mechanical level structure. An atom’s level structure can be expressed

with Russel-Saunders notation, written in the form 2S+1LJ . Here S is the electron spin

quantum number, L is the orbital quantum number, and J is the total angular momen-

tum quantum number. For 7Li, S = 1/2 due to the lone valence electron, and the ground

state is the 2S1/2 state. Fig. 1.2 shows the full level diagram for the first few energy levels

of 7Li, including the hyperfine splitting caused by the interaction of the nuclear magnetic

dipole moment with the magnetic field created by the electron. For the remainder of

this thesis, the transition from the ground state to the 2P1/2 state will be referred to as

the D1 transition, and the transition from the ground state to the 2P3/2 state as the D2

transition.

There are a few things to note. First, the transitions from the ground to the first

excited states occur around 671 nm, meaning most of the lasers used to experimentally

address these states are red, typically giving the lab a sinister glow. Second, the two

ground state levels are split by 803.5 MHZ, which is a convenient frequency to address

via radiofrequency (RF) synthesis. RF by definition falls into the range of 3 kHz to 300

GHz, and the 803.5 MHz frequency happens to fall into one of the major frequency bands

for cell phones, making commercial electronics for this frequency readily available. Third,

the energy differences between the 4 magnetic sublevels in the upper excited state 2P3/2

are all <10 MHz. This is a rather small difference compared to the natural linewidth

of the transition (Γ = 2π ∗ 5.9 MHz), and causes some ambiguity for which state the

atom goes into when excited to this manifold (the hyperfine levels are unresolved). This

subsequently causes ambiguity for which state the atom will decay into, which creates

the need for additional lasers to address the full spectrum of states.

For exploring novel physics, 7Li’s light mass of 7 amu allows for fast dynamics and

tunneling. The relevant energy scale of most experiments discussed in this thesis is the

recoil energy ER = ℏ2k2L/2m where kL is the wavenumber of laser light and m is the

4
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Fig. 1.2: 7Li level structure, taken from [2]

mass of 7Li, 7 amu. The light mass in the denominator makes the energy scale larger

than those of other typical atoms used in AMO experiments (ie. Rb has a mass 12

times larger than 7Li), and accordingly the relevant time scales for experiments are much

shorter, typically on the order of a few ms or less.

Finally, lithium has a broad Feshbach resonance, allowing for interactions to be tuned

via an applied DC magnetic field. This is further outlined in 1.5, but for now I’ll say

this has many experimental benefits. The ease of interaction control makes 7Li an ideal

tool for studying many-body quantum systems, where a collective of quantum particles

can interact amongst themselves. Studying these types of systems is currently one of the
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largest theoretical and experimental challenges in quantum science, and has applications

for quantum simulation, sensing, and computing.

1.3 Laser Cooling

To get from a discussion of atoms to a discussion of experiments, we will need to trap

the atoms and make them behave quantum mechanically. To achieve this, we’re going to

cool them down to near 0K, initially using a technique called laser cooling. Laser cooling

is a counterintuitive method of reducing the temperature of atoms with laser light. While

the nonscientist may have only seen lasers heat objects and/or blow them up in modern

media, on smaller scales they interact with matter in a very different way. Consider a

laser beam moving towards a counter-propagating beam of atoms. The atoms are dilute

and identical, so each atom can be considered individually, and the laser can be treated

as a collimated stream of monochromatic photons. If the photon frequency is close to

a resonant transition in the atoms, then an atom can absorb a photon from the laser

and re-emit it in a random direction. This process can happen many times, and each

interaction must conserve both energy and momentum. Since the emitted photons from

the interaction scatter isotropically, each absorbed photon will impart some momentum

opposite to the direction of the atoms motion. Collectively, this interaction gives rise to

the scattering force [4]. The scattering force can be calculated by multiplying the photon

momentum by the scattering rate:

Fscatt = ℏk
Γ

2

s

1 + s+ 4δ2/Γ2
. (1.1)

Here ℏk is the photon momentum, Γ the linewidth of the transition, s = I/Isat

the saturation parameter (the intensity divided by the saturation intensity), and δ =

6
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ω−ω0+kv the detuning, taking into account the doppler shift. In the limit of infinite laser

power, I → ∞, the maximum amount of force that can be applied if spontaneous emission

is involved is Fmax = 1
2
ℏkΓ. Using the kinematic equation for constant acceleration

v20 − v2 = 2aL, (1.2)

with a the acceleration, we can estimate the length L of atom-light interaction re-

quired to ”stop” the atoms. For our experiment the 7Li atoms start at a temperature of

550 K, corresponding to an initial velocity v0 ≈ 1km/s. Typical a values fall around

a ≈ 1

2

Fmax

m
=

ℏkΓ
4m

(1.3)

with m the mass of 7Li. The full stopping distance is then

Lstop =
v20
2a

≈ 2mv20
ℏkΓ

(1.4)

For 7Li, k = 2π/671nm and Γ = 2π ∗ 5.9 MHz, yielding Lstop ≈ 1m. As we’ll see in

Chapter 2, this sets the length scale required to initiate the cooling process to quantum

degeneracy.

It is difficult to understate how important laser cooling is to the field of AMO physics.

Throughout this thesis we’ll see how it helps achieve sub Kelvin temperatures for 7Li,

but it’s worth noting that this technique is ubiquitously used regardless of element and

particle. Indeed, atom, ion, and molecule trappers owe their existence to the discovery of

laser cooling, and it is no surprise that this technique warranted the highest accolades. In

1997, Claude Cohen-Tannoudhi, Steven Chu, and William Phillips won the Nobel Prize

in Physics “for development of methods to cool and trap atoms with laser light” [5].

7
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1.4 Bose-Einstein Condensation

As atoms are cooled, it’s useful to describe what happens to their de Broglie wave-

length:

λdB =
h

p
=

h√
2mkBT

(1.5)

This quantity is an intuitively easy way to understand the wave-like nature of parti-

cles, and represents the spatial extent in which the particle can reside. For a 7Li atom at

room temperature, λdB ≈ .7Å, on the length scale most people are familiar with when

learning about atoms in high school chemistry. However, as the temperature is lowered

to 10 nK, typical of the temperatures achieved in the lab, λdB ≈ 12µm, much larger than

the interparticle spacing in the atomic cloud. In this regime, the wavefunctions of the

atoms overlap and constructively interfere to give rise to a collective matter wave, the

Bose-Einstein condensate (BEC). This is pictorially shown in Fig. 1.3.

While Fig. 1.3 shows a nice intuitive visualization of Bose condensation, the quantum

mechanical behavior of the atoms can be understood in more detail from a statistical

mechanics treatment. We start by recalling the expected occupation number for a single

particle state i for bosons:

⟨Ni⟩ =
1

e(Ei−µ)/kBT − 1
(1.6)

where Ei is the energy of the single particle state i and µ is the chemical poten-

tial. At high temperatures this effectively recovers the Boltzmann distribution, ⟨Ni⟩ ≈

e−(Ei−µ)/kBT . Now let’s consider the ground state occupation, N0 = [e(E0−µ)/kBT − 1]−1.

Here the difference between the ground state energy E0 and µ is small compared to kBT ,

and allows for the expansion

8
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Fig. 1.3: Transition of particles from the “billiard ball” picture to Bose-Einstein con-
densation, taken from [6]. As they are cooled, particle de Broglie wavelengths get
larger and larger until there is a collective overlap, whose resulting interference cre-
ates a matter wave.

Ei − µ ≈ kBT

N0

. (1.7)

As T → 0, we see the energy difference and thus the exponent in 1.6 go to 0, which

causes N0 to become large. This macroscopic occupation of the ground state is the key

feature of BECs, as all particles in the condensed phase share the same wavefunction.

The temperature where this transition occurs for a harmonically trapped 3D Bose gas is

Tc ≈ 3.31
ℏ2n2/3

mkB
, (1.8)
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with n the density, derived in [7]. The density of the 7Li atomic cloud is roughly 1012

atoms/cm3, giving Tc ≈ 250 nK. The condensate fraction n0, or the proportion of atoms

in the condensed phase, is given by

n0 =
N0

N
= 1−

(
T

Tc

)3/2

. (1.9)

Thus as the temperature is decreased, more atoms enter the condensed phase from the

thermal fraction (nth = 1 − n0). The above describes condensation of a non-interacting

Bose gas, but in practice BECs have a finite interaction strength. The treatment of

interactions can be quite complex, as exact solutions become quickly intractable as the

particle number is increased. However, approximations can be made to glean overall

behavior while reducing computational complexity. One of the most commonly used

approximations is known as the Gross-Pitaevskii equation, which treats the interactions

as a mean field term in the time-dependent Schrodinger equation:

(−ℏ2∇2

2m
+ V (r) + g|ψ(r, t)|2)ψ(r, t) = Eψ(r, t). (1.10)

Here the coupling constant g = 4πℏ2as/m represents the mean field interaction, and

is proportional to the s-wave scattering length. The potential V (r) for our experiments

is typically a 3D harmonic potential. In the strongly interacting limit, known as the

Thomas-Fermi approximation, the kinetic energy term in 1.10 can be neglected, yielding

a ground state density

n(r) = max(
µ− V (r)

g
, 0). (1.11)

This distribution is parabolic while the right hand side of 1.11 is positive and 0

otherwise. An example atomic image of this distribution is shown in Fig. 1.4. The
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Fig. 1.4: BEC profiles. The left panel shows an example image of a BEC taken in
our lab after no free expansion. The right shows an integrated density profile, with
a bimodal fit (Gaussian + parabolic profiles) to distinguish the thermal fraction and
the condensate.

difference between the parabolic profile and the background thermal fraction is shown.

BECs are the backbone of the experiments discussed in this thesis, and are the main

tool used in the lab to explore quantum dynamics and localization behavior. In the next

few sections, I’ll discuss some of the tools we use to control BECs in coherent ways.

1.5 Feshbach Resonances

As stated earlier, a key feature of 7Li is the tunability of its interatomic interaction

strength via a Feshbach resonance. Feshbach resonances have been studied theoretically

and experimentally for decades, as outlined nicely in [8], and have served as useful tools

for controlling interactions and creating molecules.

The basic concept of a Feshbach resonance can be understood by analyzing the be-
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Fig. 1.5: Functional form of the scattering length around the Feshbach resonance.

havior of two atoms in a scattering event. After a collision, the atoms can occupy one of

a few exit channels, namely they can scatter off of one another or form a bound state.

If the bound state and scattering state have different magnetic moments, their relative

energy can be tuned by the application of a DC magnetic field. A Feshbach resonance

occurs when the energies of the two exit channel states are approximately equal, and at

this resonance there is significant mixing between the bound and scattered state. In the

vicinity of the Feshbach resonance, the s-wave scattering length becomes a function of

the magnetic field with the form:

a(B) = abg(1−
∆

B −B0

) (1.12)
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where abg is the background scattering length, B0 is the magnetic field at the location

of the Feshbach resonance, and ∆ is the width of the resonance. The zero crossing, where

a(B) = 0, occurs at B = B0 +∆. For 7Li, abg = −24.5, ∆ = −192.3, and B0 = 736.8G,

all characterized in [9]. The functional form is shown in Fig. 1.5.

We use an H-bridge to switch our magnet coils from an anti-Helmholtz configuration

to a Helmholtz configuration, and tune the current in the coils via a high power current

supply to achieve our desired interaction strengths. Characterization of the scattering

length can be done via holding the BEC in a dipole trap and looking at cloud expansion

[9], or elastic and inelastic collisional loss rates [10]. From Fig. 1.5, it is also evident

that near the resonance the scattering length can change by hundreds of a0 over just a

few Gauss, and therefore magnetic field stability is key when investigating the regime of

large interactions. This is currently a very active area of improvement on the lithium

machine.

1.6 Optical lattices

While BECs are interesting on their own, the physics can be leveled up a notch by

having them interact with an optical lattice. An optical lattice is simply a retroreflected

far red-detuned laser beam (1064 nm for our setup), which creates a standing wave

potential at the atoms. The single particle Hamiltonian for a 1D optical lattice is

H =
p̂2

2m
+ V0cos

2(kLx) = −ℏ2∂2x
2m

+
V0
2
(1 + cos(2kLx)) (1.13)

where V0 is the lattice depth and kL = 2π/1064nm is the lattice wavevector. The con-

stant term V0/2 is typically dropped for simplicity. This Hamiltonian emulates a system

commonly studied in condensed matter systems — an electron moving in an atomic
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lattice — and thereby provides an novel platform for quantum simulation. Bloch’s

theorem applies due to the discrete spatial translation symmetry, and the eigenstates

can be written in the typical form of Bloch wavefunctions:

ψn,k(x) = un,k(x)e
ikx (1.14)

The Hamiltonian 1.13 is convenient to use when ψ is expressed in the basis of plane

waves:

ψ(x, t) =
∑
n

cn(t)e
2nkLx. (1.15)

Plane waves are eigenstates of the kinetic energy operator, ie. if |n⟩ = ei2nkLx, then

∂2x |n⟩ = −4n2k2 |n⟩ . (1.16)

The lattice term can be decomposed as follows:

V0
2
cos(2kLx) |n⟩ =

V0
4
(ei2kLx + e−i2kLx) |n⟩ = V0

4
(|n− 1⟩+ |n+ 1⟩) (1.17)

The lattice acts as a coupling to adjacent plane wave states! This form allows for easy

diagonalization of the Hamiltonian as well as computation of the band structure, which

act as a starting point for further quantum dynamics experiments. As an example, we

can add one more term to the Hamiltonian of the form Fx, where F is an applied force.

This gives rise to the famed Bloch oscillation, whereby a particle in a periodic potential

under the application of a linear force will oscillate. This is due to the Bragg scattering

condition off of the Brillouin zone edge. Typically this phenomenon is extremely difficult

to observe in electron systems due to rapid decoherence, but ultracold atomic systems

provide the perfect platform for its observation [11] due to their isolation and increased
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Fig. 1.6: Position and momentum space Bloch oscillations of a BEC in an optical lattice.

quantum control. An example of this phenomenon is shown in Fig. 1.6. The top row

shows in-situ images of a 7Li BEC in an optical lattice under the application of a force,

demonstrating an oscillation in position space. The bottom row shows the atomic images

after a time of flight (TOF), projecting the atoms into momentum space. The “jumps”

correspond to when the atoms scatter off of the Brillouin zone.

1.7 Kapitza-Dirac Diffraction

For the experiments discussed in this thesis, the lattice is pulsed periodically in time,

rather than operated in steady state. In the regime where the pulse duration is much

shorter than atom dynamics, coherent scattering of the matter wave off of the lattice can

occur, a phenomenon known as Kapitza-Dirac diffraction, analagous to optical diffraction

off of a physical grating. This effect is most simply understood in the Raman-Nath regime,

where the kinetic energy of the atoms can be neglected in the Hamiltonian, equivalent
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to the thin lens approximation in optics. This is well approximated when the atom-light

interaction time (experimentally, the pulse duration) is much shorter than the timescale

of the recoil frequency, τ << 1/ωrec. For
7Li interacting with 1064 nm light, ωrec = 25.18

kHz, so pulses must be much shorter than 40µs. Experimentally, the pulses used in this

thesis range from 300 ns to 5µs, satisying this criteria.

The physics of Kapitza-Dirac diffraction is fully described in [12]. However, there are

some easier points of intuition that can be understood without full mathematical rigor.

Firstly, the interaction with the pulsed optical lattice provides a means of transferring

momentum to the atoms. This is achieved via absorption of a photon with momentum

ℏkL from one lattice and stimulated emission of a photon with momentum −ℏkL into the

counterpropagating lattice, changing the momentum of the atom by a quantized amount

of 2ℏkL.

Mathematically, a kick with the lattice can be written as a propagator of the form

e−iV τcos(2kLx)/ℏ, with V the lattice depth and τ the pulse duration. Using the Jacobi-Anger

expansion, the propagator can be written as

e−iV τcos(2kLx)/ℏ =
∞∑

n=−∞

(−i)nJn
(
V τ

ℏ

)
ei2nkLx (1.18)

where Jn is the nth Bessel function of the first kind. From the summation we can

see that the lattice kick couples the atoms to adjacent momentum states with spacing

2ℏkL, and the probability of populating a 2nℏkL momentum state is proportional to

J2
n(V τ). Experimentally, after pulsing the lattice to achieve this coupling, we can allow

the atoms to undergo a free expansion (which I’ll refer to as a TOF, or time-of-flight, for

the remainder of this thesis) such that these momentum components resolve themselves

spatially, shown in Fig. 1.7. Larger lattice depths allow for more significant coupling to

higher momentum orders.
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Fig. 1.7: Kapitza-Dirac Diffraction. Images are of BECs subjected to a 3 µs optical
lattice pulse of varying depth, followed by a 2 ms free expansion. The spatial separa-
tion of each order to its neighbors is ≈ 200 µm.

This phenomenon will become relevant again in chapters 3 and 4, but I’ll also mention

that it provides a useful mechanism for calibrating the optical lattice depth. We can count

the number of atoms in each momentum order and compare the result to a numerical

TDSE simulation, accounting for finite width effects of both the BEC and lattice beam.

This is nicely outlined in [3].

1.8 Anderson Localization

So far in this chapter I have discussed properties of BECs and their interaction with

optical lattices, but zooming further out, what outstanding questions in physics can be

explored with these quantum systems? A key use case is quantum simulation, specifi-

cally the ability to replicate and explore Hamiltonians describing other physical systems,
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typically in condensed matter. One fundamental example of this is the concept of An-

derson localization. Anderson localization is a phenomenon whereby wave propagation

is suppressed in the presence of disorder. It was first suggested by P. W. Anderson [13],

who argued that electrons could localize in an atomic lattice if enough randomness is

present, ie. through defects or impurities. This behavior is present in a variety of physi-

cal systems, including semiconductors, photonic waveguides [14], and disordered optical

potentials [15], and provides a simple and useful framework for studying condensed mat-

ter systems.

For a 1-D lattice in the tight-binding limit, the Anderson Hamiltonian is

H = −J
∑
ij

(c†icj + c†jci) +
∑
i

ϵic
†
ici, (1.19)

where J is the hopping amplitude, c†i and ci represent the fermionic creation and

annihilation operators for site i, and ϵi is a random on-site energy at site i, drawn from

a uniform distribution [-W/2, W/2] where W represents the amount of disorder.

There are a few observations to be made here. In the disorder free case W=0, the

second term in the Hamiltonian goes to 0, the remaining term is translationally invariant,

and the eigenstates are simply Bloch waves. These states are maximally delocalized

through the system. The infinite disorder case J/W → 0 is also straightforward, with

eigenstates taking the form ψi(j) = δi,j. Intuitively, these eigenstates are localized to one

site, and an initial eigenstate in this limit will stay localized for all time t.

The interesting behavior in the Anderson model arises when there is competition be-

tween the hopping term and the disorder. In Anderson’s original work [13], he suggested

for strong but finite disorder, diffusive propagation will vanish for a quantum particle.

This occurs due to wave interference, as amplitudes which propagate away from the origin
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destructively interfere. In 1D and 2D, the amount of disorder required for localization

to occur is arbitrarily small, while in 3D there is a transition between the localized and

delocalized phases.

I’ve provided example MATLAB code for the 1D tight-binding model so new physi-

cists can explore the behavior themselves:

%Initialize parameters and create Hamiltonian

sites = 100; J = 1; W = 10;

eps = W*rand(1,sites)-W/2; %Random between [-W/2, W/2]

H = diag(eps.*ones(1,sites)) + diag(-J*ones(1,sites -1) ,1) +

diag(-J*ones(1,sites -1) ,-1);

% Initial localized state in 1 site

init(round(sites /2)) = 1;

%Prepare propagator

U = expm(-1i*H);

steps = 20;

%Matrix to save position distribution

px = zeros(length(init),steps +1);

px(:,1) = init.*conj(init);

%Time evolution

for ii = 2:steps +1
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init = U*init;

px(:,ii) = init.*conj(init);

end

figure (1)

imagesc(px)

The parameters J and W can be varied, and the change in localization behavior can

be easily observed, as seen in Fig. 1.8. Because the potential is randomly generated for

each instance of the program, the results will vary for intermediate values of J/W, and

the true behavior can be gleaned from averaging over many instances of the randomness.
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Fig. 1.8: Position space distribution of a quantum particle during evolution in a 1D
Anderson localized system for varying randomness W.
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Chapter 2

Experimental Apparatus and

Creating Ultracold Atoms

This chapter describes the apparatus used for the experiments discussed in the rest of

the thesis. The physical nature of the lithium BEC machine will be described, followed

by an explanation of the sequence used to cool atoms to quantum degeneracy. Aspects

of optical lattices, imaging, and control software are discussed in more detail towards the

end of the chapter.

2.1 7Li Bose Einstein Condensate Apparatus

Our experimental apparatus is a 10 foot long ultra-high vacuum (UHV) chamber

which generates BECs of 7Li. The procedure required to cool lithium to quantum de-

generacy is quite involved, but successfully creates robust and reliable BECs of up to

1 million atoms. For more in-depth discussion on the construction of the apparatus,

see [1–3]. A model of the machine is shown in Fig. 2.1, which will serve as a useful

reference throughout this section. To clarify the orientation for the rest of the chapter,
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Fig. 2.1: CAD model of the UHV lithium BEC machine. The atoms come out of the
oven section at speeds of 1 km/s, and are progressively cooled until they reach a final
temperature of 10 nK in the trapping region.

the oven is the north (N) side of the machine, and the trapping region is south (S).

The first (leftmost) part of the vacuum chamber is half-nipple attached to an elbow,

an oven housing a 25g roll of lithium heated up to 500C. The heated lithium becomes

a dilute vapor which exits the oven via a nozzle, created by placing 660 stainless steel

microcapillary tubes into a triangular groove. The nozzle collimates the atoms into a

beam by only passing atoms with small transverse velocities, with a divergence half-

angle of 1.2◦. This atomic beam first passes through a cold plate, an aluminum block

with a 1/2” diameter aperture that collects stray lithium atoms with larger divergence

angles. The cold plate is inserted into the vacuum chamber via a copper feedthrough.

As a brief aside, in the fall of 2023 we replaced the oven after running out of 7Li in

the oven after 4.5 years of use. After replacing the oven, we baked the oven at 560C

for a week, which caused a buildup of lithium on the old cold plate. Be wary of this

if increasing the oven temperature. Buildup on the cold plate can be seen by looking
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Fig. 2.2: Buildup of lithium on the old cold plate due to high oven temperatures. The
deposit blocked the aperture for the atomic beam, resulting in a lower flux into the
trapping chamber. This can be seen by eye when looking at the atomic beam before
and after the cold plate, with a drastic reduction in beam fluorescence at the output.

through the first viewport of the chamber after the oven 2.2. The newly machined cold

plate has a larger hole (1/2” instead of 3/8” diameter), and is placed slightly lower such

that the beam passes through closer to the center of the hole 2.3.

After the cold plate there is a section of transverse cooling (TC) to further collimate

the atomic beam. This is accomplished by taking both cycler and repump light, red-

detuning their frequencies by 3Γ, and aiming them at the atomic beam from the horizontal

and vertical viewports after the differential pumping tube. Both beams are retroreflected

to allow for full 2D steering. Traditionally, only the horizontal TC beam has provided an

advantage for the loading rate of magneto-optical trap (MOT), but that condition can

change if the atomic beam direction changes. Both beams are expanded via a cylindrical

telescope along the atomic beam direction to maximize coverage of the atoms. This

TC is crucial for the cooling sequence, as we’ve traditionally seen gains of 1.5-2x in the
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Fig. 2.3: Newly machined coldplate with no lithium buildup.

fluorescent MOT load rate when using it. The estimated saturation parameter for the

beam is .2 (Isat = 2.54 mW/cm2), and the addition of power into this beam has never seen

a roll off in MOT load increase. Future generations could think of installing a separate

tapered amplifier (TA) for TC as an option to increase MOT load rates.

Following the first TC section, there are 2 gate valves to separate the different sections

of the UHV system. The extra one is for redundancy, but these allow for replacement or

repair of one section of the machine without damaging the vacuum of the other.

While the atomic beam propagates through the UHV chamber, there is a counter-

propagating 671 nm laser beam, which we refer to as the Zeeman slower beam, that

originates at the other end of the chamber. The purpose of the slower beam is to cool

the atoms as they progress. Since the atoms slow down as they move closer to the science

chamber (due to interacting with more photons), they begin to fall out of resonance with

the slower beam. To compensate for this, there is a 1m long Zeeman slower placed before

the science chamber to complete the initial cooling of the atoms. The Zeeman slower is

a tapered solenoid that adjusts for the changing Doppler shift by applying a spatially
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Fig. 2.4: Li Zeeman slower.

dependent magnetic field. This applied Zeeman shift allows for cooling velocity classes

down to < 50m/s, the velocities necessary to capture the atoms in a magneto-optical

trap (MOT). To first order, the Zeeman shift is

∆EZ = gFmFµbB, (2.1)

which corresponds to 1.4 MHz/G for the 7Li D2 transition. After the Zeeman slower is

one more section of TC, to collimate the atomic beam before entry into the main chamber.

Importantly, the detuning of this second stage of TC (known as TC2) is smaller than

the detuning of the first stage of TC (TC1) to compensate for the fact that the average

transverse velocity class is slower further down the machine.

The main chamber has 5 optical access axes. There are 4 parallel to the X-Y plane

of the chamber, allowing for all horizontal arms of the various cooling stages. The N-S

axis viewports allow for the atomic beam to enter the main chamber from the north

and the slower beam to pass through from the south. The NW-SE and NE-SW axes

have four 6” diameter viewports which allow access for MOT, gray-molasses (GM), and

dipole-trapping beams, which are more thoroughly described in the following sections.
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The last planar axis, W-E, has one re-entrant window and is used both for an extra pair

of MOT beams (the initial six beam MOT was insufficient due to a physical constraint

of 65◦ on the horizontal MOT arms, so there are now 8 beams), as well as the optical

lattice optics. The last axis, running from the top to the bottom of the chamber, has two

re-entrant windows which allow for close placement of the MOT and Feshbach coils to

the atoms. This is also the main imaging axis of the apparatus. All chamber viewports

are anti-reflection coated for 671 nm and 1064 nm, but only the top and bottom are

also coated for 532 nm, the wavelength used for the plug beam during the magnetic

evaporation stage.

2.2 Cooling Sequence

This section will detail how to cool a dilute gas of 7Li to quantum degeneracy. More

information can be found in [1, 3].

2.2.1 Magneto-Optical Trap

After the atoms travel through the UHV apparatus into the main chamber, they are

captured in a magneto-optical trap (MOT). For our setup, this is a combination of eight

red-detuned 671 nm laser beams and a quadrupolar magnetic field. The laser beams

create an optical molasses that covers all spatial axes, and the quadrupolar magnetic

field applies a spatially-dependent Zeeman shift to bring atoms back into resonance with

the cooling beams as they move away from the trap center. The beams are all σ+ or σ−

polarized to ensure the atoms resonantly absorb photons from the beam that will push

them back towards the magnetic field zero location. A schematic of a MOT is shown in

Fig. 2.5.

The force created by the MOT can be understood by utilizing the equation for the
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Fig. 2.5: Schematic of MOT taken from [4]. Coils with current running in the anti-
Helmholtz configuration generate a quadrupolar magnetic field, while 6 laser beams
provide optical cooling along all 3 spatial axes.

scattering force 1.1:

FMOT = F σ+

scatt(ω − kv − (ω0 + βz))− F σ−

scatt(ω + kv − (ω0 − βz)) (2.2)

≈ −2
∂F

∂ω
kv + 2

∂F

∂ω0

βz.

The first term (∝ v) acts like a drag force, while the second term acts as a restoring

force, with βz representing the spatially dependent Zeeman shift.

Since the upper manifold of hyperfine states is unresolved for the D2 transition in
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Fig. 2.6: Picture of our 7Li MOT in the lab. The fluorescence is due to atoms emitting
671 nm photons after absorbing the laser cooling light.

7Li, the atoms can decay into the F = 1 or F = 2 ground state in the 2S1/2 manifold

after being excited. This requires each MOT beam to have two colors: a “cycler” which

addresses the F = 2 to F ′ = 3 transition, and a “repumper” which addresses the F = 1

to F ′ = 2 transition. These are separated by the ground state splitting of 803.5 MHz,

and empirically we’ve found that both require roughly the same amount of power to

optimize MOT loading. To generate the quadrupolar magnetic field, a current is driven

through a pair of anti-Helmholtz coils placed above and below the atoms (see Fig. 2.5).

The typical gradient created by these coils is ≈ 20 G/cm.

In the experiment we typically load the MOT for 15 s, capturing ≈ 109 atoms. The

MOT can be seen by eye due to the emitted photons from the atoms (Fig. 2.6), and

this fluorescence can be captured on a photodiode. Since the MOT plays a large role in
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Fig. 2.7: Images of atomic cloud for increasing times of flight after the MOT stage.
The overall length and width of each image is ≈ 5mm.

the atom number used in experiments, we try to maintain consistency by measuring the

fluorescence and triggering the next stage of the cooling sequence to start after the MOT

reaches a specific threshold photodiode voltage. We typically take diagnostic images from

the top for various times of flight (TOFs) to gauge this consistency. An example of one

such run is shown in Fig. 2.7. In the next stage, the compressed MOT (CMOT), we

bring the cycler closer to resonance by 2.5Γ, decrease the repump intensity to near 0, and

increase the magnetic field gradient by a factor of 5 for 28 ms, increasing the density of

the MOT by a factor of 2 before entering the GM stage.

I have a few notes about the MOT for future students. My mentor Cora used to

say “a MOT only has three components: atoms, lasers, and magnets”. Indeed, when

debugging MOT issues this has always stuck with me. When running the machine and

discovering the lack of a MOT, there are only a finite number of things that can be

preventing it, all of which fall into one of the three components. I’ve outlined some of

them below:

1. Atoms

(a) Beam shutter is closed

(b) Oven has run out of lithium (this only happens once every 5 years or so)

2. Lasers
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(a) MOT AOMs are not switched on

(b) MOT beam polarization has drifted

(c) MOT beam power has dropped

(d) Spectroscopy is not locked, or the frequency has shifted (rare but has hap-

pened)

(e) Zeeman slower beam is not locked

(f) Transverse cooling is blocked or subpar

3. Magnets

(a) Magnets are not turned on

(b) Magnets are not in anti-Helmholtz configuration

(c) Magnets do not have appropriate current running through them

The MOT can only theoretically cool atoms down to the Doppler temperature (≈

140 µK for the D2 transition), and experimentally the temperature (≈ 1 mK) is well

above this limit due to imperfections. To get to colder temperatures, we next employ a

sub-Doppler cooling technique known as gray molasses (GM).

2.2.2 Gray Molasses

GM is a variant of Sisyphus cooling, aptly named in its analogy to the punishment of

Sisyphus in Greek mythology, who is forced to roll a boulder up a hill for all of eternity.

In our case, the scheme involves getting atoms to “roll” up a potential hill while losing

kinetic energy, followed by an excitation and pumping procedure to bring them back to

the bottom of the hill. Repeating this procedure many times successfully cools the atoms

to sub-Doppler temperatures.
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The theory of GM is well outlined in [16, 17], but I’ll give an intuitive picture for

7Li and our setup here. GM utilizes a two-photon Raman transition between the two

hyperfine ground states off-resonantly coupled to an excited state, in our case using the D1

transition to the 2P1/2 state. Light is applied to the atoms near this two-photon resonance

condition and is retroreflected, creating a spatially modulated AC-Stark shift along each

axis. In the dressed-state picture, orthogonal superpositions of the electronic ground

states act as a convenient basis, with one “coupled” state |ψc⟩ undergoing transitions to

the excited state |ψe⟩ while the “noncoupled” state |ψnc⟩ remains completely dark to it.

Fig. 2.8: Energy diagram of the gray molasses scheme. Image taken from [18].

The life of an atom in this cooling scheme goes as follows, depicted in Fig. 2.8:

1. An atom starts in |ψc⟩ at the bottom of a potential well due to the periodic Stark

shift created by the laser.

2. Under time evolution in the atom-light interaction, the atom moves up the potential

hill, losing kinetic energy along the way.

3. At the top of the hill the atom is excited to |ψe⟩, as |ψc⟩ couples to |ψe⟩ via dipole
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transitions mediated by the laser.

4. By spontaneous emission the atom enters |ψnc⟩ from |ψe⟩.

5. |ψnc⟩ is optically dark to the laser, so the relevant Hamiltonian is now just the

kinetic energy operator. Since |ψnc⟩ and |ψc⟩ are not eigenstates of the momentum

operator, |ψnc⟩ can evolve into |ψc⟩ under free evolution with a frequency propor-

tional to the momentum. Thus, hotter atoms are preferentially selected to enter

step 1 again.

6. Steps 1 through 5 are repeated until the atoms no longer have the energy to climb

the potential hill.

Or GM scheme typically cools the atoms down to 50 µK while maintaining a majority

of the atoms from the MOT. This allows for significant capture in the next stage, the

magnetic trap. Example images of the atomic cloud for various TOFs are shown in Fig.

2.9. In-depth descriptions of the physical setup of GM can be found in [1, 3]. The one

crucial feature of the optical path is the presence of a 9.2 GHz EOM which is used to

shift the laser table light from D2 to D1, as the D1 excited state manifold is resolved and

thus can be used for a two-photon Raman scheme. The main beam is passed through

the EOM and injection locked to a slave laser, which is used to seed a tapered amplifier

on the main apparatus table to obtain the appropriate amount of power. The beam

is then passed through an 803.5 MHz EOM to generate the second frequency for the

two-photon scheme, equivalent to the ground state splitting. Finally, the beam is split

into two paths: one which travels through the horizontal plane of the main chamber and

is retroreflected in a bow-tie configuration, and another which travels along the vertical

axis starting at the bottom of the chamber and is retroreflected after going through the

top bucket window.
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Fig. 2.9: Images of atomic cloud for increasing times of flight after gray molasses.
The overall length and width of each image is ≈ 5mm. The cloud experiences very
little expansion over the range of TOFs shown, highlighting the drastic decrease in
temperature compared to that of the MOT. The wisp at the top of the first few images
are atoms leaving the trap due to misalignment between the MOT and GM beams.
Minimizing this loss is typically a useful way to ensure the GM beams are well aligned.

2.2.3 Magnetic Trap and RF Evaporation

The next stage in our cooling sequence involves loading the atoms into a pure mag-

netic trap. The reason for doing so is because laser cooling techniques can only achieve

temperatures down to around 50µK, after which evaporative cooling techniques must

be used. This is analagous to cooling that occurs for a hot cup of coffee, which cools

down when thermal energy is carried away by hot atoms in steam. The atoms remaining

rethermalize via collisions and achieve a colder temperature. Crucially, this cooling is

only limited by atom number, and allows us to achieve temperatures lower than the BEC

transition temperature.

7Li’s ground state has eight magnetic sublevels, three for the F = 1 state and five

for the F = 2 state. Since the g-factor is positive for the F = 2 state and nega-

tive for the F = 1 state, the states that are magnetically trappable are |F,mF ⟩ =

|2, 2⟩ , |2, 1⟩ , and |1,−1⟩, as their energies increase with increasing magnetic field due

to a positive Zeeman shift 2.1. In a quadrupolar magnetic field, this corresponds to

atoms needing more energy as they move away from the zero-field point. The rest of the

magnetic sublevels are either untrapped or antitrapped.
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Fig. 2.10: Lithium RF antenna on top of the main chamber. The antenna is a single
spiral of flat copper wire mounted in a 3D printed PLA mount.

In order to get the atoms to a magnetically trappable state, we utilize an optical

pumping procedure where we shine σ+ light resonant with the D1 transition for 450

µs while applying a DC magnetic field to create a weak quantization axis parallel to

the light. The σ+ transitions preferentially transfer the atoms to higher mF levels until

they reach the |2, 2⟩ state, at which point they become optically dark. Since the atoms

can fall from the excited 2P1/2 state into the F = 1 ground state, we apply a second

frequency of light shifted 803.5 MHz to address the D1 transition from the F = 1 state.

This is achieved by passing the spin-polarizing light through an 803.5 MHz electro-optic

modulator (EOM) and increasing the amplitude of the sideband.
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Fig. 2.11: Schematic of electronics which generate the frequency sweep for RF evap-
oration. Antenna picture taken from [1].

Once the atoms have entered the |2, 2⟩ state, they are loaded into the magnetic trap

created by the same coils used for the MOT. The coils are ramped in 150 ms. Historically,

a high-voltage capacitor bank was used to accelerate the ramp, achieveing 100 G/cm in

as little as 100 µs, but this is no longer used due to not showing any benefit empirically.

The final gradient for the magnetic trap is much larger than that of the MOT, typically

420 G/cm compared to 20 G/cm.

Once the atoms are loaded into the magnetic trap, we perform evaporation via an RF

knife. The top of the main chamber has a homemade single spiral antennna, shown in

Fig. 2.10, tuned to be resonant around 800 MHz for this purpose. The RF is swept from

a frequency of 927 MHz to 805 MHz, progressively expelling the hottest atoms (which

are closer to the edges of the trap). This is an extremely lossy process where over 90%

of the atoms are removed from the trap.

A schematic of the RF setup is shown in Fig. 2.11. The initial RF is generated in a
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driver box typical of those found in the lab, with a VCO, TTL, and VVA to control the

frequency, on/off state, and amplitude respectively. The RF is then fed into an Ophir

5020 200W amplifier, which is necessary due to the antenna being ex situ to the chamber.

Before my time, there was a feedthrough placed within the chamber to avoid this massive

power draw, but unfortunately this was broken during the initial main chamber bake.

The driver box and amplifier are kept on the other side of the lab wall (in the core,

aka the bowels of Broida Hall) to prevent stray RF reflections from interfering with lab

electronics. The amplified RF signal goes through a circulator into the antenna, after

which it gets dumped into a 200W RF attenuator.

At the center of the trap the magnetic field goes to 0, which causes the atoms to

undergo Majorana spin flips [19]. This can be thought of as a spin’s inability to align to

a quantized axis, which allows it to precess randomly. When the atoms move away from

the field zero they will once again have a well defined axis, but if the spin has flipped

when this occurs then they may be in an antitrapped state and can leave the trap. To

remedy this loss mechanism, we shine a tightly-focused blue detuned 532 nm ”plug”

beam directly into the field zero location, repelling the atoms from the trap center and

preventing Majorana losses. Traditionally this has been one of the least stable parts of

the machine, as the area window the plug has to reside in is only tens of µm wide, and

can shift depending on thermal fluctuations in the magnets or beam path. The laser

creating the plug beam was traditionally a 10W Lighthouse Photonics Sprout, but has

since been upgraded to a Coherent 18W Verdi for increased stability. The position of

the plug beam is steered by a Newport 8821 Picomotor kinematic mirror mount on the

second to last mirror before the main chamber.

A typical TOF run for RF evaporation from the magnetic trap is shown in Fig. 2.12.

The temperature at the end of RF evaporation is usually 10 µK, with 30 million atoms

remaining in the trap. Now there only remains one more step of evaporation required to
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Fig. 2.12: Images of atomic cloud for increasing times of flight after RF evaporation.
Each image is approximately 1 mm x 1 mm. The hole feature that appears in the
center of the cloud for larger TOF values is created by the 532 nm plug beam, which
turns off after the end of RF evaporation but leaves a residual effect on the atoms.

cool below the critical temperature, which I’ll describe this in the next section.

2.2.4 Optical Dipole Traps and Optical Evaporation

Before performing the final evaporation stage, the atoms must be transferred to a dif-

ferent mF level, due to the fact that the |2, 2⟩ state has a negative background scattering

length of a = −28 a0. This leads to instability when creating BECs (though it is possi-

ble [20]), and it becomes necessary to put the atoms in a state where the interactions are

positive. For 7Li, a convenient state to use is the |1, 1⟩ state, which has a broad Feshbach

resonance at 736.8 G and thus allows for easy tuning of the s-wave scattering length.

To accomplish this state transfer, we first load the atoms from the magnetic trap into

an optical dipole trap (ODT), created by crossing two focused 1064 nm beams with 1/e2

radii of 80 µm. This light is generated from an Azurlight 130W fiber amplifier seeded

by a Coherent Mephisto. The beams create a trap using the AC Stark shift, with the

potential taking the form

U(r) =
3πc2Γ

2ω3
0∆

I(r) (2.3)

where Γ is the linewidth, ∆ is the detuning, ω0 = 2πc/λ, and I(r) is the intensity.
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Fig. 2.13: Images of atomic cloud for increasing times of flight after transfer to the
optical dipole trap. Each image is approximately 1 mm x 1 mm. The cut at the top
of the images for TOF 2-5 ms is due to the residual 532 nm plug beam.

Each ODT beam has a maximum power of 20 W, which allows for a max trap depth

Umax well above 50 µK. When transferring the atoms, we simultaneously ramp down

the magnetic trap and ramp up the power of the ODT beams over 100 ms, typically

capturing 1/4 of the atoms. Atomic images for a TOF experiment after the transfer to

the ODT is shown in Fig. 2.13. To transfer them to the |1, 1⟩ state, we perform a rapid

adiabatic passage by sweeping the RF frequency from 809.6 MHz to 807.5 MHz over 60

ms in the presence of a small DC magnetic field to split the different mF levels. The coils

used for the MOT stage are at this time switched from anti-Helmholtz to Helmholtz to

prepare the field for the Feshbach resonance.

Typically a moderate positive scattering length is beneficial for the final evaporation

stage in order to ensure the atoms rethermalize in a small amount of time while making

sure two- and three-body losses are mitigated. We tune the magnetic field to 720 G,

corresponding to a scattering length ≈ 240 a0 via 5.4 before starting evaporation. Evap-

oration is achieved by smoothly lowering the power in the ODT beams over the course

of 4.5s with an exponential form e−t/τ with τ empirically set around 2s. The power is

reduced from 20W to < 2W, with 90-95% of the atoms leaving the trap. The final cloud

typically contains 105 to 3 ∗ 105 atoms, though we have reached as high as 106 atoms

by modulating the ODT AOM frequencies at 10-40 kHz, realizing a painting procedure
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Fig. 2.14: Images of atomic cloud for increasing divisor after a 3 ms TOF. A clear
condensed cloud is observed for divisors 10 and 12. The diameter of the BEC is
≈ 50 µm.

TOF (ms)
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Fig. 2.15: Images of atomic cloud for increasing times of flight after the final optical
evaporation stage. The atoms are now in the BEC stage. The diameter of the BEC
is ≈ 50 µm.

which increases the effective trap volume. The temperature of the atoms at the end of

optical evaporation is 10 nK, and we have successfully created a BEC!

Atomic images of the cloud after optical evaporation to different power levels (and a

TOF) are shown in Fig. 2.14. The final power goes from high to low moving left to right,

with the divisor number indicating PowerODT,initial/PowerODT,final. The evaporation

time is held constant over all runs. It is evident that when the power is reduced only

by a small amount, the cloud remains thermal and thus expands over a large region

post-TOF. As the power is reduced more, a condensate starts to form, and in the right

most image only the condensate remains with negligible atoms in the thermal fraction.

Atomic images of the BEC during a TOF are shown in Fig. 2.15. Due to the extremely

cold temperatures, very little motion or change is seen in the cloud until much higher

expansion times. Note that the TOF times in previous stages only went from 2 to 5 ms.
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2.3 Optical Lattices

After creating a BEC, many of our experiments involve applying an optical lattice to

the atoms, the physics of which is explained in section 1.6. The light for the optical lattice

is generated from the same Azurlight 130W fiber amplifier used for our ODTs. Typically,

more power can be diverted to the lattices from the ODT path using a set of Pacific Laser

Equipment RSC-103E waveplate rotators which control the power distribution between

the dipole trap beams and the lattice beams. Since the lattices only turn on after the

end of optical evaporation, this power transfer is warranted, as little to no power is used

in the ODTs during lattice experiments.

The main features of the lattice path include: a) an AOM for fast switching of the

lattice, b) the input lens to focus the lattice beam onto the atoms, c) a pickoff to allow

for imaging of the lattice beam without damaging the camera, and d) the retro mirror,

which is used to overlap the input and retro beams. One unique feature of our apparatus

is the presence of a second coaxial lattice, which has its own AOM path and shares b),

c), and d) with the first lattice. There are two λ/4 waveplates before the retro mirror

to adjust the relative spatial phase of the lattices, which is discussed in the experiment

section of Chapter 4 4.2. The procedure to align the lattice is slightly involved, which

I’ve outlined below for students on the lithium machine.

Lattice alignment procedure :

1. Input alignment:

(a) Take an image of the BEC from the lattice axis

(b) Divert all power into whichever lattice beam is being aligned

(c) Make sure the lattice AOM efficiency is good, and that the 0th order is ap-

propriately dumped
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(d) Center the lattice beam on input lens before the chamber

(e) Image the lattice beam on the lattice-axis camera and overlap to the BEC

position using the picomotor. The lens and the camera will act as the two

points of alignment. The input should be roughly aligned now.

2. Retro alignment:

(a) Find the retro beam using card + lens cloth. This part can be quite tricky,

so use all tools at your disposal, including the military grade IR viewer.

(b) Once the retro beam has been found, slowly work backwards along the path

while adjusting the retro knobs. The other lattice path can also be used here

to identify the retro beam, as it mixes on the cube pre-chamber.

(c) Retro all the way back to the first isolator after the ALS output. Once there is

retro power out of the rejection port, touch the retro knobs until the rejection

power is maximized. The retro should be coarsely aligned now.

3. Fine tuning:

(a) Start taking KD runs. After creating the NI BEC, kick with the lattice for

1-3 us at maximum power. Make sure there is a nonzero TOF, otherwise the

momentum orders won’t resolve themselves.

(b) Hopefully at this point there should be multiple momentum orders present.

Start turning the retro knobs in small evenly spaced increments, taking an

image in between each turn. If alignment is improving, more orders will be

present.

(c) If the atoms look bowed/curved along the lattice axis, that’s usually an indi-

cation the input beam has to be aligned better, so touch that before making

further retro turns.
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(d) Maximize the number of orders seen during KD. At this point, the lattice

should be well aligned.

2.4 Imaging

Imaging is the main method for taking data on the lithium machine. Taking pictures

of the BEC, both in-situ and post-experiment, can yield information about position and

momentum space distributions, as well as relevant quantities like energy and tempera-

ture. The following section will discuss the physics of absorption imaging as well as the

experimental setup on the 7Li apparatus to achieve it.

2.4.1 Absorption Imaging

Absorption imaging treats the atoms as a medium for light to propagate through. If

the medium absorbs light, then the intensity I will attenuate according to Beer′s law:

dI = −µIdx, (2.4)

which states that light is lost proportionally to its intensity and path length. Integrating

the above equation through the whole medium (of length x, let’s say), the expression for

the intensity after the medium becomes

I = I0e
−µx = I0e

−OD (2.5)

The term in the exponent is referred to as the optical density (OD), which is related
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to the resonant cross section σ0 via the relation

OD = nσ0 (2.6)

where n is the number density of the atoms. This is usually the relevant quantity of

interest, as data analysis begins with reconstruction of the atomic distribution. When

imaging, the beam of resonant light is shone on the atoms, and a picture of the atoms’

shadow is captured on the camera. The resonant light is attenuated according to Eq.

2.5, and the resultant OD is used to reconstruct the spatial form of the atoms.

2.4.2 Experimental setup for imaging

The imaging light is prepared from a branch of the master laser path, and is tuned

to resonance with the D2 line. Once fibered onto the machine table, the beam has a

waist of 3 mm and is collimated. To image the atoms, the resonant beam must pass

through the atoms, and the position of the atoms must be imaged by the camera. A 4f

telescope is used to accomplish this, shown in Fig. 2.16. In this configuration, the atoms

are at the focal plane of the first lens (the objective lens) of the telescope. This lens has

a focal length f1 of 200 mm, and is placed 200 mm after the atoms on the path. After

the objective lens is a second lens (the refocusing lens) with a focal length f2 of 500 mm

and a distance f1 + f2 between the two lenses. Finally, the camera is placed a distance

f2 from the refocusing lens, completing the 4f setup. A resonant beam passing through

this 4f telescope will image the atoms’ shadow onto the camera, magnified by a factor

f2/f1. The PCO camera has a pixel size of 6.5 µm x 6.5 µm, which after magnification

becomes a resolution of 6.5 µm/(500/200) = 2.6 µm per dimension at the atoms.

In practice, one picture isn’t a good metric for capturing the atomic distribution,
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Fig. 2.16: 4f telescope system for atomic imaging.

as the image captured by the camera includes background light as well as parts of the

imaging beam which are not seen by the atoms. To account for this, three images are

taken in the following order: i) an resonant pulse which passes through the atoms (the

probe with atoms, or PWA), ii) a resonant pulse a short time later, which images just the

beam (probe without atoms, or PWOA), and iii) a dark image with no resonant pulse,

which captures the background. The OD can then be computed as

OD = ln

(
PWA−Dark

PWOA−Dark

)
, (2.7)

which gives a more accurate description of the atom count per pixel area. The res-

onant pulses are typically applied for 5µs to image the atoms while their motion is

negligible.

2.4.3 Issues and Limitations

Absorption imaging is useful due to its ease of setup, usage, and output simplicity.

However, there are a few drawbacks and pitfalls to be aware of when using this method.
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These include saturation intensity, focusing, detuning, and fringes.

Saturation Intensity - When shining resonant light for imaging, it’s possible to

enter a regime where the attenuation becomes nonlinear through the atoms if the imaging

beam has too large of an intensity. This can be characterized by the saturation intensity,

which for 7Li on resonance is defined as

Isat =
πhc

3λ3τs
= 2.54 mW/cm2, (2.8)

where λ is the resonant wavelength 670.961 nm and τs is the excited state lifetime of

27.1 ns. Typically, the desired intensity of the imaging beam I << Isat. To gauge this,

the saturation parameter s = I/Isat can be calculated from experimental parameters.

The simplest approach is to perform a dimensional analysis to get I, which has units of

power/area.

The readout from the PCO gives total counts, Nc. Counts doesn’t give much infor-

mation as a unit, but can be converted by multiplying by the conversion factor cf , the

number of electrons per count, and dividing by the quantum efficiency (QE), the fraction

of photons that get converted into electrons by the sCMOS. This yields an expression for

the number of photons:

Nγ =
Nccf
QE

. (2.9)

The power of the imaging beam during a resonant pulse can be defined as

P = E/t = EγNγ/t =
hc

λt

Nccf
QE

(2.10)
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where Eγ = hc/λ is expressed in terms of the imaging wavelength, and t is the pulse

duration, typically 5 µs. The expression for power is now fully expressed in terms of

experimental parameters. For the PCO, the QE is 60% and the conversion factor is

0.46 [21].

To compute the area, the number of pixels in the region of interest Np must be

converted to the area at the region of the atoms. This can be done by multiplying by

both the pixel length lp (6.5 µm) and dividing by the magnification m (2.5 for the current

setup) along each dimension:

A = Np(lp/m)2. (2.11)

Finally, an expression for the intensity I is obtained by putting the above expressions

together:

I =
P

A
=

Nccfhc

Np(lp/m)2λtQE
. (2.12)

The saturation parameter s is then computed by dividing the above by Isat. In

practice we usually image with s ∼ .2. If s is too high or too low, we adjust the imaging

power using the VVA on the final imaging DP AOM and recompute s with the increased

or decreased Nc.

Focusing - When imaging, the atoms should be at the focus of the objective lens

in the 4f telescope. Unfortunately, moving the objective lens on the imaging setup is an

ergonomic nightmare, so if the imaging system is misfocused typically adjustments are

performed by moving the refocusing lens. To perform this alignment, it’s most useful to
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Fig. 2.17: Images of the BEC as the refocusing lens in the 4f system is moved forward.
The lens is shifted ≈ 1 cm between every image. The optimal focus point is boxed in
red, with minimal rings and aberrations compared to the other positions.

image the BEC at various lens positions while moving the lens over a span of many cm.

The BEC size should be minimized at the correct focus position, and will typically look

the sharpest while having few rings around the cloud. The presence of rings signals a

defocused image (Fig. 2.17).

For some experiments, it’s most useful to be focused at a specific TOF. Ideally this

would be done by moving both the objective and the refocusing lens such that the atoms

at that TOF (which are in a different position than atoms at 0 TOF) begin the 4f setup.

Again, as we are unable to easily adjust the objective lens, typically just the refocusing

lens is adjusted to maximize image quality at that specific TOF.

Detuning - The imaging beam needs to be resonant with the D2 line. However, this is

complicated by the fact that the resonance shifts depending on the applied magnetic field,

and the magnetic field changes for different interaction strengths due to the Feshbach

resonance. To remedy this, we have 3 imaging paths (hopefully only 1 in the future using

an offset lock scheme), one for imaging in the high-field (HF) regime close to the Feshbach

resonance, one for the low-field (LF) regime close to 0 G for the cooling sequence before

BEC, and one for the noninteracting (NI) regime close to 0a0. These 3 paths cover almost

all interaction scenarios investigated during experiments. For the HF regime, if we change

the magnetic field to access different interaction strengths, the final AOM frequency can

be tuned to follow accordingly. This sweeping of the AOM frequency is a useful tool to
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Fig. 2.18: BEC atom number as the image beam detuning is scanned. Here Γ = 2π∗5.9
MHz.

ensure proper detuning, and a typical signal in atom number can be observed (Fig. 2.18).

Fringes - Fringes are the bane of image data analysis. They manifest as periodic

fluctuations in counts across an image, usually with many components at different fre-

quencies. They are created by inadvertent interferometers, and vary due to outside light

sources, vibrations (ie. people opening and closing doors, walking, loud music, etc.), and

airflow. Many steps have been taken to mitigate the effects of these fringes, both pre- and

post-analysis. All optics have been converted to 1” diameter pedestals from 1” length

posts, and the mirrors have been upgraded from 1” to 2” diameter. This has helped

stabilize the path from vibrations. In addition lens tubes and new machine enclosures

have mitigated a large portion of the light pollution entering the imaging system. After

images are taken, we use a fringe removal method [22] to remove remaining fringes af-

ter processing. All of these measures have helped, but fringes remain an issue that can

always be improved upon.
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2.5 Cicero control software

The experimental sequence requires precise timing and control of analog and digital

outputs which interface with a host of electronic and opto-electronic components (ie.

magnets, RF drivers, shutters, switches, etc.). To coordinate this matrix of outputs, we

use a program called Cicero, initially developed at MIT in the lab of Wolfgang Ketterle

[23]. Cicero communicates with a 10 MHz FPGA (Opal Kelly XEM3001), and allows for

timebase control ranging from a few µs to minutes. Digital control is performed via 2

National Instruments PCIe-65353 10 MHz digital I/O cards in home-built boxes capable

of outputting 32 channels each. Analog control is performed via 3 National Instruments

PCI-6713 cards, which have 8 outputs each and can generate 12-bit signals ranging from

-10 to 10V. This architecture allows for the control of the nearly 100 combined digital

and analog channels required to successfully make and probe quantum dynamics with

BECs. While the manual for Cicero provides adequate documentation for setup, there

are many subtleties that I provide in this section which may be useful for future students.

2.5.1 Main GUI

Fig. 2.19 shows a typical GUI one encounters when using Cicero. Each column

(known as a ‘word’) is a time sequence where individual analog and digital outputs can

be modified and set. The colored red, black, and green sections show the waveforms of

all analog channels and how they change per word. Similarly, the bottom orange, brown,

blue, and green section describe the state of each digital channel per word, with light

brown designating an off state and any other color designating an on state. The array

of words creates a sequence, which represents the set of control directions required to

generate our quantum gas up to any desired state, from the MOT to BECs in lattices

and everything in between. Pre-loaded sequences can be set via the drop-down bar to the
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Fig. 2.19: Example Cicero GUI.

left of the first word (100a0 for this example). Sequences can be run using one of the run

buttons in the left sidebar, with choices of running single iterations or entire lists (running

lists with variables are discussed later in the section). WARNING: once a run button is

pressed, the sequence cannot be stopped unless aborted. When aborting a sequence, the

analog and digital outputs will typically stop in whichever word the sequence is aborted

in. This can pose a real danger if certain magnets are on at high voltages/currents or

lasers are at full power. It is prudent to be aware of this, and if aborting mid-sequence
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it is good practice to go back to the first word (typically MOT Observe), right click and

hit Output Now. This reverts the outputs to the state at the beginning of the sequence,

which doesn’t pose a danger.

2.5.2 Overrides

Overrides are used to manually set analog and digital outputs. In the GUI shown in

Fig. 2.20, the left column has digital overrides that can be used to turn specific channels

on and off. The right side shows analog overrides, where constant voltages can be set for

specific outputs. These are most useful as testing and debugging tools. While obvious

applications include testing the functionality of analog and digital outputs, it’s worth

noting that anything left overridden when running a sequence will not change during the

sequence, even if there are directions to do so in certain words. This is the main aspect

to be aware of, as there are often situations where running sequences will occur directly

after debugging with overrides, and if overrides are left on the sequence output on the

atoms will be undesirable.

Specific to the lithium machine, overrides are typically a way to assess specific laser

paths. When attempting to turn on specific light (ie. any of the imaging beams), it is

necessary to familiarize oneself with all AOMs and shutters upstream, as they will all

have to be toggled in the overrides to generate the desired light. Luckily if this is ever

unclear, one can check the word in the sequence where the desired light is generated and

copy all of the necessary overrides from looking at the outputs set in that word. This

can generally be applied to replicating anything that occurs in sequence that needs to

be debugged ex-situ. Again certain safety precautions need to be taken, as overriding

magnets with high currents can cause rapid heating and lead to eventual meltdown of

the magnet wires.
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Fig. 2.20: Cicero overrides tab. The left image shows the override panel for digital
channels while the right shows the overrides for analog channels. The analog channels
can be set to specific desired voltages.

Fig. 2.21: Example analog word in Cicero. The waveform for each analog channel in
the word can be set in the tab.
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2.5.3 Analog Channels

While digital channels are simple to set due to their binary on-off nature, analog

channels require specific user-set waveforms for the entire duration of each word, and

thus more effort from the user. There are in-built Cicero functions to generate waveforms

of specific types, such as piecewise linear, exponential, two point cubic spline, step, and

sinusoidal. These can be selected from the “Type” dropdown menu. If a channel is

unchanged during a word it can simply be continued from the previous, selected on the

left sidebar.

There are two special cases where users can unleash Cicero’s true power of arbitrary

waveforms: equations and custom waveforms. The equation option allows the user to

write a functional form in plain text using Cicero variables as inputs. The mathematical

functions available to type can be found in the Variables tab under “Equation Help”. The

custom waveform option allows the user to upload a csv of time-voltage pairs, giving the

user freedom down to the individual timestep. This functionality is extremely important

when undergoing nonadiabatic ramp protocols requiring nonstandard functional forms,

further discussed in 5.5.1.

2.5.4 Variables

Variables are the ultimate tool of the experimentalist, and all reside in the Variables

tab shown in Fig. 2.22. Each variable is bound to a value, as well as one or multiple

locations within a Cicero sequence. Variables give the user control over voltages and

times in the sequence, and allow for easy tweaking when specific feedback is learned

from runs. The list feature allows variables to be bound to a certain array of values,

and running a whole list allows the user to understand how the atoms behave during a

specific stage of the sequence as a variable is changed.
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Fig. 2.22: Cicero variables tab.

2.5.5 Useful functions

Hold and retrigger - At certain points during the sequence, it becomes necessary

to move on to the next step when a certain condition is met. To achieve this, a step

can be held until it receives a specific trigger using the hold and retrigger function. The

prominent example on the lithium machine is moving onto the GM cooling step after the

MOT has reached a certain size. We use a comparator circuit that reads a voltage from

the photodiode measuring the MOT fluorescence, and the circuit only triggers once the

voltage is past a specific threshold, which tells Cicero to move to the next word. Recently,
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there have been ideas to use this function to coordinate the running of the lithium and

strontium machine in tandem, such that lithium’s parasitic RF radiation does not affect

strontium’s laser locks or optical lattices.

Timestep groups - For many experiments, certain collections of words will have to

be repeated over and over again , especially for experiments where Hamiltonian param-

eters have to be cyclically varied. To accomplish this, a Timestep group can be created

using the “Timestep group” tab at the top of the GUI. The number of times the group

will loop can be set in the same tab by selecting the desired group and clicking “Loop

Timestep group”. After creating a new group (or if a group already exists), words can

be added to the group by right-clicking at the top of the word and selecting “Timestep

group”. Crucially, when running Cicero it’s important to make sure there are no stray

words in between words of a specific group, as Cicero will throw an error. All words

within a group should contiguously follow one another.

“Dummying′′ into a word - Often times when debugging, it’s useful to see what

effect a change of variable has on the atoms, as described in 2.5.4. This can be ac-

complished in various ways, and it’s important to understand the differences between

each method. For the following scenarios, I’ll use the FeshbachField variable set in the

Feshbach Ramp word as an example, which controls the current in the magnets used to

generate the magnetic field for the Feshbach resonance.

First, the variable itself can be bound to a list of different values. Running the list

will take successive runs where the magnetic field and thus the interaction strength will

be changed, but crucially the amount of time it takes to perform the ramp (≈ 50 ms)

will not change. Thus binding the variable in this way will change both the final value

of the ramp as well as the ramp rate.

Second, the amount of time the word takes can be changed. This can be accomplished

by binding the FeshRampT variable, which sets the word duration, to a list of different
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values. This will change the amount of time the Feshbach Ramp word takes, but will not

change the final values of FeshbachField. Thus, this list will change the ramp rate.

In both of the previous examples, variables are changed but the entirety of the Fes-

hbach Ramp word is completed during the run. However, it’s often useful to see what’s

happening during a word itself. This is where the lab lingo of dummying into a word

comes from. Instead of binding FeshRampT to a list, a new variable, usually “dummy”,

is bound instead. Then, the word duration of Feshbach Ramp is changed to dummy.

When making this change, FeshRampT is still bound as the end time of FeshbachField

within the analog word itself. Thus, binding dummy in this way will actually create

time slices of the original Feshbach Ramp word, and iterating through dummy values

from 0 to FeshRampT constitutes reconstructing the entire “movie” of the word. Doing

this maintains the same ramp rate, but changes both the FeshbachField value and the

duration of the word in each run.

Iterating through multiple variables - In many experiments there is a need to

iterate two variables at a time, perhaps to explore a phase space. Cicero allows the user

to do this by binding multiple variables to different lists. Once bound, the lists can either

be dotted or crossed, using the * or x symbols respectively between the lists. For two lists

of values [a1, a2, a3,...an] and [b1, b2, b3,...bn], the dot operation will iterate through the

lists in the order [a1, b1], [a2, b2], [a3, b3],...,[an, bn] akin to a typical dot product in linear

algebra. The cross operation will iterate in the order [a1, b1], [a1, b2],...[a1, bn], [a2, b1],...

for a list of length n. The dot operation will require the lists to be equivalent lengths

n and will run for n iterations, whereas the cross operation on a list of length m and a

second list of length n will run for m x n iterations.

Variable preview changes - When in the middle of a list run, if there is a need to

suddenly change one of the variables, this can be accomplished by pressing the variable

preview button on the active window. This will open a window with a list of all variables
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and their associated values, which can be changed. If a value is changed, a red button

will appear next to it, which will have to be pressed to lock in the change. If the button

changes to green, the variable will successfully change on the next run of the machine

and remain there permanently until changed again.

Buffers - The main way I have crashed Cicero during my 5 years of running the

lithium machine is by attempting to run words for too short of a time (the FPGA’s time

resolution is limited to 3 µs, and any shorter results in timing errors on the National

Instruments cards). However, sometimes the error can occur if the time resolution of the

word is much shorter than the overall length of the word, which can overflow the buffer.

If encountering a Cicero crash after setting a variable or a time to a few µs, it’s always

worth comparing that value to the duration of the word to make sure they are not many

orders of magnitude off (ie. occasionally setting a resolution of 1 µs for a 1s word can

lead to a crash).
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Chapter 3

Interacting Quantum Kicked Rotor

The prior two chapters have covered all of the ingredients required to start exploring

new physics with BECs, and I’ll now begin discussion of the experiments relevant to this

thesis. In this chapter I will overview the interacting quantum kicked rotor, and how

our lithium BEC machine is used to probe localization and many-body physics in this

quantum chaotic system.

3.1 Background and Theory

3.1.1 Kicked Rotor

The kicked rotor is a quintessential model studied in nonlinear dynamics/chaos theory

that shows a transition from integrability to chaos. I’ll first explain the classical system,

and then detail how it changes in the quantum regime.

To start, imagine a bead confined to a ring that is periodically kicked along one axis,

as shown in Fig. 3.1.1. This can also be thought of as a pendulum periodically kicked

by gravity (if we had the power to turn gravity on and off). The Hamiltonian for this

system consists of two terms:
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Figure 3.1: Protypical kicked rotor. A bead is confined to a ring and is periodically
kicked along one axis.

H =
p2

2m
+Kcosθ

∑
δ(
t

T
− n) (3.1)

The first term is simply the kinetic energy, while the second is a periodic kick applied

with strength K and period T, with δ being the Dirac delta function. The dynamics of

this Hamiltonian are best illuminated by looking at the phase portrait stroboscopically.

When sampling the dynamics once per period, the system is characterized by the Chirikov

standard map [24,25], which shows how the momentum and angular position update every

period:

pn+1 = pn +Ksinθn, θn+1 = θn + pn+1. (3.2)

Here p is the momentum and θ the angular position, both modulo 2π for this analysis.

The full behavior is described by the Kolmogorov-Arnold-Moser theorem [26], but the
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Fig. 3.2: Standard map for three different values of kick strength K, across the tran-
sition K = .97.

main feature is that the kicked rotor shows a transition from integrability to chaos as

the kick strength K is varied. For low values (below ∼ .97, the critical value), the phase

portraits show coherent orbits, shown on the left in Fig. 3.2.

As K is increased, these orbits are destroyed, and beyond the critical value the kicked

rotor exhibits a transition to chaos, whereby trajectories now explore the full phase space.

This is shown on the right two plots of Fig. 3.2. One crucial feature in the chaotic regime

is that the system is globally diffusive, meaning its energy increases linearly with time or

kick number. This will be an important feature when comparing to the quantum version

of the kicked rotor.

3.1.2 Quantum Kicked Rotor

What happens to this rotor in the quantum regime? The dynamics are now governed

by the time-dependent Schrodinger equation:

(−ℏ2∂2x
2m

+Kcos(x)
∑
n

δ(t− nT ))ψ = Eψ (3.3)

Intriguingly, the quantum kicked rotor (QKR) has a direct mapping to Anderson local-

ization, outlined in [27–29].
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We start with the Floquet operator of the QKR:

U(α) = e−ip2T/2ℏe−iV cos(x)/ℏ (3.4)

where the first exponential represents the free evolution of duration T and the second

exponential corresponds to the kick. A new operator M can be introduced such that

e−iV cos(x)/ℏ =
1 + iM

1− iM
. (3.5)

The eigenvalue equation for this system becomes

e−ip2T/2ℏ 1 + iM

1− iM
|ϕα⟩ = e−iEαT/ℏ |ϕα⟩ , (3.6)

where |ϕα⟩ is a Floquet eigenstate and Eα is a quasienergy. The eigenstates can now be

expanded in the momentum basis:

1

1− iM
|ϕα⟩ =

∑
m

cm |m⟩ (3.7)

where p̂2 |m⟩ = ℏ2m2 |m⟩. Eq. 3.6 can now be written as

e−ip2T/2ℏ(1 + iM)
∑
m

cm |m⟩ = e−iEαT/ℏ(1− iM)
∑
m

cm |m⟩ . (3.8)

Both sides can be multiplied by e
ip2T/2

2ℏ eiEα/2ℏ to yield

e−i(p2/2−Eα)T/2ℏ(1 + iM)
∑
m

cm |m⟩ = ei(p
2/2−Eα)T/2ℏ(1− iM)

∑
m

cm |m⟩ . (3.9)
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Finally, by projecting each side with
∑

n |n⟩ ⟨n| and rearranging terms, we obtain

ϵncn +
∑
m ̸=n

⟨n|M |m⟩ cm = −M0cn (3.10)

whereM0 = ⟨0|M |0⟩ and ϵn = tan(−ℏ2n2/2−Eα

2ℏ ). Eq. 3.10 is the TDSE for a 1D Anderson

model with site energy ϵn, tunneling amplitude ⟨n|M |m⟩, and total energy −M0. There

are two caveats to this mapping: i) the on-site energies are pseudorandom as opposed

to purely random, and ii) the hopping amplitudes ⟨n|M |m⟩ couple to more than the

nearest neighbor, but fall off exponentially. Nonetheless, this mapping is sufficient for

the QKR to display Anderson localization-type behavior. This localization manifests

in momentum space, and is dubbed dynamical localization. This strictly contrasts to

the classical kicked rotor, where energy grows diffusively with time and experiences no

localization.

Since localization in position space manifests as a suppression of diffusion, it’s natural

to expect localization in momentum space to manifest as a suppression of energy growth,

which can be tested experimentally. An early experiment performed by Mark Raizen’s

group at UT Austin [30] repeatedly kicked a cold cloud of sodium atoms with an optical

lattice, and demonstrated a saturation in energy even as more kicks were applied. This

paved the way for QKR AMO experiments to explore further localization phenomena,

including the observation of 2D Anderson localization as well as the 3D metal to insulator

transition [31–33].

The interplay of localization and interactions is a deep and historic topic arising in a

variety of condensed matter systems. The simplest implementation of interactions to the

Hamiltonian is the addition a mean-field term, creating the Gross-Pitaevskii equation [7]:
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(−ℏ2∂2x
2m

+Kcos(x)
∑
n

δ(t− nT ) + g|ψ|2)ψ = Eψ, (3.11)

written here for the QKR in 1D. The coupling constant g = 4πℏ2as/m represents the

mean field interaction, and is proportional to the s-wave scattering length.

The introduction of interactions starts to probe the concept of many-body localization

(MBL), which theorizes that localized systems can be stable even in the presence of

interactions [34, 35]. Experimental explorations have not yet yielded definitive evidence

of MBL (or MBDL, many-body dynamical localization), but have yielded intriguing

observations of long-lived prethermal states [36, 37] as well as anomalous diffusion [38].

The interacting QKR is a natural venue to ask the question of MBDL existence, but

surprisingly this has only been explored theoretically. Ref. [39] models the interacting

QKR via the Gross-Pitaevskii equation (GPE) in 1 dimension, treating interactions in the

mean field picture. In this model energy grows subdiffusively, with the growth exponent

varying between 0.4 and 0.6 depending on both the kick and interaction strengths. This

work implies the breakdown of dynamical localization in the presence of interactions for

this model, but acknowledges that further work is needed to find any universal exponent.

In addition, the applicability of mean-field theory is questionable and requires further

theoretical and experimental understanding.

3.1.3 Many-body time reversal

Dynamical delocalization induced by interactions suggests a transition into the regime

of many-body chaos. The strength of this transition can be probed using the concept of

time reversal. When the QKR is kicked at the Talbot resonance, the time it takes for all

modes to accumulate an integer multiple of 2π phase, the phase evolution from the free

propagation becomes the identity for modes of type |2nℏkL⟩,

63



Interacting Quantum Kicked Rotor Chapter 3

e−i p̂2

2mℏT , T = TTalbot = 9.93µs, (3.12)

e−i p̂2

2mℏTTalbot = ei2πn
2

= 1.

For this resonance condition, only the kicks affect wavefunction evolution. This pro-

vides an interesting opportunity where if the kicking phase is reversed, it should be

possible to ”undo” the effects of prior kicks. This can be achieved by setting the free

evolution after m kicks to half of the Talbot period, and then kicking another m times.

Let’s examine this for m = 1. The wavefunction after this protocol will be

|Ψf⟩ = e−iV cos(2kLx)/ℏe
−ip2TTalbot/2

2mℏ e−iV cos(2kLx)/ℏ |Ψi⟩ (3.13)

Let’s assume |Ψi⟩ is the zero momentum plane-wave state. Following 1.18,

|Ψf⟩ = e−iV cos(2kLx)/ℏe
−ip2TTalbot/2

2mℏ

∞∑
n=−∞

(−i)nJn(
V

ℏ
) |n⟩ . (3.14)

The free evolution propagator can be simplified,

e
−ip2TTalbot/2

2mℏ = e−iπn2

= (−1)n
2

= (−1)n, (3.15)

and Eq. 3.14 becomes

|Ψf⟩ = e−iV cos(2kLx)/ℏ
∞∑

n=−∞

inJn(
V

ℏ
) |n⟩ . (3.16)

Conveniently, the summation can be transformed by undoing the Jacobi-Anger ex-
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pansion, recovering the initial state:

|Ψf⟩ = e−iV cos(2kLx)/ℏeiV cos(2kLx)/ℏ |Ψi⟩ = |Ψi⟩ . (3.17)

Thus, the sequence realizes a time-reversal protocol. The reversal still holds for

multiple kicks, since in the resonant case each extra kick can be viewed as a rescaling

of the kick strength. This so called Loschmidt time-reversal was theorized as a cooling

mechanism for atomic matter waves [40], and then later experimentally proven [41] in

2011. The metric used to measure the efficacy of the reversal is the return fidelity,

F = | ⟨ψ|U †
2U1 |ψ⟩ |2 (3.18)

where U1 and U2 are time-evolution operators differing by some perturbation. For the

experiment, the BEC has a finite quasimomentum width as well as interactions, which

both limit F . For the latter, a question of how the many-body quantum chaotic regime

affects F is intriguing, as chaotic systems imply extreme sensitivity to initial conditions

and inherently implies a degree of irreversibility. This is what this part of the experiment

will probe, discussed at the end of the next section.

3.2 Experimental Procedure

Our experiment begins with the creation of a 7Li BEC, as outlined in Chapter 2, of

around 105 atoms with a scattering length of 240a0 in an ODT. After the final optical

evaporation step, we tune the s-wave scattering length of the atoms via the 7Li Feshbach

resonance. The ODT is then snapped off and the BEC is subjected to a pulse train of

optical lattice kicks, which creates the QKR. A significant amount of effort is devoted to
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proper alignment of the optical lattice, described in 2.3.

Fig. 3.3: Electronic and optical setup for the optical lattices. A driver box comprising
of 2x voltage-controlled oscillators (VCO), TTL switches, and VVA+amplifiers creates
an 80 MHz RF source with appropriate amplitude to drive each AOM controlling one
of the optical lattice paths. For the lattice used in the QKR experiments (Lattice 1),
the TTL is controlled by a Keysight AWG generating a pulse train. The retroreflection
of the incoming laser beam by the retro mirror creates a standing wave optical lattice
potential experienced by the atoms in the Li BEC.

The optical lattice was driven by a home-built RF driver box controlling the amplitude

and timing of the lattice acousto-optic modulator (AOM) output (see Fig. 3.3). The

AOM driving frequency (80 MHz) was generated by a Minicircuits VCO whose output

is connected to a TTL switch (ZASWA-2-50DR+). This TTL is turned on and off via

an external Keysight 33600A arbitrary waveform generator (AWG), which applies the

pulse train for the experiment. Kicking waveforms are generated in MATLAB and can

be uploaded to the AWG via ethernet or USB. The output of the TTL goes through

a VVA followed by an amplifier which delivers 2W of RF to the AOM. The electronics

inside the driver box are duplicated for the driving of our second coaxial lattice, which

will be used for the next experiment described in the thesis. The light for the lattice is

generated by a 130W 1064 nm Azurlight fiber laser, seeded by a Coherent Mephisto 1064

nm seed laser.
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The three crucial features of the kicking lattice are its amplitude, pulse width, and

timing. The amplitude controls the kick strength K in the Hamiltonian, and this is set

via application of a voltage to the VVA. The timing between kicks, T , is fully controlled

by the Keysight pulse train, with negligible timing noise from the TTL switch. The delay

between pulses can be chosen arbitrarily, but there are a few experimental considerations

which narrowed down the possible range of T s. Initially many experiments were per-

formed around T = 10 µs, close to the Talbot time (TTalbot = πℏ/2ER ≈ 9.93µs.) While

this T easily populates many orders due to its proximity to resonance, after even tens of

kicks atom counting for larger modes starts to fall below the noise floor of the camera,

and with further kicks, start to leave the field of view of the camera. In addition to

staying away from resonance, the atoms must be subjected to large numbers of kicks (∼

1000) to accurately observe the delocalization behavior reported. If T is set too large,

the atoms undergo a significant amount of free expansion and fall out of the beam waist

of the lattice. For a lattice beam waist of 100µm, the atoms fall out in 4.5 ms, thus

requiring that nxT be significantly smaller than that timescale. On shorter timescales,

the validity of the QKR mapping to our system becomes less clear due to the finite pulse

widths of our kicks. Our AOMs have rise and falls times of 150 ns, and we experimentally

find that τ < 300µs leads to instability in the lattice amplitude. Since T >> τ , this

sets a lower bound for the period. For the experiments shown in the paper, a value of

1.2us was used, compromising between the two regimes and allowing all experiments to

be completed in ∼ 1 ms. After the kicks, the BEC undergoes a 3.5 ms free expansion to

resolve the momentum modes populated by the experiment. The atoms are imaged via

absorption imaging, and the energy is extracted after processing.
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3.3 Data Analysis

The following is taken from the Methods section in [42], describing how the images

are processed and data is extracted. Because the momentum distributions of the in-

teracting samples change significantly over the course of the delocalization experiments,

the quantities shown in Fig. 3.11 are computed directly from raw or averaged images as

opposed to fitting procedures. However, this can make measurable quantities such as en-

ergy sensitive to noise, especially near the edge of the camera sensor due to the quadratic

weighting. To maximize the signal-to-noise ratio in our measurement, we analyze raw

images using an adaptive region-of-interest (ROI). First, a single base ROI capturing all

detectable atoms at all times is created for each interaction strength. The integrated

density in this ROI is used to post-select images with total atom numbers falling within

a ±10% window of the mean, in order to reduce variations in the interaction energy,

which depends directly on atom density. For these data we take 10 images at each kick

number, of which typically 4-7 are discarded by this post-selection procedure. The ROI

boundaries at each kick number are then determined by the points at which the cumu-

lative summed distributions of the averaged image outward from a center point reach

a threshold value. The thresholds are set empirically and the boundaries obtained by

the following procedure. First we compute the transverse bound by integrating out the

entire axial direction to get the overall transverse distribution, find the point it crosses

an 85% threshold and then expand the resulting boundary by a factor of 1.5 to ensure all

atoms are captured. We then compute an axial boundary going point by point along the

transverse direction; at each transverse point we integrate over 10 neighboring transverse

pixel rows to get a “local” axial distribution, find the point it crosses a 99.8% threshold

and expand by a factor 1.15. Finally we smooth each ROI boundary and take a moving

average across different kick numbers (4 on each side). Crucially, we have confirmed that
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the qualitative observation of delocalization is not significantly altered from the simple

case where we use just the initial single base ROI across all shots. However, the details

of the trends should be more accurately captured by the adaptive procedure because

the signal-to-noise ratio over the ROI is optimized at each kick number. All measurable

quantities are then calculated from the imaged densities within this region.

Since we do not observe any substantial atom loss during the kicking duration, we

treat the imaged atomic densities as normalized distributions. For Figs. 3.11a-b, we

compute the measured quantities from individual experimental runs and then average

the results, with the reported error bar as the standard error of the mean. A smoothing

filter is applied to the displayed densities in Figs. 3.12c-h for visual clarity.

To measure the energy, we compute the post-expansion spatial variance of the dis-

tribution in both the kicking z and transverse x directions of the image. Assuming

cylindrical symmetry, the kinetic energy is then calculated as m (⟨z2⟩+ 2⟨x2⟩) /2t2TOF

with tTOF ≈ 3.5 ms (see section 2.4 for a discussion of possible corrections to the con-

version of position to energy). For an accurate measurement of the interacting samples,

inclusion of the transverse energy is necessary to account for energy-conserving scattering

processes that occur both during the kicking and TOF. In addition, the inhomogeneous

intensity profile of the beam I(x, y) leads to a transverse energy oscillation in all samples

including the noninteracting ones (see supplementary info in [42]). Since we are not in-

terested in this effect, we remove it to leading order by subtracting off the noninteracting

transverse energy from each trace, so that the noninteracting energy is purely the kinetic

energy along the kicking direction. To compute the error bars on the interacting data,

we add the error of the total interacting energy and noninteracting transverse energy in

quadrature. The single-particle localization energy Eloc is estimated by averaging the

noninteracting trace for n ≥ 100, and the reported uncertainty is based on the standard

deviation of those points. We note that this uncertainty is not only due to experimental
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imperfections, but also due to natural dynamical fluctuations.

3.4 Characterizations

Before discussing the main results of this work, I’ll highlight some of the intermediate

work required to successfully complete this experiment. This section will summarize

some of the nitty gritty, elbow-greasy efforts to accurately understand the interacting

nature of our atoms, as well as the quantum phase evolution of the atoms during the

initial portion of the QKR protocol.

3.4.1 Scattering length verification

The s-wave scattering length of the atoms is directly controlled by their proximity

to the Feshbach resonance. Typically, to know this value we measure the current in the

magnet coils via a fluxgate sensor and use that value as a proxy for the magnetic field.

However, since the scattering length is critical to the analysis of the QKR, a second

method was used to verify the value using a procedure analagous to [43].

To measure the scattering length, we perform an experiment equivalent to a 1-kick

QKR experiment on a BEC with nonzero interactions, populating only the 0ℏkLand ±

2ℏkL modes. After the kick, as the atoms undergo a time of flight, pairwise scattering

events occur between each of the momentum orders. Let’s consider just the 0ℏkL and 2ℏkL

collision mode. In the frame moving at 1ℏkL, this scattering event (now a collision

between −ℏkL and ℏkL modes) creates a halo of atoms moving isotropically away from

the origin, with each output pair having equal and opposite momentum of ℏkL in an

arbitrary direction. When taking images after a TOF, this manifests as a halo around

the location of where an ℏkL mode would lie, midway between the 0ℏkL and 2ℏkL mode.

Those two modes lie on the edge of the halo. This halo phenomenon occurs for every
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(a) Example scattering halos for 760a0 (b) Analysis region of halo

Figure 3.4: Scattering halos after a 1-kick experiment

pair of momentum modes, with the radius of each halo post-TOF equalling half the

difference between the momenta. Examples of such halos can be seen in Fig. 3.4a. After

taking images, we count atoms within a slice of each halo, shown as the intersection

between the circles and horizontal lines in Fig. 3.4b. The selected region is chosen to

minimize counting of non-scattered atoms in the modes, typically performed by looking at

one-dimensional integrated densities along the transverse direction and determining the

region that has negligible atom population from the unscattered discrete modes. Once

the scattered atoms have been counted in the intermediate region of the halo, a value

for the total number of scattered atoms in the halo can be determined by multiplying by

the ratio of the halo volume to the counted volume. Once the number of scattered atoms

have been counted, the interaction strength can be determined following the analysis

performed in [43]. Within error, this method yields the same value for the scattering

length as Eq. 1.12. This concludes an independent check on the scattering length which
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can be used as a comparison to more conventional methods used for Feshbach resonances,

such as those outlined in [9, 10].

3.4.2 Small kick number characterization

While a QKR experiment involves investigating behaviors after hundreds or thousands

of kicks, it is first important to understand what happens to the atoms after just a few

kicks. We have already explored Kapitza-Dirac diffraction in previous sections, but I’ll

use this section to specifically talk about the atomic phase after small numbers of kicks.

A natural starting point is to ask how do the atoms respond when the pulse time

is varied for one kick. To explore this, I’ll follow the analysis from [44]. First, let’s

revisit the fact that a BEC in an optical lattice gives rise to a band structure where the

eigenstates are Bloch states. I’ll write these states as |n, q⟩, where n denotes the band

index and q is the quasimomentum. The Bloch states can be expanded in the momentum

basis with periodicity 2ℏk:

|n, q⟩ =
∞∑

m=−∞

an,q(m) |ϕq+2mℏk⟩ , (3.19)

where |ϕq+2mℏk⟩ is a plane-wave with momentum q + 2mℏk. Pre-kick, we can treat the

BEC as a plane-wave |Ψ(t = 0)⟩ = |ϕq⟩. When suddenly subjected to the lattice, the

state is projected onto the Bloch state basis:

|Ψ(t = 0)⟩ =
∞∑
n=0

|n, q⟩ ⟨n, q|ϕq⟩ . (3.20)

From 3.19 we know ⟨n, q|ϕq⟩ = a∗n,q(0). Thus, the BEC wavefunction evolves according

to

|Ψ(t)⟩ =
∞∑
n=0

a∗n,q(0)e
−iEn(q)t/ℏ |n, q⟩ , (3.21)
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Fig. 3.5: 1-kick momentum state oscillations as the pulse time is varied for a 3.5ER

lattice. The top panel shows experimental data after a 2ms TOF. The bottom panel
shows results of a TDSE simulation for the same parameters. The bandgap between
the 0th and 2nd bands is 117 kHz, reflected in the observed oscillation period of 8.5
µs. The x-axes are the same for both panels.

where En(q) is the eigenenergy of band n at quasimomentum q. We typically end our

experiments by snapping off the lattice to allow the atoms to undergo a TOF, and this

action projects the wavefunction back into the plane-wave basis. The coefficients bq(m)

for each plane-wave |ϕq+2mℏk⟩ become

bq(m) =
∞∑
n=0

a∗n,q(0)an,q(m)e−iEn(q)t/ℏ. (3.22)

With this form for bq(m), there arises interference between the factors in the exponent,

which physically manifests as an oscillation in the momentum state occupation. An
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example of this is shown in the top panel of Fig. 3.5. The oscillation frequency is the

band gap frequency between the bands of the two populated modes, which in this case

are the 0th and 2nd band for a 3.5ER deep lattice. The measurement of this frequency

can be a useful tool to calibrate the lattice depth. Simulations using TDSE are shown

in the bottom panel, showing excellent agreement with experimental data and verifying

the oscillation frequency.

From the above, along with the prior analysis of Kapitza-Dirac diffraction, we know

that for one kick the pulse amplitude and width dictate which momentum modes become

populated, what their relative populations are, and how they interfere and accumulate

phase. Now let’s move on to two kicks.

For two identical kicks, the new degree of freedom is the free evolution time of the

atoms between the kicks. Since the only populated states are integer multiples of 2ℏkL,

the relevant timescale with which the states accumulate phase will be the Talbot time,

derived in section 3.1.3. We can probe this phase evolution with an experiment analogous

to a Ramsey interferometer. In a typical Ramsey sequence, two π
2
pulses are applied to

a two-level system with a variable wait time in between, with the output phase varying

according to the evolution between the pulses. We similarly use this technique and

observe oscillations in atomic population at the Talbot time, and observe coherence for

many periods (see top panel of Fig. 3.6) . This can be modeled with TDSE similarly

to the one kick experiment, and oscillations with a period of the Talbot time are readily

observed in the bottom panel of 3.6. The feature in the middle of the oscillations can be

attributed to the fact that 3 momentum states are occupied as opposed to two, but the

times sampled in the experiment don’t resolve this feature. The decay in amplitude of the

oscillation is due to nonzero interactions for this experimental set (the s-wave scattering

length is 240 a0). This decay can potentially be used as a mechanism for determining

the onset of decoherence due to interactions.
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Fig. 3.6: 2-kick interferometric experiments for a 13 ER lattice showing coherent
oscillations in the ground band (0ℏkL) population. Top panel shows experimental data
with an overlaid decaying sine regression. Bottom panel shows TDSE simulations at
equivalent parameters also showing oscillations at the Talbot period. The x-axis is
the same for both plots. The kick pulses have a duration of 2.2 µs, corresponding to
a π/2 pulse, where 2π is again the band gap period.

3.4.3 Quantum Resonances

One last feature of the QKR that can be explored in the low kick regime is the quan-

tum resonance [45,46], which occur for specific values of T . We’ve already discussed the

primary resonance, which occurs when kicking at the Talbot time TTalbot = 9.93 µs such

that the 0 momentum state can grow unbounded in energy. There also exist higher order
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quantum resonances which occur at fractions of the Talbot time. An example of a higher

order resonance is shown in Fig. 3.7, where the atoms are kicked at a period of TTalbot/2.

This is known as the antiresonance, and is equivalent to performing successive 1-kick

time reversal experiments, as discussed in 3.1.3. In theory, these resonances occur for

any period r
s
TTalbot where r and s are integers [30]. Examples of higher order resonances

are shown in Fig. 3.8, where various values of r
s
are marked with vertical lines. The

signature of a higher order resonance typically manifests as a feature when looking at

the energy of the atoms as a function of T , and occurs due to nonrandom phase inter-

ference between the momentum modes. While the resonances theoretically only occur

for the 0 momentum mode, our quasimomentum width (≈ 0.1ℏkL) is sufficiently narrow

to resolve these features. The physics of the resonances is interesting on its own, but

for our application they mainly serve as regions to avoid when choosing values for the

period. This minimizes unwanted signatures in energy when trying to isolate the effects

of interactions. This was a problem faced for many weeks when initially taking data, as

faster energy growth decreases SNR. This is due to each of the individual orders having

less atoms overall, and the higher momentum orders exploring the edges of the camera

sensor.

Kick Number

0 1 2 3 4 5 6 7 8 9 10

Fig. 3.7: Atomic images after a 2 ms TOF for successive kick numbers at the antires-
onance, with a period of T = 4.95 µs. The atoms oscillate between the 0th and 1st
momentum orders, with no clear energy growth.
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Fig. 3.8: Energy and absolute momentum for a 10-kick QKR experiment while varying
the period T . Higher order fractional resonance features can be seen following the
vertical lines left to right at 1/6, 3/16, 1/5, 3/13, and 1/4 multiples of TTalbot. The
x-axis unit is µs.

3.5 Results

This section closely follows a blog post I wrote for the Behind the Paper blog in

Nature [47]. This work has also been published in Nature Physics [42].

The first result to examine is the QKR without the presence of interactions. What

do we expect?

In Fig. 3.9, a stacked sequence of images reveals the momentum distribution of the

atoms as a function of the number of kicks applied. The first few kicks populate non-

zero momentum states, but subsequent kicks do not further alter this distribution; in

effect, the momentum distribution is “frozen”, despite continued violent kicking! This
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Fig. 3.9: Noninteracting QKR momentum distribution for variable kick numbers

Fig. 3.10: Interacting QKR momentum distribution for variable kick numbers. S-wave
scattering length set to 240a0

surprising and non-intuitive result showcases the emergence of dynamical localization.

Now let’s add interactions into the mix, shown in Fig. 3.10. As time progresses and

more kicks are applied, the atoms begin to smear between the momentum states due

to interparticle scattering, resulting in a blurrier image as you move towards the right

78



Interacting Quantum Kicked Rotor Chapter 3

in the figure. The way in which these scattering events affect the overall momentum

distribution provides insight into how interactions affect dynamical localization. Let’s

explore this more quantitatively.

Fig. 3.11a is a graph of kinetic energy (proportional to the variance of the momentum

distribution) over time for 3 different s-wave scattering lengths (0 a0, 240 a0, and 760 a0

where a0 is the Bohr radius, shown by the circles, squares, and diamonds respectively).

Larger values of the scattering length correspond to stronger interatomic interactions.

Here the breakdown of dynamical localization is clear. For the noninteracting sample,

the energy stays constant even out to 1000 kicks. As the interactions are increased to 240

a0, there is a departure in energy after a few hundred kicks, and we can see for the 760

a0 case that the energy grows at all times. Crucially, this energy growth is significantly

slower than the diffusive growth expected for the classical system, shown by the solid blue

line and associated data (triangles) in the inset. This “anomalous diffusion” has been

predicted in prior theory work [39], but the good agreement of that prediction with our

data is rather surprising due to the 3D nature of the experiment and lack of transverse

confinement.

One further method by which we can gain insight is to examine the evolution of the

momentum distributions directly. In Fig. 3.12, time progresses from yellow to purple,

and the two columns show the same data but on different scales (linear vs. log on the

y-axis).

In the noninteracting case (c,f), we can see similar momentum distributions for all

values of n past 10, indicative of the aforementioned “freezing” of the distribution caused

by localization. For the larger interaction strengths, we see the smearing expected due

to the presence of interactions, but perhaps surprisingly also see a much larger departure

in the tails of the distribution (most prominently shown in h, which is plotted logarith-

mically). This distribution is still not entirely explained, as there is no expectation for
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Fig. 3.11: Observing the interaction-induced emergence of quantum chaos.
(a) Energy versus kick number for different scattering lengths a. Blue hor-
izontal shaded region indicates the measured single-rotor localization energy of
Eloc = 2.5(4)ER. Here V0 = 64ER, T = 1.2µs and τ = 300 ns (K ≈ 2.3 and k̄ ≈ 1.5).
The inset contrasts the measured interaction-induced anomalous diffusion with clas-
sical-like diffusion caused by random kicking, the latter achieved by adding random
offsets to the average kick spacing T drawn uniformly from the interval [−T/4, T/4].
The solid curve is noninteracting quantum theory and the dotted line is a diffusion
curve 4Dn/k̄2 with D ≈ 0.19 extracted from the classical standard map. The red
dot-dashed line is a subdiffusive

√
n law serving as a guide to the eye. Error bar

computation is discussed in the Methods section. (b) Evolution of effective 1D mo-
mentum-space IPR.

the lower energy modes to maintain an exponentially localized envelope.

This interaction-induced delocalization marks a transition to the regime of many-
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Fig. 3.12: (c-e) Normalized momentum space densities at various kick numbers n.
(f-h) The same densities on a logarithmic y-scale. The orange dotted and purple
dashed lines are exponentially localized curves ∼ exp(−k/kloc) with kloc = 1.2(1)kL
and amplitude normalized to match the peak of the measured distributions at the given
kick number. (i) Deviation from exponential localization over time based on integrated
ratio between measured and exponential distributions with error bars computed from
uncertainty in kloc.

body quantum chaos, which we can probe in another interesting way. Prior experiments

[41] have shown that effective reversal of the flow of time can be achieved by reversing

the phase of the kicks in the QKR when on resonance, or equivalently waiting a half

period between two equal trains of resonant kicks. This protocol effectively allows us,

if nothing interferes with the reversal, to go “backwards” in time after a set number of

kicks and return to the initial state. The effectiveness of the procedure can be measured

by comparing the final state to the initial state.

A schematic of this protocol is shown in Fig. 3.13, and an example data set is shown
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Fig. 3.13: Schematic of the time-reversal echo sequence with two trains of n pulses
with period Tq=2 ≈ 9.95µs separated by a wait-time of Tq=1 ≈ 4.98µs. The first set
of n kicks propagates the system forward in time and a second time-reversal set of n
kicks propagates it backwards.

in Fig. 3.14.

Fig. 3.14: Averaged absorption images of a BEC after the first n kicks of a 2n = 10
echo protocol, for a scattering length of 1080 a0.

Five resonant kicks are initially applied to the BEC, followed by a half period delay

before applying 5 more resonant kicks. We see that once we start applying the second set

of kicks, the momentum orders start to “come back” (not to be confused with the famed

82



Interacting Quantum Kicked Rotor Chapter 3

“quantum boomerang” [48]). If the Hamiltonian was perfectly reversed, after the 10th

kick we’d observe the initial 0 momentum state again, but the finite momentum width

and the inability to reverse the interaction energy modifies this picture. The modification

due to the interactions is what we wanted to investigate.

Fig. 3.15: Measured differential fidelity F − F ′ for a range of scattering lengths
a=[0,1800]a0 for 2n=8, where 2n indicates the total number of kicks. The circles
show the experimental data. The blue-shaded curve shows the results of a non-inter-
acting numerical simulation and the horizontal line shows the simulated asymptotic
value of F −F ′. The clear departure of the most strongly interacting points from this
line is a signature of the interaction-driven destruction of reversibility.

Fig. 3.15 shows the fidelity, or the degree to which time reversal is preserved, as

a function of interaction strength. This brings us to the last surprising point of the

experiment: the fidelity is non monotonic with respect to interaction strength! Intuitively,

one would expect that as interactions are increased, interatomic collisions would scramble

the phase information required to successfully reverse time. While this is true after a

certain value, we observe that for smaller interactions the fidelity actually increases as
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the strength is increased. As unexpected as this seems, the behavior can actually be

explained with a fundamental argument about BECs: as the interaction strength is

increased, the Thomas-Fermi spatial width increases, and correspondingly the width in

momentum space decreases, increasing the fidelity. This is shown by the shaded blue

theory curve in the figure. Crucially, this occurs before the collisional time scale of the

smaller interaction strengths. As interactions are turned up, interactions dominate the

dynamics before the time reversal can occur, inducing irreversibility.

3.6 Conclusions

In conclusion, we have experimentally realized a many-body ensemble of quantum

kicked rotors. Following the evolution of interacting samples over hundreds of kicks, we

observe signatures of an initial transient steady state, followed by an interaction-induced

breakdown of dynamical localization via anomalous diffusion, signaling the onset of many-

body quantum chaos. Characterization of the departure from the dynamically localized

state indicates subdiffusive energy growth with an exponent near 0.5, easily distinguish-

able from classical Joule heating in a randomly kicked system, and reveals momentum

space distributions which are not exponentially localized. Measuring echo time-reversal

dynamics with a quantum resonance enabled us to directly probe the role of interaction-

induced irreversibility in driving a transition to many-body quantum chaos. Together,

these results demonstrate and quantitatively illuminate the emergence of interaction-

driven quantum chaos in a paradigmatic localized system.
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Quantum Boomerang Effect

The next experiment uses the quantum kicked rotor as a starting point to observe a funda-

mental dynamical signature of Anderson localization known as the quantum boomerang

effect. In detailing this effort I’ll introduce a unique feature of our lithium machine, a

second coaxial optical lattice, and argue that we have realized a probe for the quantum-

mechanical nature of localization. An extensive discussion of symmetry is included to

fully characterize the existence of the quantum boomerang in the kicked rotor.

4.1 Existence and Realization

While Anderson localization has been a staple of condensed matter theory for over

50 years, its dynamical signature known as the quantum boomerang effect (QBE) wasn’t

discovered theoretically until 2019. The QBE involves a particle initialized in an An-

derson localized system with some nonzero initial velocity. If the system is classical,

the expectation is for the particle to move some distance away from the origin and and

eventually stop, a mean free path argument that can be demonstrated via the Boltzmann

equations [49]. In the quantum regime, the particle’s behavior is remarkably different.
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Instead of stopping some distance away from the origin, a quantum particle will turn

around after an initial departure, return to its origin, and remain there. This is a result

of the combination of Anderson localization and time reversal symmetry inherent to the

system.

4.1.1 Proof of the QBE

The existence of the QBE can be demonstrated fairly simply, relying only on the

two ingredients mentioned above. The proof below follows [49]. Start with a 1D system

obeying the Hamiltonian

H =
−ℏ2∇2

2m
+ V (x), (4.1)

where V(x) is an uncorrelated random potential whose average value is 0. A normalized

Gaussian wavepacket Ψk0 ∝ exp[−x2/(2σ2) + ik0x] is initialized in this potential with a

finite momentum ℏk0. The probability distribution can be written as

|Ψ(x, t)|2 =
∑
n,m

⟨ϕn|Ψk0⟩ ⟨Ψk0|ϕm⟩ϕn(x)ϕ
∗
m(x)e

−i(ϵn−ϵm)t/ℏ (4.2)

where ϵn and |ϕn⟩ are the eigenenergies and eigenstates of H. Since the eigenstates are

localized, the system is constrained by both a localization length and time. For times

much longer than the localization time the off-diagonal oscillatory terms n ̸= m in Eq.

4.2 disappear, yielding

|Ψ(x,∞)|2 =
∑
n

| ⟨ϕn|Ψk0⟩ |2|ϕn|2. (4.3)
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This system obeys time-reversal invariance, so ϕn(x) are real and ⟨ϕn|Ψk0⟩ = ⟨ϕn|Ψ−k0⟩
∗.

Thus, Eq. 4.3 is independent of the sign of k0, and the long-time density distribution is

equivalent to that of one where the initial wavepacket has a symmetric velocity distribu-

tion. The center of mass therefore must return to the origin at long times, realizing the

QBE.

4.1.2 Realization of the QBE in the quantum kicked rotor

In section 3.1.2, the mapping between the QKR and AL was established. The QBE is

expected to exist in AL systems, and thus can be expected to exist in the QKR as well,

with the boomerang occurring in momentum space rather than position space. This was

first theorized and numerically simulated in [29] in 2021. I’ll first show the derivation

of the conditions necessary for the QBE in the QKR, published in Appendix A of our

paper [48], then show the results of the simulation from [29].

We consider the canonical QKR Hamiltonian considered in the previous chapter with

a slight modification

Hα(t) =
p2

2
+K cosx

∞∑
n=−∞

δ(t− n− α). (4.4)

To be explicit, here we define α on the interval [0, 1], taking the cases α = 0 and 1 to be

distinct from each other and consistent with the definition in the Floquet operator

Uα = e−i(1−α)p2/2k̄e−iK cosx/k̄e−iαp2/2k̄. (4.5)

α, which we’ll refer to as the Floquet gauge, represents the fraction of period waited before

subjecting the wavepacket to the first kick. Different α values are graphically depicted

in Fig. 4.1. α = 0 corresponds to the kick occurring immediately when the evolution
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Fig. 4.1: Visualization of different α values. The plots show time series of the kick
amplitude immediately after preparation of the initial state, at t = 0. The kicks here
are shown as pulses to reflect our experimental protocol.

starts, and the propagator becomes equivalent to standard QKR propagator 3.4. α = 1

corresponds to a full period of free evolution before the first kick is applied, while α = 1/2

causes the two free evolution terms in the propagator to become equivalent. The full

propagator describes the time evolution over the range [n-α, n+1-α], with n representing

the time the instantaneous kick occurs.

In the following, we refer to symmetry operations only about fixed axes. Hα is parity

inversion (x→ −x, p→ −p) symmetric at all times

[P ,Hα(t)] = 0. (4.6)

The operator P obeys P†pP = −p. Only for α = 1/2 does the system also become time-

reversal (t→ −t, p→ −p) symmetric. The complex conjugation operation K associated

with time-reversal acts on the position space wave-function as ⟨x| K |ψ⟩ = ψ∗(x). For the

α = 1/2 case, Hα is additionally parity-time inversion (t→ −t, x→ −x) symmetric.

We use the following intuitive definition for the QKR boomerang effect in momentum

space. (i) The boomerang should exhibit non-trivial average momentum dynamics at

short times, in particular a departure from followed by a relaxation toward the initial
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value. (ii) At late times, a true boomerang should have an average momentum equivalent

to the initial momentum. Explicitly, we will show that (i) is only compatible with parity

asymmetric states. Restricting ourselves to the case of 0 initial momentum, we then show

that time-reversal symmetry of the quenched initial state and Floquet gauge guarantees

(ii).

We consider solutions to the time-dependent Schrodinger equation ik̄∂t |ψ(t)⟩ =

Hα(t) |ψ(t)⟩, where |ψ(t = 0)⟩ is the initial state quenched into the Hamiltonian. Our

analysis will concern the behavior of ⟨p(t)⟩ = ⟨ψ(t)| p |ψ(t)⟩. First we consider the evo-

lution of an arbitrary state |ψ(t = 0)⟩ and its parity inverted counterpart |ϕ(t = 0)⟩ ≡

P |ψ(t = 0)⟩. Let ⟨p(t)⟩ and ⟨p̃(t)⟩ correspond to the time-evolved states |ψ(t)⟩ and |ϕ(t)⟩

respectively. From parity symmetry (4.6), we have |ϕ(t)⟩ = P |ψ(t)⟩, and from this can

conclude

⟨p̃(t)⟩ = ⟨ψ(t)| P†pP |ψ(t)⟩ = −⟨p(t)⟩. (4.7)

This holds for any initial state and α, as well as at all times t. From this, it immediately

follows that a necessary condition for observing (i), and thus the boomerang, is that

|ψ(t = 0)⟩ ≠ P |ψ(t = 0)⟩; otherwise ⟨p̃(t)⟩ = ⟨p(t)⟩ = 0, guaranteeing that (ii) is satisfied

but in a trivial way. Since all of the remaining analysis is also concerned with ⟨p(t)⟩, we

hereafter assume that parity asymmetry is satisfied to derive non-trivial results.

Now we begin to investigate the t → ∞ behavior concerning (ii). Considering

the Floquet spectral decomposition of the initial state |ψ(t = 0)⟩ =
∑

m cm |φα
m⟩ with

Uα |φα
m⟩ = e−iωα

m |φα
m⟩, the long-time average momentum given by the Floquet diagonal

ensemble is
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⟨p(t→ ∞)⟩ =
∑
m

|cm|2 ⟨φα
m| p |φα

m⟩ . (4.8)

The Floquet diagonal ensemble is a rather useful proxy predicting the infinite time

behavior of this system, and is used as a benchmark for many of the results shown in

this chapter.

One can also consider the opposite limit t → −∞ by decomposing in the basis of

U †
α. Since the eigenstates of a unitary operator and its Hermitian-conjugate are identical

(both are eigenstates of the same self-adjoint, time-independent Floquet Hamiltonian),

the prediction of the Floquet diagonal ensemble is the same. This leads to the conclusion

that

⟨p(t→ ∞)⟩ = ⟨p(t→ −∞)⟩. (4.9)

This also holds for any initial state and α.

Now finally we consider time-reversal symmetric states K |ψ(t = 0)⟩ = |ψ(t = 0)⟩.

Under parity-time inversion, we then have the relation

PK |ψ(t = 0)⟩ = P |ψ(t = 0)⟩ ≡ |ϕ(t = 0)⟩ . (4.10)

Now consider the full solution |ψ(t)⟩ and ⟨p(t)⟩. For α = 1/2, the parity-time inver-

sion symmetry of the Hamiltonian implies that PK |ψ(−t)⟩ is another solution with a

corresponding momentum evolution ⟨p(−t)⟩. From (4.10), it is straightforward to see

that this solution corresponds to the evolution of the parity-inverted initial state, i.e.

|ϕ(t)⟩ = PK |ψ(−t)⟩; note that while a parity-time inverted state about a different time-

axis can be defined for arbitrary α, such a state will not coincide with |ϕ(t)⟩ and will
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consequently prevent the following conclusions. Defining ⟨p̃(t)⟩ in the same way as before,

this result implies ⟨p̃(t)⟩ = ⟨p(−t)⟩. Combining this with (4.7), we thus have

⟨p(−t)⟩ = −⟨p(t)⟩. (4.11)

One can deduce this relation intuitively by noting that backward propagation under

Uα=1/2 for a time-reversal symmetric initial state simply corresponds to receiving kicks

of the opposite sign. Finally, the combination of (4.9) and (4.11) yields the final result

⟨p(t→ ∞)⟩ = 0, (4.12)

thus proving the existence of the quantum boomerang effect in the QKR.

A numerical simulation of the QBE in the QKR is given in [29]. The simulation starts

with a wavepacket of the form

ψn,β(t = 0) = Nexp[−ℏ2(n+ β)2

2σ2
p(0)

− i(n+ β)x0]. (4.13)

Here N is a normalization constant, σp(0) is the Gaussian width of the wavepacket

in momentum space, and the x0 is the initial boost, corresponding to an initial nonzero

velocity in the position-space boomerang. This wavepacket is evolved forward in time

via the Floquet propagator 4.5.

Fig. 4.2 shows the results of numerical simulations for α = 0, 1/2, and 1, represented

by the green-dashed, blue dot-dashed, and purple lines respectively. Here the QBE

manifests as a localization in average momentum, as opposed to position in the typical

QBE. Interestingly, the momentum only localizes to its initial value for α = 1/2, while

for other α < p(t) > saturates to a nonzero value. This is due to the fact that α = 1/2

causes U(α) to become time-reversal symmetric, a necessary condition following 4.3.
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Fig. 4.2: Numerical simulation of average momentum < p > as a function of kick
number for values of α = 0, 1/2, 1, corresponding to the green, blue, and purple lines
respectively. Only α = 1/2 displays a signature of the quantum boomerang effect.
Results taken from [29].

Intuitively, this can be understood by seeing that for U(1/2), the free evolution terms

become equivalent, and thus moving forwards or backwards in time results in a half

period of free evolution, a kick, and then another half period of evolution. This does not

hold true for any other value of α.

Following the above analysis, I created a simulation adapting this methodology for our

own system, assuming a BEC in an optical lattice with typical experimental parameters,

to determine whether this protocol would indeed show the QBE in our system. During

the making of the simulation there was one key question: how do you give the BEC an

initial boost?

The answer happens to be serendipitous for our machine. The QBE in the QKR

requires a coherent boost in position for all of the particles in the BEC (since this is a

noninteracting atomic cloud, each particle represents a separate instance of the experi-
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Fig. 4.3: Numerical simulation of average momentum < p > as a function of kick
number for three values of α. Only α ≈ 1/2 displays a signature of the quantum
boomerang effect.

ment). The particles can first be localized in position by loading them adiabatically into

an optical lattice. Once the lattice is snapped off to start the QBE protocol, a second

coaxial spatially phase-shifted lattice can be used to administer the kicks, and this rela-

tive phase-shift constitutes a position displacement that prepares the correct initial state

for the QBE. Fortunately, our setup happens to have this second lattice, and is one of

the only experiments in the world to do so (though historically for unrelated experiments

involving strongly driven optical lattices [2]). The configuration will be described in the

next section.

Early sample simulations for our system are shown in Fig. 4.3. Here the BEC is

modeled as a Gaussian wavepacket with a 20 µm width, loaded into a 100 ER 1064

nm optical lattice and kicked with a secondary lattice shifted spatially by a phase of

π/2. A finite pulse duration of 300ns is included in the simulation to reflect realistic
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experimental parameters. Here α is defined as the time between the primary lattice

turning off and the kicking lattice turning on divided by the period T , and thus the QBE

occurs at an α slightly < 0.5 due to the finite pulse width. Simulations like these in

addition to discussions with Tommaso Macri and Patrizia Vignolo inspired the efforts

discussed in the following sections, as they realized the possibility of observing the QBE

experimentally in our system.

4.2 Dual lattice experimental setup

Due to the close relationship between the QKR and QBE, a large portion of their

experimental setups are identical. The added feature for the QBE is the presence of a

second coaxial lattice, which will provide the initial position-space offset necessary to

observe the QBE in momentum space. The alignment for this second lattice is relatively

straightforward, as the power to the lattices is split from the main 1064 nm light into

two identical paths for the two lattices. Typically, only the input alignment has to be

carefully performed, as the retro should be close to optimal at the same position for both

lattices once they are coaxial. The procedure to align the input for the second lattice

is the same as the procedure outlined in section 2.3. It is worth noting that the two

lattices combine on a PBS before the input lens to the chamber, so they have orthogonal

polarizations.

Once both lattices are aligned, the critical feature to adjust is their relative phase.

To achieve this, we have two λ/4 waveplates before the retro mirror. This configuation

is shown in Fig. 4.4. The Jones matrix analysis for this configuration is outlined at the

end of [2]. Adjusting the waveplate by θ directly before the retro mirror, a relative phase

of of 4θ is created between the horizontal and vertical components of the polarization.

This allows for precise tuning of the relative phase difference between the two lattices.
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Fig. 4.4: Electronic and optical setup for the optical lattices. A driver box comprising
of 2x voltage-controlled oscillators (VCO), TTL switches, and VVA+amplifiers creates
an 80 MHz RF source with appropriate amplitude to drive each AOM controlling one
of the optical lattice paths. For the lattice used in the QKR experiments (Lattice 1),
the TTL is controlled by a Keysight AWG generating a pulse train. The retroreflection
of the incoming laser beam by the retro mirror creates a standing wave optical lattice
potential experienced by the atoms in the Li BEC.

Fig. 4.5: TOF atomic images after KD experiments while varying the second λ/4
waveplate angle.

The readout of the relative phase can be accomplished by performing Kapitza-Dirac

(KD) experiments with both lattices at equal power while varying the phase. When the

lattices are π-phase shifted, they will destructively interfere, and a KD experiment will

yield no population of higher momentum modes. Conversely, when they are perfectly

in phase, a KD experiment will yield maximum population of higher order modes. The

0 and π phase shift waveplate locations can be determined quantitatively this way. For

the QBE, the signal is maximized at a phase of π/2 (discussed in the next section and
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Fig. 4.6: Atom populations in the 0th and 1st momentum order after KD experiment
while varying the second λ/4 waveplate angle. A clear periodicity every 90 degrees is
observed due to the 4θ relative phase difference induced by the waveplate rotation.

shown in Fig 4.8f), whose waveplate setting is easily found by going to the midpoint of

the 0 and π phase locations. An example run of successive KD experiments for different

waveplate positions is shown in Fig. 4.5. The relative atom populations in the 0th and

1st momentum order are shown in Fig. 4.6.

4.3 Observing the Quantum Boomerang Effect

I’ll now go through the main results of this experiment, which are published in [48].

We begin each experiment by preparing a Bose-Einstein condensate (BEC) of 105 7Li

atoms and then tuning interatomic interactions to zero with the Feshbach resonance. A

typical experimental sequence from this point on is depicted in Fig. 4.7a. The atoms are

exposed in turn to the two coaxial optical lattices with lattice constant d = 532 nm, wave
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Fig. 4.7: Observation of the quantum boomerang effect. (a): Experimental sequence.
A BEC is loaded into one optical lattice and then kicked with a second, phase-shifted
lattice. The momentum distribution is measured after free expansion. BEC size and
timeline are not to scale. (b): Measured average momentum versus kick number,
for parameters given in the text. The return to the origin demonstrates the quan-
tum boomerang effect. Error bars show standard error of the mean on ten repeated
measurements. Solid curve is the numerical prediction. Dotted line represents in-
finite-time average predicted by the Floquet diagonal ensemble (Eq. 4.8).

vector kL = π/d, recoil energy ER = ℏ2k2L/2M , and tunable relative offset x0. M is the

atomic mass. To prepare an initial wavefunction which is well-localized in position space

within each lattice site, we adiabatically load the BEC into the first optical lattice over

50ms, reaching a final depth of 7ER. At t = 0, we suddenly turn off the first lattice and

quench into a Hamiltonian created by repeated kicking with the second, spatially-shifted

lattice:

Hα =
p2

2M
+
V0
2
cos (2kLx)

∑
n

fτ (t− nT − αT ). (4.14)
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As described by Eq. 4.14, the second, phase-shifted lattice is pulsed n times to depth

V0 with pulse shape fτ , effective pulse width τ = 500 ns, and period T ; the first pulse

peaks a delay time t = αT after the quench. Having measured the finite time of this

quench to be approximately 190 ns, we define t = 0 halfway through the quench and

recognize a systematic ±0.01 uncertainty in the reported values of α. Figure 4.7b illus-

trates the main result of this work: we experimentally observe the departure from and

return to zero average momentum which is the key signature of the quantum boomerang

effect [49]. Here V0 = 41ER, T = 8µs, ϕ ≡ 2kLx0 = 0.9π/2, and α = 0.48. While

the first kick imparts momentum asymmetry due to the lattice phase offset, the system

returns to zero average momentum at long times. The experimental result agrees well

with fit-parameter-free time-dependent Schrödinger equation (TDSE) simulations of the

finite-pulse width Hamiltonian (4.14) using a split-step method described in Appendix

D of [48].

Figure 4.8 shows the characterization of the QBE with respect to parameters α and ϕ,

as well as the difference in average momentum between short times and long times. Fig.

4.8a,b, and c show the difference in late time behavior for different α. In accordance to

the time reversal symmetry conditions mentioned in the previous section, we only observe

a coherent QBE for α close to 0.5. α’s further away demonstrate late time saturation of

< p > to nonzero values. The discrepancy between the alpha value in b) and 0.5 can

be explained by the finite pulse duration as well as the rise and fall times of our AOMs.

The data sets match well with fit-parameter-free TDSE simulations.

Fig 4.8e contrasts the short and long term behavior of the QBE in the kicked rotor

system. The short term dynamics are dictated by the Talbot effect (see 3.1.3). The

Talbot effect gives rise to periodic reimaging of the wavefunction under free expansion

due to diffraction of a matter wave off of a spatial lattice, similar to the repeating pattern

observed when a plane wave diffracts off of a periodic grating. A multitude of experiments
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Fig. 4.8: Characterization of the quantum boomerang effect. All error bars show
standard error of the mean on repeated measurements. (a-c): Average momentum
vs. kick number for V0 = 41ER and T = 8µs, at α = 0.29, 0.48, and 0.73 respectively.
Solid curves show numerical predictions. Dotted lines show infinite-time average mo-
menta predicted by the Floquet diagonal ensemble (Eq. 4.8). ϕ = 0.9π/2 for all
experimental runs. (d): Measured energy vs. kick number for all three values of α.
Shaded areas indicate long-term energy by averaging data points between 10 and 25
kicks. (e): Measured average momentum after 1 kick (red circles) and 25 kicks (blue
squares) vs. α for the same experimental parameters. Same-color solid lines show
numerical predictions. Dashed vertical lines indicate α in (a-c). Dotted purple line
shows prediction of the Floquet diagonal ensemble [49]. (f): Average momentum
after 30 kicks vs. ϕ for V0 = 70ER, T = 7µs, and α = 0.15 (diamonds), 0.48 (circles),
and 1.05 (squares).

have used this Talbot effect to explore quantum resonance phenomena [30,45,46,50].

The long term dynamics are dictated by the symmetries of the initial state and the

Hamiltonian. Here I’ll fully prove that the infinite time momentum should be an odd

function about α = 0.5, following Appendix C of [48]. First we consider initial states

with time-reversal symmetry such that

K |ψ(t = 0)⟩ = |ψ(t = 0)⟩ (4.15)
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We note the relation

K†UαK = ei(1−α)p2/2k̄eiK cosx/k̄eiαp
2/2k̄ = U †

1−α. (4.16)

For compactness, we will denote the state after n kicks in the gauge α as |ψn⟩α ≡

Un
α |ψ(t = 0)⟩ (|ψ0⟩ = |ψ(t = 0)⟩) and use similar notation for expectation values. The

momentum evolution in the gauge 1− α is then given by

⟨pn⟩1−α = ⟨ψ0|Un†
1−α pU

n
1−α |ψ0⟩ . (4.17)

Using (4.15), (4.16) and K† pK = −p, we find

⟨pn⟩1−α = ⟨ψ0| K†Un†
1−αKK†pKK†Un

1−αK |ψ0⟩ (4.18)

= −⟨ψ0|Un
α pU

n†
α |ψ0⟩ = −⟨p−n⟩α. (4.19)

That is, forward quench dynamics in the gauge 1 − α possess an opposite momentum

evolution to backward evolution under the gauge α. Leaving α arbitrary, taking the limit

n→ ∞, and applying (4.9), we derive the odd function result for time-reversal symmetric

states

⟨p∞⟩1−α = −⟨p∞⟩α. (4.20)

Finally, we explore the effect of initial velocity on the late time momentum in 4.8f.

Here we vary the relative phase shift between the loading lattice and the kicking lattice,

which is analagous to the initial velocity in a position space QBE. For α near 0 and 1,

the momentum after 30 kicks has opposite sign and varies sinusoidally, in accordance

with TDSE. For α close to 0.5, the late time momentum converges to 0 regardless of

100



Quantum Boomerang Effect Chapter 4

phase, showing the ubiquity of the QBE regardless of the magnitude of position space

launch. Thus, the initial velocity does not play a role in the return of the QBE, but

rather controls the amplitude of the early time departure.

Initially when attempting this experiment, there were multiple ideas for the prepara-

tion of the initial state. Aside from adiabatically loading the BEC into the optical lattice

to create a Bloch state, some experiments were performed by kicking with the first lat-

tice instead. This created an exotic initial wavefunction which was more homogeneous

in position space, approximately ψ(x) = e−iV sin(2kLx) with V the effective kick impulse.

This state is not localized or time-reversal symmetric, and thus carries no expectation of

showing a QBE. Surprisingly, experiments with the same protocol demonstrating QBE

for the Bloch state also demonstrated QBE for this exotic state, but for different values

of α (ie. in Fig. 4.9a. we show an example of a QBE at α = 0.89, almost maximally far

from the typical α = 0.5). This exotic behavior is proven below using a Jacobi-Anger

analysis similar to Section 3.1.3, and is fully explained in Appendix B of [48].

Using the Jacobi-Anger expansion for the initial wavefunction ψ(x) = e−iV sinx, we

can decompose the initial kicked state in a discrete momentum basis indexed by integers

l as

|ψ(t = 0)⟩ =
∞∑

l=−∞

(−1)lJl(V ) |l⟩ , (4.21)

where Jl is the lth Bessel function of the first kind. The quarter-Talbot period free

evolution is described by e−ip2/2k̄ with k̄ = π and p = k̄l. Noting that (−1)l = (−1)l
2
we

have

|ψ(t = TTalbot/4T )⟩ =
∞∑

l=−∞

il
2Jl(V ) |l⟩ . (4.22)
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Fig. 4.9: Initial state dependence of the quantum boomerang effect. All error bars
show standard error of the mean on repeated measurements. (a): Average momentum
versus kick number for an initial state consisting of a BEC kicked once by a 60ER

lattice. Pink circles correspond to α = 0.89 and purple diamonds to α = 0.61 for
T = 7µs. Solid lines are predictions of TDSE numerics. bf(b): Average momentum
after 30 kicks versus α, for an initial condition set by adiabatic loading of a BEC into
a 7ER lattice (grey circles) and an initial condition set by kicking a BEC once with
a 60ER lattice (blue squares). Dotted blue line shows infinite-time average momenta
predicted by the Floquet diagonal ensemble (Eq. 4.8). Dashed vertical lines correspond
to α values in (a). (c-d): Calculated density evolution over two Talbot times of a
BEC kicked by a 60ER lattice (left) and a a BEC adiabatically loaded into a 7ER

lattice which is then quenched off (right). Dashed vertical lines represent time-reversal
symmetry axes.

The condition on the momentum coefficients for a time-reversal symmetric or real

position-space wavefunction is c∗−l = cl, where cl = ⟨l|ψ⟩. Using J−l(V ) = (−1)lJl(V ),
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we straightforwardly confirm this condition

c∗−l = (−i)(−l)2J−l(V ) = il
2Jl(V ) = cl. (4.23)

This supports the claim that the kicked state should exhibit a boomerang effect

for α = 1/2 + TTalbot/4T , which is what we observe in Fig. 4.9a. We note that this

argument is only exact for 0 quasi-momentum, and the experimental kicked initial state

data relies on a narrow quasi-momentum distribution about 0 for clear observation of

the boomerang effect; however in considering corrections to this argument, one should

keep in mind that the initial state (4.21) considered in this analysis is already only an

approximate description of the experimental reality.

Intuitively, the time-reversal symmetry of the initial state can be evaluated by looking

at the wavefunction probability distribution over time. Fig. 4.9c and d show single site

TDSE simulations of a BEC kicked once with a 60 ER lattice and a BEC loaded into a 7

ER lattice which is quenched off at TTalbot = 0, respectively. Time-reversal symmetric axes

have been marked by vertical dashed red and black lines. These axes can be determined

visually by finding time values where the entire plot is unchanged under y-axis reflection

about those values. For the case of the kicked state (4.9c), we see that no time-reversal

symmetric axis exists at T = 0, but after 1/4TTalbot the state reaches the time-reversal

symmetric axis marked by the first vertical dashed black line.

The final set of results I’ll describe probes the question: what happens to quantum

boomerang dynamics as localization is destroyed? In the QKR context, dynamical local-

ization can be tunably disrupted by introducing temporal stochasticity into the kicking

sequence [51,52]. To implement this, we add a deviation δn to the delay time after the nth

kick, where δn is randomly selected from a uniform distribution in the range [−W/2,W/2].

The parameter ∆ = W/T quantifies the degree of randomness and can range from 0 to
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Fig. 4.10: Destruction of the quantum boomerang effect by stochastic kicking. All
error bars correspond to the standard error of the mean for all realizations of random-
ness. (a): Average momentum measured after n kicks for temporal disorder strength
∆ = 0 (blue circles) and ∆ = 0.6 (red squares). For all data in this figure, T = 8µs,
α = 0.52, V0 = 41ER, and the initial condition was set by an adiabatic lattice load
to 8ER. Circles (squares) represent the mean of measurements with 5 separate kick
disorder realizations for ∆ = 0 (∆ = 0.6). Dashed lines show individual realizations.
Shaded areas in (a) and (c) show numerically calculated ⟨p⟩± σ⟨p⟩ with 9000 disorder
realizations and 500 initial quasimomenta. The shaded area in (b) includes an addi-
tional estimate of the energy accounting for the statistical error in the lattice depth
of V0 = 41± 2ER over 500 lattice depths and 500 realizations. (b): Measured mean
energy for ∆ = 0 (blue circles) and ∆ = 0.6 (red squares) over 10 points (blue) and
5 disorder realizations (red), illustrating the destruction of dynamical localization by
random kicking. (c): Average momentum ⟨p⟩ after 25 kicks versus disorder strength
∆. Dots are averages over 10 disorder realizations, except for ∆ = 0, 0.6 (5 realizations
each). The solid line is numerically calculated ⟨p⟩ over 9000 disorder realizations, with
shaded area showing a one-standard-deviation range.

1. Fig. 4.10a shows the time evolution of average momentum for ∆ = 0 (no randomness)

and ∆ = 0.6, with the first kick fixed so that α = 0.52, and with the same experimental

parameters as in Fig. 4.8b. In contrast to the characteristic boomerang-like evolution

when ∆ = 0, each of the five experimental realizations of randomness for ∆ = 0.6 exhibits
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a different behavior. The mean momentum over these disorder realizations demonstrates

the destruction of the quantum boomerang effect, with a long-time average momentum

significantly different from zero, and agrees reasonably well with the result of disorder-

averaged simulations. Fig. 4.10b shows the evolution of the average energy for the same

experiments: the destruction of dynamical localization by random kicking and the ap-

proach to classical linear-time energy growth are clearly visible in both experiment and

theory, and are associated with the destruction of the quantum boomerang effect in

Fig. 4.10a. To directly probe the dependence of the quantum boomerang on the disorder

strength, we plot in Fig. 4.10c the disorder-averaged mean momentum after 25 kicks as a

function of ∆. Measured long-time ⟨p⟩ increases monotonically up to ∆ ≈ 0.5 and agrees

reasonably well with disorder-averaged numerical predictions. An interesting topic for

further study is the relationship between the degree of destruction of the boomerang

effect (measured, for example, by long-time average momentum) and the exponent char-

acterizing energy growth [53–55].

4.4 Conclusions

In this work we have presented the first experimental evidence for the quantum

boomerang effect in an Anderson-localized system. The measurements confirm theo-

retical predictions [29, 49] and demonstrate that boomerang dynamics can occur from a

variety of initial conditions including even a homogeneous density distribution. These

experimental results, along with the analytical theory we present in the appendices,

elucidate the crucial role of parity and time-reversal symmetry in determining the pres-

ence or absence of the quantum boomerang effect. We have probed the dependence

of boomerang dynamics upon Anderson localization itself by measuring the effect of

tunably random kicking sequences: results confirm that classical diffusion induced by
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stochasticity destroys both dynamical localization and the quantum boomerang effect.

These experiments validate a new, powerful probe of the uniquely quantum-mechanical

nature of localization applicable to a general class of disordered systems and suggest a

variety of intriguing topics for future exploration. These include boomerang phenomena

in higher-dimensional systems, different symmetry classes [56], more exotic initial states,

and the presence or absence of many-body boomerang effects in interacting systems [57]

or even many-body localized states. Applications of our demonstration that adjusting

the Floquet gauge can switch on or off the boomerang effect are an intriguing possibility.

Beyond the context of the quantum kicked rotor, the investigation of boomerang-like

phenomena in condensed matter systems and implications of these results for ultrafast

electron dynamics in disordered solids represent unexplored frontiers.

Since the publication of our manuscript [48], more theoretical work has been pub-

lished exploring the QBE in systems with different symmetries [58], with many-body

interactions [59], and in Hermitian vs. non-Hermitian systems [60,61].
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Chapter 5

Quantum Thermodynamic Engines

5.1 Background and Theory

Since the industrial revolution, engines have been powering the activities of humanity.

The steam engine, first commercially used to drive water pumps circa the 17th century,

began an adoption of engines as a global energy conversion phenomenon that has persisted

to this day. This technology is purely powered by 19th century classical thermodynamics,

yet accounts for roughly 75% of the world’s electricity production. Due to their profound

importance, heat engines continue to be an active research area, with recent interest in

miniature versions at the micro and nano-scale. In the past decade, the capabilities of

quantum thermodynamic engines have been explored theoretically [62, 63, 63–81], and

recent years have seen experimental demonstrations of both quantum and nanoscopic

classical engines using single ions [82,83], nuclear spins [84], cold atoms [85–88], nitrogen-

vacancy centers [89], and quantum gases [90,91]. A natural question is whether quantum

phenomena can enhance the performance of a thermodynamic engine [92–94]. Perhaps

the simplest experimental approach to this question — the direct comparison of an engine

using a classical working fluid to an equivalent one using a quantum degenerate working
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fluid — has remained unexplored.

Amid the initial work on quantum thermodynamic engines, some attention focused

on creating macroscopic quantum engines with large ensembles of particles. One of these

ideas is the Feshbach engine, a novel scheme utilizing the temporal control of interactions

between atoms in a quantum gas as part of a thermodynamic cycle [95]. The scheme

subjects a BEC to alternating strokes of heat transfer and interaction strength variation.

The heat transfer is theoretically performed by the addition and removal of particles

or energy to and from the condensate, while the interactions can be controlled via the

Feshbach resonance. While not entirely analogous to our system, this pioneering work

first showed that BECs can be used as a unique working fluid for thermodynamic engines.

In our experimental setup, the coherent addition and removal of particles and/or energy

is challenging as our BEC is not coupled to any reservoirs. However, another parameter

which is easily controlled is the trap frequency, and in alternating strokes of varying

interactions and varying trap frequency we are able to create a new type of quantum

thermodynamic engine. For the remainder of this chapter, I’ll discuss the experimental

setup to create this type of engine, along with experimental results showing the engine’s

work output and optimization of power and efficiency. At the end, I’ll explore how this

engine is analagous to an Otto cycle through a reframing of parameters.

5.2 Experimental Setup

The experiments begin by preparing a BEC of between 300,000 and 1 million atoms.

It’s worth noting that since putting in the Azurlight 130W Fiber amplifier as the dipole

trapping laser source, the size of the BECs have increased by almost an order of magni-

tude, and potentially hold the record for the largest 7Li BECs made to date. After the

final stage of evaporative cooling, the BEC resides in a crossed optical dipole trap with a
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Fig. 5.1: Varying steps in interaction strength (as) and trap frequency (ω̄) space to
create a thermodynamic engine cycle. The background color shows the total energy
per particle in the BEC. The values shown are typical for the cycles that will be
discussed in this chapter.

geometric mean trap frequency of ω̄ = 2π × 130 Hz, at a temperature of approximately

170 nK, implying a condensate fraction of 95 percent. The scattering length is then

tuned to 100a0, which is the starting point for all of the following experiments described.

To begin the thermodynamic cycle, an example of which is shown in Fig. 5.1, the ODT

is ramped such that ω̄ increases at a constant linear rate while maintaining adiabaticity

(which will be proven later in the chapter). This acts as the compression stroke of our

engine (steps A to B). In the next stroke, we hold the trap frequency constant and

ramp the magnetic field such that the s-wave scattering length increases at a linear rate

while maintaining adiabaticity (steps B to C). This stroke is in a sense analagous to the

combustion stroke of an Otto cycle, in that both increase “pressure”. The definition of

“pressure” in this case will be proven at the end of the next section.

Following the second stroke, we linearly ramp down the trap frequency back to its

initial value, completing the expansion stroke (steps C to D). This stroke is where the
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additional energy pumped into the working fluid is transferred to the optical field, because

the work performed on an optical field by a strongly interacting gas is larger than the

work needed to compress a more weakly interacting gas. We then ramp the magnetic field

back to its initial value, completing the thermodynamic cycle and leaving the working

fluid in the same state in which it started (steps D to A).

To characterize the thermodynamic cycle created by the engine, we turn off the trap

after each stroke and allow the atoms to undergo a free expansion. As soon as the

trap is turned off, the potential energy disappears and the energy remaining in the

BEC is comprised of both interaction and kinetic energies. As the atoms fall freely,

the interaction energy is converted to kinetic energy via interatomic collisions, and after

sufficient time essentially all energy remaining in the system is kinetic. Once all the

energy has been converted, we perform absorption imaging to reconstruct the momentum

distribution of the atoms. Following [96], we can convert the imaged distribution to a

kinetic energy measurement via the formula:

Erel =
3πm

2σ0t2TOF

∫
ρ3log(

I0
I
)dρ (5.1)

where m is the mass of a 7Li atom,tTOF is the time of flight duration, I0 is the intensity

of the beam before absorption by the atoms, ρ is the radial coordinate in the image, and

σ0 = 3λ2/2π with λ the resonant wavelength. The above formula gives a measurement

of the release energy:

Erel = Eint + Ek (5.2)

This can be compared to the theoretical prediction of the release energy for a BEC
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in the Thomas-Fermi limit [7]:

Erel

NckBT 0
c

=
3ζ(4)

2ζ(3)
t4 + α

1

7

(
(1− t3)2/5(2 +

17

2
t3)

)
(5.3)

where t = T/T 0
c and α = µ/kBT

0
c . T

0
c represents the critical temperature for noninter-

acting particles.

5.2.1 Ramp Linearization

While the initial versions of this experiment were performed with linear voltage ramps

in Cicero for both the dipole trap and magnets, we later switched such that both trap

frequencies and interaction strength were ramped linearly. This can be achieved simply

by setting both ω and a to constants times time, and then inverting their respective

equations to achieve a voltage time series that can be input to Cicero. The constants

represent the ramp rate, which we choose empirically such that the ramps are adiabatic.

To create the ramp waveform for the interaction strength, we start with the equa-

tion for the scattering length as a function of the magnetic field around the Feshbach

resonance:

a(B) = abg(1−
∆

B −B0

) (5.4)

where abg = −24.5, ∆ = −192.3, and the location of the Feshbach resonance B0 =

736.8G for 7Li. The magnetic field B at the location of the atoms is linearly proportional

to the current in the coils due to the Helmholtz configuration, and the current in the

coils is linearly proportional to the voltage sent to the PTEN current supply from Cicero,

which is the main control knob. The desire is to create a voltage waveform in Cicero

that will generate a linear s-wave scattering length ramp with respect to time at the
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atoms, with a tunable ramp rate for adiabaticity testing. The field ramps at a constant

1.72 G/A with increasing current from the PTEN, determined from ex-situ testing. The

PTEN outputs 50A per V input from Cicero, so the magnetic field at the atoms is linear

with the Cicero voltage, via the relationship B(VCicero) = 1.72 G/A ∗ 50 A/V∗VCicero =

86 G/V ∗ VCicero = cbvVCicero. Eq. 5.4 can be parametrized as

a(t) = ȧt+ a(0) = abg(1−
∆

B(t)−B0

) (5.5)

= abg(1−
∆

cbv(V (t)− V0)
)

where ȧ is the desired interaction ramp rate and V0 is the voltage corresponding to

the magnetic field at the Feshbach resonance. To obtain the desired waveform, Eq. 5.5

is inverted to

V (t) = V0 +
∆

cbv(1− ȧt+a(0)
abg

)
(5.6)

which can be put into Cicero.

Similarly, a waveform can be created for linear ramping of the trap frequency. The

expression for the radial trap frequency for a dipole trap beam is

fr =
1

2π

√
4U0

mw2
0

(5.7)

where U0 is the maximum trap depth and w0 is the beam waist at the focus. U0 is

proportional to the intensity I(r), which is controlled by the RF power sent to the lattice

AOM. To a good approximation, I(t) ∝ Vl(t), where Vl(t) is the voltage sent from Cicero
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to the AM input of the Moglabs RF driver, which controls the RF power amplitude. This

is the main control knob for which we desire a waveform that will ramp ω(t) linearly.

From the above relations, Vl(t) ∝ f 2
r , and thus can be modeled as a general quadratic

Vl(t) = af 2
r (t)+ bfr(t)+ c. The initial and final voltages are set by the initial trap at the

end of evaporation as well as the desired compression ratio, providing two constraints.

The final constraint is provided by the ramp rate V̇ , which we decide after adiabatic

analysis (discussed in the Results section). Thus, the functional form of Vl(t) can be

solved completely.

5.2.2 Trap frequency measurements

A crucial control parameter in this experiment is the trap frequency of the crossed

ODT the atoms reside in, and thus accurate measurement of the trap frequency is im-

portant. To achieve this, we ramp the trap to a specific laser power and excite a small

oscillation. Physically, after ramping the trap, we slowly translate one beam for 10ms

before snapping it back to its original position, holding the other beam stationary. This

creates a position displacement for the atoms away from the intensity maxima, causing

them to slosh about the trap zero position. The frequency of sloshing will occur at the

radial trap frequency of the displaced beam. The procedure is then swapped for the two

beams to measure the frequency of the other beam. The ODT beams can be dithered

by frequency modulating (FM) the Siglent AWG generating the RF for the ODT AOMs,

which in turn creates position displacement at the atoms. By setting a low frequency

for the FM (<< 100 Hz), the 10 ms displacement can be controlled by sending a voltage

signal to the AM input of a second Siglent AWG, whose output is the FM input for the

Siglent AWG controlling the AOMs.

Example data from a slosh measurement is shown in Fig. 5.2. For accurate mea-
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Fig. 5.2: Trap frequency slosh measurement. The dummy2 variable represents time
in ms. The X oscillation frequency is 239 Hz, corresponding to an ODT beam ramped
to 20% of its maximum power.

surements, we’ve found it best to sample around 8-10 points per period for at least 3

periods.

5.2.3 Scale factors and TOF analysis

A critical feature of this cold atom experiment is the 3D nature of the BEC. When

collecting data for this experiment, one initial oversight was the lack of measuring the

vertical positions of our atoms. Since absorption imaging only gives a 2D projection

of atomic distribution, we fail to measure high energy atoms with dominant vertical

velocities after the free expansion protocol. To address this, the 3D distribution was

initially reconstructed from the 2D projection via an inverse Abel transform, an integral
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transform method used for reconstruction of spherical or axially symmetric distributions.

The Abel transform of a function f(r) is given by

F (y) = 2

∫ ∞

y

f(r)rdr√
r2 − y2

, (5.8)

which projects f(r) onto a plane. The inverse Abel transform is given by

f(r) = − 1

π

∫ ∞

r

dF

dy

dy√
y2 − r2

, (5.9)

and in our case the images we obtain from absorption yield F (y). In practice, we found

that using an inverse Abel transform directly on our imaged distributions led to poor

agreement with Eq. 5.3 due to inhomogeneous scaling of the cloud as the atoms freely

expand. This is due to non-sphericity in the ODT as well as lensing from residual

magnetic field curvature during the free expansion. Thus, the imaged distribution doesn’t

obey the radial symmetry condition necessary for the Abel transform. To bypass this,

we imaged the atomic cloud from both the top and the side to obtain length scales

for each axis, x̄, ȳ, z̄. These length scales are radii obtained from Gaussian fits to the

imaged distributions, though fits to Thomas-Fermi profiles obtain similar results. The

absorption image from the vertical axis (yielding an atomic distribution in the x and y

axes) is taken and scaled in the y-axis coordinate by ȳ/x̄ to create a circular distribution,

and an inverse Abel transform via Eq. 5.9 is applied. The result of this transform is a

3D radial distribution in scaled coordinates referenced to the x-axis. Reverting back to

Cartesian coordinates simply requires the multiplication of ȳ/x̄ in the y-coordinate and

z̄/x̄ in the z-coordinate.

If imaging from multiple axes is not possible, an alternative method to obtain scale
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factors is available via free expansion simulation. In [97], a full treatment is given to the

dynamics of a BEC released from a trapping potential. Assuming the BEC starts with

initial Thomas-Fermi radii Rj(t = 0), (j = 1, 2, 3) for the three spatial coordinates, the

cloud will experience dilation according to

Rj(t) = λj(t)Rj(0), (5.10)

where λj(t) is a time-dependent scale factor. Applying Newton’s law to the evolution

of the spatial density and assuming a 3D harmonic trap for the potential, the evolution

of the scale factors can be determined from the set of coupled equations

λ̈j =
ω2
j (0)

λjλ1λ2λ3
− ω2

j (t)λj (j = 1, 2, 3). (5.11)

When the potential is turned off (ie. for a TOF), the second term on the right hand

side disappears. Interestingly, the resulting set of equations implies that the full dynamics

of the TOF are governed only by the scale factor evolution. This set is straightforward

to solve computationally, and can describe many characteristics of BECs, such as the

inversion of their aspects ratios when released from an asymmetric trap [98]. Example

MATLAB code to solve these equations is provided below.

syms bx(t) by(t) bz(t)

ode1=diff(bx ,2) == ((wX^2/(bx^2*by*bz)));

ode2=diff(by ,2) == (wY^2/(bx*by^2*bz));

ode3=diff(bz ,2) == (wZ^2/(bx*by*bz^2));
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Fig. 5.3: Scale factor evolution for typical trap frequencies used in the experiment,
computed by solving the coupled equations 5.11. The y-axis has been scaled by the
x-scale factor at the end of the TOF.

interval = [t0 tf]; %time interval

vars = [bx(t); by(t); bz(t)];

[V] = odeToVectorField ([ode1 ,ode2 ,ode3]);

M = matlabFunction(V,'vars', {'t','Y'});

opts = odeset('RelTol ',1e-7,'AbsTol ',1e-9);

y0 = [1,0,1,0,1,0];

ySol = ode45(M,interval ,y0,opts);
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5.3 Creating a Quantum Thermodynamic Engine

The following section will discuss the results of various experiments performed with

the quantum thermodynamic engine. These results have been published in [99].

Fig. 5.4: Thermodynamic engine with a quantum degenerate working fluid. (a) En-
gine cycle in as-ω̄ space. Color shows total energy per particle. (b) Top: BEC images
after 12 ms of expansion at each step. Middle: Evolution of trap frequency (dotted)
and scattering length (dot-dashed). Bottom: measured release energies for quantum
degenerate (circles) and thermal (squares) working fluids during one engine cycle, nor-
malized by the step A value. Dotted lines connect data points. Inset shows efficiency
for each condensate fraction fc; line indicates theoretical maximum efficiency in the
Thomas-Fermi regime. Error bars show standard error in all figures.
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Before we begin, there are two metrics that must be defined which characterize any

engine: efficiency and power, designated by η and P respectively. η is defined as

η =
ECD − EAB

EBC

. (5.12)

Here the numerator is the difference between energy lost and energy gained by the working

fluid from the dipole trap ramps, and the denominator is the energy gained during the

first magnetic ramp. The numerator equates to the amount of magnetic energy carried

away by the optical trap, and thus η represents the converted fraction of the magnetic

energy inputted into the system. P is defined as:

P =
ECD − EAB

Tcycle
, (5.13)

which is a measure of how fast magnetic energy can be delivered to the optical trap.

The initial goal of the experiment was to identify any advantage from having a quan-

tum degenerate gas as the working fluid in a thermodynamic engine. The Bose-condensed

working fluid is compared to a classical one by performing analagous engine cycles on a

BEC and a classical gas. This is achieved by preparing a thermal gas via low-interaction

optical evaporation. We ramp our scattering length to 57a0 before ramping down the

ODTs, resulting in inefficient evaporation due to choked rethermalization, producing a

non-condensed cloud at the end of the evaporation sequence. Due to the partial evap-

oration, the thermal gas starts at a larger initial trap frequency than the condensate,

but both fluids experience the same compression ratio ν = ω̄B/ω̄A ≈ 2 during the op-

tical ramps. This thermal gas has a temperature of 890 nK with a density of 6x1011

atoms/cm3, about 33 times less than the condensate. The density difference can be at-

tributed to bosonic quantum statistics, with the Thomas-Fermi profile having a larger
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concentration of atoms when compared to a thermal gas. The difference in engine perfor-

mance can be seen in Fig. 5.4b. While both fluids increase and decrease energy during

optical compression and decompression (steps A to B and C to D, respectively), the con-

densed working fluid experiences a large change in energy during the interaction ramps

(steps B to C and D to A) while the thermal gas energy remains constant within measured

error. In terms of engine performance the two fluids produce a stark contrast in η, where

the thermal gas has 0 efficiency and thus no ability to transfer energy. The BEC has

an efficiency closer to 50% for a wide parameter range (with more specific values given

in the discussion of compression ratios), transferring about half of the energy inputted

by the magnets into the optical fields. The difference in behavior can be attributed to

the Bose-enhanced density of the condensate, which drastically increases the interaction

energy in the cloud compared to the low density thermal cloud.

It is useful to measure the reversibility and repeatability of the engine cycle. Re-

versibility allows for energy transfer in the opposite direction, from the optical field to

the magnetic field, and repeatability guarantees the ability to transfer energy for large

time scales. Reversibility can be tested by running the engine cycle in reverse (A-D-

C-B-A) and comparing the release energy of the working fluid per step to the forward

cycle. In Fig. 5.5a, the result of this comparison is shown. The large amount of overlap

demonstrates a high degree of reversibility as well as the ability to transfer energy from

the lasers to the magnets. Repeatability can be tested simply by running the engine cy-

cle multiple times. Fig. 5.5b shows the release energy per step over 4 cycles. The black

line shows theoretical results of isentropic interacting numerical simulations detailed in

Appendix A of [99]. The working fluid reliably returns to its original release energy af-

ter the completion of each cycle, showing no significant absorption of energy during the

course of the cycle. However, there is a reduction of release energy gain per cycle, as

shown by the decreasing heights of the step B energy in each cycle. This is attributed to
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Fig. 5.5: Engine reversibility and repeatability. (a): Comparison of the cycle per-
formed in the “forward” (A-B-C-D-A) and “reverse” (A-D-C-B-A) directions, indi-
cated by right- and left-pointing markers respectively. Light blue line shows results
of analytic calculations (see Eq. 5.3); black line shows results of isentropic fully-inter-
acting numerical simulations in both panels. (b): Measured release energy evolution
during four repeated engine cycles. Simulation particle number is set to the mean
particle number across each four-step cycle. Error bars are smaller than symbol size.

three-body loss of atoms during the duration of the experiment, which lasts 530 ms per

cycle. Measuring the atom number each cycle, we find ∼ 20% reduction in atom number

from the first to the second cycle, 13% reduction from the second to the third cycle, and

a 7% decrease from the third to the fourth cycle for this parameter set. The monotonic

decrease can be intuited from the fact that three body loss decreases as the cloud den-

sity decreases [100], and qualitatively matches our expectations for the scattering lengths

used in the cycle. These loss numbers will vary with respect to atom number, trapping

frequencies, and interaction strengths, but will always inherently limit the repeatability
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of the engine.

Efficiency and power are arguably the two most important metrics for engine per-

formance, and both depend on the adiabaticity of the cycle. The adiabaticity can be

tested by varying the cycle time and observing if η and P deviate from theoretical pre-

dictions. This is critical, as adiabaticity prevents excessive heating and loss of atoms

from the trap, and allows for appropriate characterization of the energy during the cycle.

As an estimate, we apply the Landau-Zener formalism to approximate the probability of

excitations [101,102].

Considering only the ground state and the first excitation, the probability of a

Landau-Zener transition between them is

P = e−
1
Θ , (5.14)

Θ =
ω̇E

2πω2
E

where Θ is the adiabaticity parameter and h̄ωE is the energy gap to the first excited

state. Θ is straightforward to compute, as the energy gap corresponds to the first excita-

tion in the 3D ODT harmonic trap, and ω̇E is a tunable parameter set by the trap ramp

speed. For the data in Fig 5.4 and 5.5, ˙̄ω = 2π Hz/ms, corresponding to a maximum

Θ ∼ .001 and obeying the adiabaticity criterion of Θ << 1. In Fig. 5.6b, the inset

show how adiabaticity changes as a function of the cycle time. While there is significant

increase as the cycle time becomes shorter, Θ remains well under 1 for all tested cycle

times.

Fig. 5.6 shows the efficiency and power with respect to the total cycle time. The

gray line in Fig. 5.6a corresponds to the theoretical Thomas-Fermi efficiency computed

by inputting Eq. 5.3 into Eq. 5.12, which is independent of cycle time. The data in
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Fig. 5.6: Efficiency and power vs. cycle time. (a): Measured energy transfer efficiency
η versus cycle time. Line shows theoretical efficiency from Eq. 5.3. (b): Measured
engine power, quoted in quectoWatts (10−30 Watts), versus cycle time. Shaded region
shows the theoretical prediction of Eq. 5.3 for the measured range of atom numbers.
The power shown here is taken from release energy measurements; as discussed in the
main text, the total power is a factor of 2.5 higher. Inset shows adiabaticity parameter
Θ versus cycle time.

Fig. 5.6a cluster around this theoretical value, though the drop at larger cycle times

is attributed to three-body loss and heating of the atoms. At short times, technical

limitations, including inductive limits on the magnet ramp rate, degrade the efficiency.

Similar behavior can be seen in Fig 5.6b for the power, which decreases according to Eq.

5.3 (purple shaded region in plot, whose width corresponds to the range predicted by the

typical variation in atom number), though with significant deviation at lower cycle times.

Again there is a drop-off at the shortest cycle time due to the aforementioned technical

limitations. The difference between the theoretical prediction and data point around 50

ms can be attributed to the inability of the dipole trap beam powers to follow their PID

setpoints, which led to increase excitations in the BEC.
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These results conform to expectations from our experience of macroscopic heat en-

gines, in that there is a balance between power and efficiency, but also an optimal range

of engine speeds. However, there is a growing body of work on methods to circumvent

this tradeoff with shortcuts to adiabaticity (STA) [95, 103, 104]. This concept will be

explored in the final section of this chapter 5.5.1.

To maximize the performance of the engine, it’s worth looking at the theoretical

efficiency to determine which parameters are relevant 1. The trap compression ratio and

interaction ratio are defined as ν := ω̄B/ω̄A and κ = aCs /a
A
s , respectively. Assuming

that the BEC starts in the ground state of the harmonic trap and has negligible kinetic

energy, the Thomas-Fermi formalism can be applied. The BEC energy exhibits the

following scaling dependencies [102]:

E/N ∝
(
Nas
āHO

)2/5

ℏω̄ ∝ a2/5s ω̄6/5. (5.15)

The above can be applied to the energy at each step of the thermodynamic cycle:

EAB ∝ (ν6/5 − 1) a2/5s ω̄6/5, (5.16)

EBC ∝ ν6/5(κ2/5 − 1) a2/5s ω̄6/5, (5.17)

ECD ∝ κ2/5(ν6/5 − 1) a2/5s ω̄6/5. (5.18)

The efficiency can then be written as

1Credit to Yifei Bai for helping to solve this
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Fig. 5.7: Effects on engine performance from varying compression ratio. (a): Measured
release energy evolution over one engine cycle for varying ν = ω̄B/ω̄A at a fixed
interaction ratio κ = aCs /a

A
s = 2.4. Lines show analytical prediction of Eq. 5.3.

(b): Efficiency η as a function of compression ratio. Shaded region shows theoretical
prediction of Eq. 5.19 for the measured range of atom numbers.

↪→ η =
ECD − EAB

EBC

=
κ2/5(ν6/5 − 1)− (ν6/5 − 1)

ν6/5(κ2/5 − 1)
=
ν6/5 − 1

ν6/5
κ2/5 − 1

κ2/5 − 1
(5.19)

=
ν6/5 − 1

ν6/5
= 1− ν−6/5 = 1−

(
ω̄A

ω̄B

)6/5

.

Surprisingly, the efficiency is solely determined by the compression ratio ν. This

can be compared in analogy to the Otto cycle efficiency ηOtto = 1 − ν1−γ with ν the
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compression ratio and γ the specific heat ratio. Fig. 5.7a shows three thermodynamic

cycles with varying ν, with distinctly larger release energies at steps B and C and no

significant change in steps A and D, in agreement with 5.3. In Fig. 5.7b, an asymptotic

increase towards unit efficiency is shown with increasing ν. Excellent agreement is ob-

served between the data and Eq. 5.19 (shown by the shaded purple region), validating

the predicted relationship between η and ν.

Similarly, we can look at the effects of the interaction strength by looking at power

as a function of κ while holding ν constant. Using Eq. 5.19, P ∝ (κ2/5 − 1)(ν6/5 − 1):

the power is determined solely by the interaction ratio κ for a fixed compression ratio ν.

Fig. 5.8a examines three cycles with varying κ (1.2,1.6,2.0). Accessing larger κ remains

an experimental challenge due to significant three-body loss over the duration of the

cycle, while smaller interaction strengths are more experimentally accessible but depart

from the Thomas-Fermi regime, making comparison to theory challenging. Fig. 5.8b

shows that the output power indeed increases with κ, with a departure from theoretical

predictions at larger values of κ a possible hint of beyond-mean-field behavior. These

results emphasize the importance of interaction effects in the engine: Feshbach tuning

is the key parameter controlling energy transfer between magnetic and optical fields.

This power enhancement is completely decoupled from the boost to efficiency achieved

through stronger compression, and from the power enhancement due to decreased cycle

time. Taken together, ν and κ represent flexible experimental control knobs which enable

a quantum gas to execute efficient and tunable energy transfer between two otherwise

decoupled reservoirs of energy.

We’ve now fully characterized this novel quantum thermodynamic engine. It’s helpful

to frame the results within the context of existing engines. Here we draw an analogy

between this isentropic thermodynamic cycle and the classical Otto cycle, following Ap-

pendix B in [99]. Because the walls of the trap are not rigid and the optical trap interacts
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Fig. 5.8: Effects on engine performance from varying interaction strength ratio.
(a): Measured release energy evolution over one engine cycle for varying interaction
strength ratio κ = aCs /a

A
s at a fixed compression ratio ν = 1.94. (b): Power output as

a function of κ. Shaded regions in both panels are theoretical predictions from Eq. 5.3
for the measured range of atom numbers.

with the BEC at all spatial positions r through the single-body term Uext(r), thermody-

namic pressure and volume are understood differently than their analogues for fluids in

rigid containers. The proper pressure to use in thermodynamic relationships is a gener-

alized extensive mechanical variable related to the spatial extent of the gas V = (ℏω̄)−3,

referred to as “harmonic volume” [105–107]. We can write the total energy in terms of
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this thermodynamic volume as

E =
5

7

152/5

2
m1/5N

(
Nas
ℏV

)2/5

. (5.20)

A conjugate intensive mechanical variable denoted P and referred to as “harmonic

pressure” can also be derived [105–107]. This “harmonic pressure” governs mechanical

equilibrium of the gas, much like hydrostatic pressure governs mechanical equilibrium of

a fluid in a container with rigid walls:

P = −∂E
∂V

∣∣∣∣
N

=
152/5

7
m1/5N

(
Nas
ℏ

)2/5

V−7/5, (5.21)

This expression may be equivalently derived by substituting the Thomas-Fermi den-

sity into the integral of the harmonic pressure given in [105]. The total energy can then

be rewritten as

E =
5

2

152/5

7
m1/5N

(
Nas
ℏV

)2/5

=
5

2
PV , (5.22)

and by using the definition of the Thomas-Fermi energy, we can recover an analogy to

the ideal gas law:

PV =
2

7
Nµ. (5.23)

It is important to note that while µ plays the role of an “effective temperature” it is

unrelated to a thermal equilibrium. In our cycle, strokes of constant µ are analogous to

isothermal strokes in the classical cycle.

We now have all of the pieces to establish a connection with the Otto cycle. The first

stage is an adiabatic compression ω̄A → ω̄B = νω̄A with compression ratio ν. This traces
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Fig. 5.9: PV diagram for the thermodynamic engine. VA and PA are the harmonic
volume and pressure evaluated at step A of the engine cycle. Here κ = 10 and ν = 1.5.

an adiabat in the PV-space.Using Eq. 5.23, the adiabat is defined by

Vµ5/2 = constant, or V7/5P = constant. (5.24)

The heating stroke in the classical Otto cycle is replaced by an interaction strength

stroke, which keeps the harmonic volume unchanged but changes the chemical potential

and the harmonic pressure, thus mimicking an “isochoric” process. We note that this is

not an actual transfer of heat, as the thermodynamic entropy is constant. The final two

strokes follow the same arguments presented above. A quantitative PV diagram of this

thermodynamic cycle is shown in Fig. 5.9.

This mathematical analogy enables an alternative derivation of the efficiency of the

thermodynamic engine, allowing us to use the Otto cycle efficiency directly with the
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adiabatic exponent γ = 7/5:

η = 1−
(
VB

VA

)γ−1

= 1−
(
VB

VA

)2/5

= 1−
(
ω̄A

ω̄B

)6/5

= 1− ν−6/5 (5.25)

This is the same expression as Eq. 5.19.

5.4 Conclusions

In conclusion, we have realized an isentropic thermodynamic engine with a quantum

degenerate working fluid and demonstrated that it outperforms a classical counterpart.

Bose-Einstein statistics enable a high ground state occupation throughout the cycle,

making manipulation of internal energy straightforward via manipulation of the ground

state energy. The quantum-enhanced density of the BEC is essential; interaction-tuning

strokes had no observable effect on the dilute thermal gas at the same confinement ratio.

It is interesting to note that quantum statistics drive work output in a very different

way in the recently-reported Pauli engine [91]: while work done in the Pauli engine is a

consequence of excited-state occupation forced by a change to Fermi statistics, the work

output in our engine arises chiefly from changes in the ground state energy. Experimen-

tal measurements of engine performance for various values of control parameters and

degrees of adiabaticity are in good agreement with both low-temperature analytics and

approximation-free numerical simulations.

This work opens up a variety of interesting directions for future exploration. These

include optimizing performance with shortcuts to adiabaticity [67, 68, 73, 108], realizing

a quantum Otto refrigerator [109–113], applying similar techniques to quantum heat

engines involving trapped reservoirs of hot and cold atoms, investigating the role of
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criticality [69], and experimentally exploring the effects of entanglement on quantum

thermodynamic engines [114–116].

5.5 Future work

The prior experiment represents an initial step in realizing macroscopic quantum

thermodynamic engines. In this section, I’ll discuss two ideas that can extend the work

we have done so far. The first will explore how to increase the power output of these

engines by speeding up the ramps without sacrificing effective adiabaticity, while the

second will explore how to create a true Otto cycle with the BEC system.

5.5.1 Shortcuts to adiabaticity for quantum thermodynamic en-

gines

Optimizing a quantum thermodynamic engine requires increasing speed without sac-

rificing coherence. Faster strokes lead to larger power outputs, as well as increased

repetition before loss from heating. However, when Hamiltonian parameters are var-

ied too quickly, diabatic heating results due to unwanted transitions. To combat this,

an extensive body of theoretical and experimental work has focused on creating short-

cuts to adiabaticity (STAs) [67, 68, 103]. Conceptually, these are protocols that quickly

evolve an initial state into a target state, typically on time scales much faster than an

equivalent adiabatic process would. These schemes work by optimizing time variation

of Hamiltonian control parameters while minimizing unwanted excitations, but they do

not guarantee adiabaticity during the process itself. More generally, these protocols are

also an active area of research for gate-based quantum computing as well as quantum

annealing, where faster speeds allows for increased computation and simulation [117].
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Generally, the steps to create an STA are outlined below:

1. Pick the control parameter that must be varied to get from the initial state to the

target state.

2. Find a dynamical invariant of motion, which is a relation that holds true during

the entire protocol.

3. From the invariant, find all boundary conditions for the system. These do not

necessarily prevent excitations during the ramp, but rather are relations that must

hold for the initial and final states.

4. To satisfy all boundary conditions, a polynomial ansatz of arbitrarily high order

can be used. Use this to solve for the dynamical quantity as a function of control

parameter

5. That equation can be inverted to obtain the proper protocol for the desired control

parameter

For quantum thermodynamic engines, theoretical work has been completed to create

STAs for both interaction and dipole trap ramps following procedures similar to the

one described above. In [95], a protocol is specifically solved for an interacting BEC

in a harmonic trap. Starting with the Gross-Pitaevskii equation 1.10, the interaction

strength g is chosen as the control parameter. Going into the Thomas-Fermi regime, an

appropriate scaling ansatz can be chosen such that the interaction strength takes the

following form:

g(t) = gi
a2(t)

ω2
[ä(t) + ω2a(t)], (5.26)
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where a is the s-wave scattering length and ω is the harmonic trap frequency for the

potential V (x) = 1
2
mω2x2. Eq. 5.26 is the dynamical invariant of motion, always holding

true during the STA protocol. Now appropriate boundary conditions for a(t) can be

chosen:

a(0) = ai = 1,

a(Tf ) = af = (gf/gi)
1/3, (5.27)

ȧ(0) = ȧ(Tf ) = ä(0) = ä(Tf ) = 0.

Fulfilling the above equations, we can engineer a ramp from interaction strength gi to gf

in an arbitarily small time Tf . The boundary conditions can be satisfied by choosing a

fifth order polynomial for a(t):

a(t) = ai + (af − ai)(10s
3 − 15s4 + 6s5) (5.28)

where s = t/Tf . Here lies the power of STAs: regardless of the number of boundary

conditions, the polynomial dictatiing the parameter evolution can be of arbitrary order,

meaning that as long as satisfactory boundary conditions can be found for the evolution,

an STA should be achievable. It’s worth noting that 5.26 is only true for one dimension,

but can be generalized to arbitrary dimension according to the following:

g(t) = gi
ad+1(t)

ω2
[ä(t) + ω2a(t)]. (5.29)

An example protocol using the form of 5.29 is shown in Fig. 5.10 for multiple time

values, taken from [95]. I created an equivalent STA for the second stroke of the quantum

thermodynamic engine described in the main results 5.3 using the same method, shown
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Fig. 5.10: STA for interaction ramp on a BEC in 3D. Tf is in units of 1/ω. Taken from [95].

Fig. 5.11: STA for interaction ramp on a BEC in 3D. Tf is in units of 1/ω with
ω = 2π ∗ 100Hz. Here ai = 100a0 and af = 240a0.
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Fig. 5.12: Voltage waveforms for the STA protocol shown in Fig. 5.11.

in Fig 5.11. The interaction strength can be converted into a control voltage signal, which

can be directly fed into the Cicero GUI to realize this protocol. Example voltage signals

are shown in Fig. 5.12.

The above STA can be used to engineer ramps for strokes 2 and 4 of the quantum

thermodynamic engine discussed in this chapter. Similar STAs have been created for

ramping harmonic potentials, which can be used for strokes 1 and 3. Extensive analyses

of these schemes are shown in [104, 108]. Unfortunately I will be graduating before

attempting this experiment, but future students are welcome to engineer these shortcuts

in order to realize a higher power quantum engine.

5.5.2 Quantum Otto Cycle

A relevant extension of this quantum thermodynamic engine would be to create a

quantum Otto cycle, with a mechanism for adding and removing heat to the working
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fluid to perfectly reflect engines used in modern vehicles. While a plethora of theory

work has been performed in this realm [109–113], no experiments have achieved this

cycle. While heat can be easily applied to the BEC by means of shaking or shining

specific frequencies of light, cooling remains an open challenge for this setup. Currently,

there are ideas of cooling via partial evaporation within the engine cycle, but this loses

efficacy as the density of atoms is reduced, and is unrepeatable after a few cycles.

Another approach would be to create two extra atomic clouds to act as reservoirs. Our

group is actively building a new apparatus with the goal of trapping BECs of potassium in

optical tweezers. In such an apparatus, three atomic clouds could be created in adjacent

sites, with the central cloud acting as a working fluid and the other two acting as hot

and cold reservoirs, with the temperature differences achieved by varying the evaporative

cooling performed on each cloud.
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Code Primer

This appendix provides code for calculating the static band structure of atoms in an

optical lattice, following the plane-wave basis treatment outlined in Sec. 1.6.

%% Set up band parameters

Nbands = 101; % Number of bands considered

Nq = 250; % Number of quasimomentum points

V0 = 3; % Lattice depth (in Er)

%% Initialize matricies for energy and momentum

q = linspace(-1,1,Nq); % Quasimomentum array , in units of hk

E = zeros(length(q),Nbands); % Matrix to store energy bands

k = -Nbands +1:2: Nbands -1; % Array of sequential plane wave

states

Vmat = (V0/4)*gallery('tridiag ',Nbands ,1,0,1); %Potential

matrix for the lattice

% Compute energy band values for every quasimomenta
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for jj = 1: length(q)

% Kinetic energy Hamiltonian term for this q

Tmat = sparse (1: Nbands ,1: Nbands ,(q(jj)+k).^2,Nbands ,

Nbands);

% Band energies computed by diagonalizing the full

Hamiltonian

E(jj ,:) = eig(full(Tmat+Vmat));

end

%% Plot band structure

figure (1); clf;

plot(q, E(: ,1:4))
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Fig. A.1: First four static bands for V0 = 3ER
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Calculating Atom Interferometer

Phase

One active project on the lithium machine is the continuously trapped atom interferom-

eter, created by periodically modulating the optical lattice to induce band transitions on

the atoms. This Floquet engineering allows for the creation of atomic beamsplitters and

mirrors while the BEC is Bloch oscillating in the bands. A simple interferometric loop

is couple the bands at a quasimomentum k1 to induce a 50/50 split of the atoms, and

then couple the bands again at quasimomentum k2 to close the loop. The atoms in the

excited trajectory will follow E2(t) while the atoms still in the ground band will follow

E1(t). The following calculation is to determine the relevant factors in the accumulated

phase between the atoms as they go through this interferometric loop.

The phase accumulated in our atom interferometer is defined as:

ϕ =
1

ℏ

∫ t2

t1

(E2(t)− E1(t))dt. (B.1)
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Since our current code gives us the energy as a function of k, we’d like our integration

variable to be k. Doing a simple change of variables:

ϕ =
1

ℏ

∫ k2∗

k1∗
(E2(k)− E1(k))dk

dt

dk
. (B.2)

We can approximate dt
dk

using the following:

dt

dk
=

TB
2ℏk

=
TB
2
. (B.3)

The intuition here is that while the atoms travel over one Brillouin zone, one Bloch period

(TB) of time passes and their momenta change by 2ℏk. This should be constant over

the zone, since the force the atoms experience during one Bloch oscillation is roughly

constant. We then factor out ER for code consistency since our energies are normalized

by the recoil energy:

ϕ =
TB
2ℏ

∫ k2∗

k1∗
(
E2(k)

ER

− E1(k)

ER

)ERdk. (B.4)

We then rearrange some terms:

ϕ =
TB
2

∗ 2π ∗ Er

h

∫ k2∗

k1∗
(
E2(k)

ER

− E1(k)

ER

)dk. (B.5)

Here, the recoil energy divided by Planck’s constant is the recoil frequency:

Er

h
= fRec = 25.2kHz, TB = 20ms, (B.6)
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where 20 ms is a typical Bloch period we use for our system. We’ll define the integral as

its own variable. Notice that it is now dimensionless.

S =

∫ k2∗

k1∗
(
E2(k)

ER

− E1(k)

ER

)dk (B.7)

The final expression for the phase (in full periods) is:

ϕ

2π
=
TBfRecS

2
(B.8)

The important thing to notice is that TBfRec

2
= 252, meaning that any variation in S

will be multiplied by 252 for TB = 20 ms. To reduce this variation, it is crucial to

create loops with smaller Bloch periods, ideally ≈ 1 ms. In order to accurately evaluate

the interferometer, it is necessary to sample at least 5-10 points per oscillation, which is

easier to do the smaller the accumulated phase is. S ≈ 1 in loops that span non-negligible

fractions of the Brillouin zone (≈ .5) for relatively small lattice depths (≈ 5ER), meaning

that in a typical loop the atoms will accumulate 2π phase hundreds of times. Hence, a

drastic reduction in Brillouin zone span in addition to the reduction in Bloch period

will most likely be necessary in order to probe the phase accumulation in this type of

interferometer.
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