Set #1 - for Wd Sept. 29

Read HR&K Chapter 1 - particularly Section 1.7
Chapter 2 - Sections 2.1 through 2.3
Appendix H: Vectors (2D and 3D)

Read K&K Chapter 1 - Sections 1.1 through 1.4

From Resnick, Halliday & Krane, Vol. 1 (5th Edition):

Ch. 1 Exercises 32, 33.

Ch. 2 Exercise 10, Problems 1, 2, 3.

1. Indicate the properties of two vectors \(\vec{a} \) and \(\vec{b} \) such that
 a) \(\vec{a} + \vec{b} = \vec{c} \) and \(a + b = c \) (note: \(|\vec{a}| = a \))
 b) \(\vec{a} + \vec{b} = \vec{a} - \vec{b} \)
 c) \(\vec{a} + \vec{b} = \vec{c} \) and \(a^2 + b^2 = c^2 \)

2. A tourist flies from Washington D.C. to Manila. The latitude and longitude of the two
cities are 39° N, 77° W and 15° N, 121° E respectively. The radius of the earth is 6370
Km.
 a) Describe the displacement vector.
 b) What is its magnitude?

3. Let \(N \) be an integer greater than 1. Consider the sum of \(N \) vectors of equal length,
each vector making an angle of \(2\pi/N \) with that preceding. Then show:
 \[
 \cos 0 + \cos \frac{2\pi}{N} + \cos \frac{4\pi}{N} + \ldots + \cos(N-1)\frac{2\pi}{N} = 0
 \]
 that is, \[
 \sum_{n=0}^{N-1} \cos \frac{2\pi n}{N} = 0
 \]
 Also show: \[
 \sum_{n=0}^{N-1} \sin \frac{2\pi n}{N} = 0
 \]

4. You have 200 ft of steel sheet 0.020 in thick and you want to wrap it around a 6.00 in
diameter tubing. How many turns of steel will you get? Neglect any air gap effects.